# Properties

 Label 42.4.e.c.25.2 Level $42$ Weight $4$ Character 42.25 Analytic conductor $2.478$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$42 = 2 \cdot 3 \cdot 7$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 42.e (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.47808022024$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{1345})$$ Defining polynomial: $$x^{4} - x^{3} + 337 x^{2} + 336 x + 112896$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 25.2 Root $$9.41856 + 16.3134i$$ of defining polynomial Character $$\chi$$ $$=$$ 42.25 Dual form 42.4.e.c.37.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.00000 - 1.73205i) q^{2} +(-1.50000 + 2.59808i) q^{3} +(-2.00000 + 3.46410i) q^{4} +(7.91856 + 13.7153i) q^{5} +6.00000 q^{6} +(18.3371 - 2.59808i) q^{7} +8.00000 q^{8} +(-4.50000 - 7.79423i) q^{9} +O(q^{10})$$ $$q+(-1.00000 - 1.73205i) q^{2} +(-1.50000 + 2.59808i) q^{3} +(-2.00000 + 3.46410i) q^{4} +(7.91856 + 13.7153i) q^{5} +6.00000 q^{6} +(18.3371 - 2.59808i) q^{7} +8.00000 q^{8} +(-4.50000 - 7.79423i) q^{9} +(15.8371 - 27.4307i) q^{10} +(-25.9186 + 44.8923i) q^{11} +(-6.00000 - 10.3923i) q^{12} +38.8371 q^{13} +(-22.8371 - 29.1627i) q^{14} -47.5114 q^{15} +(-8.00000 - 13.8564i) q^{16} +(-13.6742 + 23.6845i) q^{17} +(-9.00000 + 15.5885i) q^{18} +(-38.2557 - 66.2608i) q^{19} -63.3485 q^{20} +(-20.7557 + 51.5384i) q^{21} +103.674 q^{22} +(-73.6742 - 127.608i) q^{23} +(-12.0000 + 20.7846i) q^{24} +(-62.9072 + 108.958i) q^{25} +(-38.8371 - 67.2679i) q^{26} +27.0000 q^{27} +(-27.6742 + 68.7178i) q^{28} +240.208 q^{29} +(47.5114 + 82.2921i) q^{30} +(148.337 - 256.927i) q^{31} +(-16.0000 + 27.7128i) q^{32} +(-77.7557 - 134.677i) q^{33} +54.6970 q^{34} +(180.837 + 230.927i) q^{35} +36.0000 q^{36} +(80.7670 + 139.893i) q^{37} +(-76.5114 + 132.522i) q^{38} +(-58.2557 + 100.902i) q^{39} +(63.3485 + 109.723i) q^{40} -102.977 q^{41} +(110.023 - 15.5885i) q^{42} -328.557 q^{43} +(-103.674 - 179.569i) q^{44} +(71.2670 - 123.438i) q^{45} +(-147.348 + 255.215i) q^{46} +(-33.9773 - 58.8504i) q^{47} +48.0000 q^{48} +(329.500 - 95.2825i) q^{49} +251.629 q^{50} +(-41.0227 - 71.0534i) q^{51} +(-77.6742 + 134.536i) q^{52} +(33.2443 - 57.5808i) q^{53} +(-27.0000 - 46.7654i) q^{54} -820.951 q^{55} +(146.697 - 20.7846i) q^{56} +229.534 q^{57} +(-240.208 - 416.053i) q^{58} +(230.964 - 400.041i) q^{59} +(95.0227 - 164.584i) q^{60} +(-92.6742 - 160.516i) q^{61} -593.348 q^{62} +(-102.767 - 131.232i) q^{63} +64.0000 q^{64} +(307.534 + 532.665i) q^{65} +(-155.511 + 269.354i) q^{66} +(-272.604 + 472.164i) q^{67} +(-54.6970 - 94.7379i) q^{68} +442.045 q^{69} +(219.140 - 544.146i) q^{70} -130.742 q^{71} +(-36.0000 - 62.3538i) q^{72} +(-90.6496 + 157.010i) q^{73} +(161.534 - 279.785i) q^{74} +(-188.722 - 326.875i) q^{75} +306.045 q^{76} +(-358.638 + 890.533i) q^{77} +233.023 q^{78} +(204.848 + 354.808i) q^{79} +(126.697 - 219.446i) q^{80} +(-40.5000 + 70.1481i) q^{81} +(102.977 + 178.362i) q^{82} +347.928 q^{83} +(-137.023 - 174.976i) q^{84} -433.121 q^{85} +(328.557 + 569.077i) q^{86} +(-360.312 + 624.080i) q^{87} +(-207.348 + 359.138i) q^{88} +(-578.580 - 1002.13i) q^{89} -285.068 q^{90} +(712.161 - 100.902i) q^{91} +589.394 q^{92} +(445.011 + 770.782i) q^{93} +(-67.9546 + 117.701i) q^{94} +(605.860 - 1049.38i) q^{95} +(-48.0000 - 83.1384i) q^{96} +1618.30 q^{97} +(-494.534 - 475.428i) q^{98} +466.534 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 4 q^{2} - 6 q^{3} - 8 q^{4} - 5 q^{5} + 24 q^{6} + 32 q^{8} - 18 q^{9} + O(q^{10})$$ $$4 q - 4 q^{2} - 6 q^{3} - 8 q^{4} - 5 q^{5} + 24 q^{6} + 32 q^{8} - 18 q^{9} - 10 q^{10} - 67 q^{11} - 24 q^{12} + 82 q^{13} - 18 q^{14} + 30 q^{15} - 32 q^{16} + 92 q^{17} - 36 q^{18} - 43 q^{19} + 40 q^{20} + 27 q^{21} + 268 q^{22} - 148 q^{23} - 48 q^{24} - 435 q^{25} - 82 q^{26} + 108 q^{27} + 36 q^{28} + 154 q^{29} - 30 q^{30} + 520 q^{31} - 64 q^{32} - 201 q^{33} - 368 q^{34} + 650 q^{35} + 144 q^{36} - 7 q^{37} - 86 q^{38} - 123 q^{39} - 40 q^{40} - 852 q^{41} - 214 q^{43} - 268 q^{44} - 45 q^{45} - 296 q^{46} - 576 q^{47} + 192 q^{48} + 1318 q^{49} + 1740 q^{50} + 276 q^{51} - 164 q^{52} + 243 q^{53} - 108 q^{54} - 1010 q^{55} + 258 q^{57} - 154 q^{58} + 7 q^{59} - 60 q^{60} - 224 q^{61} - 2080 q^{62} - 81 q^{63} + 256 q^{64} + 570 q^{65} - 402 q^{66} - 687 q^{67} + 368 q^{68} + 888 q^{69} + 1390 q^{70} + 944 q^{71} - 144 q^{72} + 921 q^{73} - 14 q^{74} - 1305 q^{75} + 344 q^{76} - 371 q^{77} + 492 q^{78} + 526 q^{79} - 80 q^{80} - 162 q^{81} + 852 q^{82} - 442 q^{83} - 108 q^{84} - 5840 q^{85} + 214 q^{86} - 231 q^{87} - 536 q^{88} - 774 q^{89} + 180 q^{90} + 1345 q^{91} + 1184 q^{92} + 1560 q^{93} - 1152 q^{94} + 1910 q^{95} - 192 q^{96} + 3906 q^{97} - 1318 q^{98} + 1206 q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/42\mathbb{Z}\right)^\times$$.

 $$n$$ $$29$$ $$31$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.00000 1.73205i −0.353553 0.612372i
$$3$$ −1.50000 + 2.59808i −0.288675 + 0.500000i
$$4$$ −2.00000 + 3.46410i −0.250000 + 0.433013i
$$5$$ 7.91856 + 13.7153i 0.708258 + 1.22674i 0.965503 + 0.260392i $$0.0838518\pi$$
−0.257245 + 0.966346i $$0.582815\pi$$
$$6$$ 6.00000 0.408248
$$7$$ 18.3371 2.59808i 0.990111 0.140283i
$$8$$ 8.00000 0.353553
$$9$$ −4.50000 7.79423i −0.166667 0.288675i
$$10$$ 15.8371 27.4307i 0.500814 0.867435i
$$11$$ −25.9186 + 44.8923i −0.710431 + 1.23050i 0.254265 + 0.967135i $$0.418167\pi$$
−0.964696 + 0.263368i $$0.915167\pi$$
$$12$$ −6.00000 10.3923i −0.144338 0.250000i
$$13$$ 38.8371 0.828575 0.414288 0.910146i $$-0.364031\pi$$
0.414288 + 0.910146i $$0.364031\pi$$
$$14$$ −22.8371 29.1627i −0.435963 0.556719i
$$15$$ −47.5114 −0.817825
$$16$$ −8.00000 13.8564i −0.125000 0.216506i
$$17$$ −13.6742 + 23.6845i −0.195088 + 0.337902i −0.946929 0.321442i $$-0.895832\pi$$
0.751842 + 0.659344i $$0.229166\pi$$
$$18$$ −9.00000 + 15.5885i −0.117851 + 0.204124i
$$19$$ −38.2557 66.2608i −0.461919 0.800067i 0.537138 0.843494i $$-0.319505\pi$$
−0.999057 + 0.0434278i $$0.986172\pi$$
$$20$$ −63.3485 −0.708258
$$21$$ −20.7557 + 51.5384i −0.215679 + 0.535552i
$$22$$ 103.674 1.00470
$$23$$ −73.6742 127.608i −0.667919 1.15687i −0.978485 0.206318i $$-0.933852\pi$$
0.310566 0.950552i $$-0.399481\pi$$
$$24$$ −12.0000 + 20.7846i −0.102062 + 0.176777i
$$25$$ −62.9072 + 108.958i −0.503258 + 0.871668i
$$26$$ −38.8371 67.2679i −0.292946 0.507397i
$$27$$ 27.0000 0.192450
$$28$$ −27.6742 + 68.7178i −0.186784 + 0.463802i
$$29$$ 240.208 1.53812 0.769061 0.639175i $$-0.220724\pi$$
0.769061 + 0.639175i $$0.220724\pi$$
$$30$$ 47.5114 + 82.2921i 0.289145 + 0.500814i
$$31$$ 148.337 256.927i 0.859424 1.48857i −0.0130559 0.999915i $$-0.504156\pi$$
0.872480 0.488651i $$-0.162511\pi$$
$$32$$ −16.0000 + 27.7128i −0.0883883 + 0.153093i
$$33$$ −77.7557 134.677i −0.410167 0.710431i
$$34$$ 54.6970 0.275896
$$35$$ 180.837 + 230.927i 0.873344 + 1.11525i
$$36$$ 36.0000 0.166667
$$37$$ 80.7670 + 139.893i 0.358865 + 0.621573i 0.987772 0.155908i $$-0.0498304\pi$$
−0.628906 + 0.777481i $$0.716497\pi$$
$$38$$ −76.5114 + 132.522i −0.326626 + 0.565733i
$$39$$ −58.2557 + 100.902i −0.239189 + 0.414288i
$$40$$ 63.3485 + 109.723i 0.250407 + 0.433717i
$$41$$ −102.977 −0.392252 −0.196126 0.980579i $$-0.562836\pi$$
−0.196126 + 0.980579i $$0.562836\pi$$
$$42$$ 110.023 15.5885i 0.404211 0.0572703i
$$43$$ −328.557 −1.16522 −0.582610 0.812752i $$-0.697968\pi$$
−0.582610 + 0.812752i $$0.697968\pi$$
$$44$$ −103.674 179.569i −0.355215 0.615251i
$$45$$ 71.2670 123.438i 0.236086 0.408913i
$$46$$ −147.348 + 255.215i −0.472290 + 0.818031i
$$47$$ −33.9773 58.8504i −0.105449 0.182643i 0.808473 0.588534i $$-0.200295\pi$$
−0.913921 + 0.405891i $$0.866961\pi$$
$$48$$ 48.0000 0.144338
$$49$$ 329.500 95.2825i 0.960641 0.277791i
$$50$$ 251.629 0.711714
$$51$$ −41.0227 71.0534i −0.112634 0.195088i
$$52$$ −77.6742 + 134.536i −0.207144 + 0.358784i
$$53$$ 33.2443 57.5808i 0.0861596 0.149233i −0.819725 0.572757i $$-0.805874\pi$$
0.905885 + 0.423524i $$0.139207\pi$$
$$54$$ −27.0000 46.7654i −0.0680414 0.117851i
$$55$$ −820.951 −2.01267
$$56$$ 146.697 20.7846i 0.350057 0.0495975i
$$57$$ 229.534 0.533378
$$58$$ −240.208 416.053i −0.543809 0.941904i
$$59$$ 230.964 400.041i 0.509643 0.882728i −0.490294 0.871557i $$-0.663111\pi$$
0.999938 0.0111711i $$-0.00355595\pi$$
$$60$$ 95.0227 164.584i 0.204456 0.354129i
$$61$$ −92.6742 160.516i −0.194520 0.336919i 0.752223 0.658909i $$-0.228982\pi$$
−0.946743 + 0.321990i $$0.895648\pi$$
$$62$$ −593.348 −1.21541
$$63$$ −102.767 131.232i −0.205515 0.262440i
$$64$$ 64.0000 0.125000
$$65$$ 307.534 + 532.665i 0.586845 + 1.01644i
$$66$$ −155.511 + 269.354i −0.290032 + 0.502351i
$$67$$ −272.604 + 472.164i −0.497073 + 0.860956i −0.999994 0.00337637i $$-0.998925\pi$$
0.502921 + 0.864332i $$0.332259\pi$$
$$68$$ −54.6970 94.7379i −0.0975438 0.168951i
$$69$$ 442.045 0.771247
$$70$$ 219.140 544.146i 0.374175 0.929113i
$$71$$ −130.742 −0.218539 −0.109270 0.994012i $$-0.534851\pi$$
−0.109270 + 0.994012i $$0.534851\pi$$
$$72$$ −36.0000 62.3538i −0.0589256 0.102062i
$$73$$ −90.6496 + 157.010i −0.145339 + 0.251734i −0.929499 0.368824i $$-0.879761\pi$$
0.784160 + 0.620558i $$0.213094\pi$$
$$74$$ 161.534 279.785i 0.253756 0.439519i
$$75$$ −188.722 326.875i −0.290556 0.503258i
$$76$$ 306.045 0.461919
$$77$$ −358.638 + 890.533i −0.530787 + 1.31800i
$$78$$ 233.023 0.338264
$$79$$ 204.848 + 354.808i 0.291737 + 0.505304i 0.974221 0.225597i $$-0.0724333\pi$$
−0.682483 + 0.730901i $$0.739100\pi$$
$$80$$ 126.697 219.446i 0.177064 0.306685i
$$81$$ −40.5000 + 70.1481i −0.0555556 + 0.0962250i
$$82$$ 102.977 + 178.362i 0.138682 + 0.240205i
$$83$$ 347.928 0.460121 0.230061 0.973176i $$-0.426108\pi$$
0.230061 + 0.973176i $$0.426108\pi$$
$$84$$ −137.023 174.976i −0.177981 0.227280i
$$85$$ −433.121 −0.552689
$$86$$ 328.557 + 569.077i 0.411967 + 0.713548i
$$87$$ −360.312 + 624.080i −0.444018 + 0.769061i
$$88$$ −207.348 + 359.138i −0.251175 + 0.435048i
$$89$$ −578.580 1002.13i −0.689093 1.19354i −0.972132 0.234436i $$-0.924676\pi$$
0.283038 0.959109i $$-0.408658\pi$$
$$90$$ −285.068 −0.333876
$$91$$ 712.161 100.902i 0.820382 0.116235i
$$92$$ 589.394 0.667919
$$93$$ 445.011 + 770.782i 0.496188 + 0.859424i
$$94$$ −67.9546 + 117.701i −0.0745636 + 0.129148i
$$95$$ 605.860 1049.38i 0.654315 1.13331i
$$96$$ −48.0000 83.1384i −0.0510310 0.0883883i
$$97$$ 1618.30 1.69395 0.846976 0.531631i $$-0.178421\pi$$
0.846976 + 0.531631i $$0.178421\pi$$
$$98$$ −494.534 475.428i −0.509750 0.490056i
$$99$$ 466.534 0.473621
$$100$$ −251.629 435.834i −0.251629 0.435834i
$$101$$ −359.371 + 622.449i −0.354047 + 0.613228i −0.986954 0.161000i $$-0.948528\pi$$
0.632907 + 0.774228i $$0.281861\pi$$
$$102$$ −82.0454 + 142.107i −0.0796442 + 0.137948i
$$103$$ 805.790 + 1395.67i 0.770843 + 1.33514i 0.937102 + 0.349057i $$0.113498\pi$$
−0.166259 + 0.986082i $$0.553169\pi$$
$$104$$ 310.697 0.292946
$$105$$ −871.222 + 123.438i −0.809738 + 0.114727i
$$106$$ −132.977 −0.121848
$$107$$ −467.335 809.448i −0.422234 0.731330i 0.573924 0.818909i $$-0.305420\pi$$
−0.996158 + 0.0875784i $$0.972087\pi$$
$$108$$ −54.0000 + 93.5307i −0.0481125 + 0.0833333i
$$109$$ 598.509 1036.65i 0.525934 0.910944i −0.473610 0.880735i $$-0.657049\pi$$
0.999544 0.0302095i $$-0.00961746\pi$$
$$110$$ 820.951 + 1421.93i 0.711587 + 1.23251i
$$111$$ −484.602 −0.414382
$$112$$ −182.697 233.302i −0.154136 0.196830i
$$113$$ −2384.64 −1.98521 −0.992604 0.121400i $$-0.961262\pi$$
−0.992604 + 0.121400i $$0.961262\pi$$
$$114$$ −229.534 397.565i −0.188578 0.326626i
$$115$$ 1166.79 2020.94i 0.946118 1.63872i
$$116$$ −480.417 + 832.106i −0.384531 + 0.666027i
$$117$$ −174.767 302.705i −0.138096 0.239189i
$$118$$ −923.856 −0.720744
$$119$$ −189.212 + 469.832i −0.145757 + 0.361928i
$$120$$ −380.091 −0.289145
$$121$$ −678.044 1174.41i −0.509424 0.882349i
$$122$$ −185.348 + 321.033i −0.137546 + 0.238237i
$$123$$ 154.466 267.543i 0.113234 0.196126i
$$124$$ 593.348 + 1027.71i 0.429712 + 0.744283i
$$125$$ −12.8977 −0.00922883
$$126$$ −124.534 + 309.230i −0.0880506 + 0.218638i
$$127$$ −2673.92 −1.86829 −0.934143 0.356898i $$-0.883834\pi$$
−0.934143 + 0.356898i $$0.883834\pi$$
$$128$$ −64.0000 110.851i −0.0441942 0.0765466i
$$129$$ 492.835 853.616i 0.336370 0.582610i
$$130$$ 615.068 1065.33i 0.414962 0.718735i
$$131$$ 19.4299 + 33.6536i 0.0129588 + 0.0224453i 0.872432 0.488735i $$-0.162542\pi$$
−0.859473 + 0.511181i $$0.829208\pi$$
$$132$$ 622.045 0.410167
$$133$$ −873.650 1115.64i −0.569587 0.727356i
$$134$$ 1090.42 0.702968
$$135$$ 213.801 + 370.314i 0.136304 + 0.236086i
$$136$$ −109.394 + 189.476i −0.0689739 + 0.119466i
$$137$$ 384.072 665.232i 0.239514 0.414851i −0.721061 0.692872i $$-0.756345\pi$$
0.960575 + 0.278021i $$0.0896784\pi$$
$$138$$ −442.045 765.645i −0.272677 0.472290i
$$139$$ 1052.55 0.642274 0.321137 0.947033i $$-0.395935\pi$$
0.321137 + 0.947033i $$0.395935\pi$$
$$140$$ −1161.63 + 164.584i −0.701254 + 0.0993564i
$$141$$ 203.864 0.121762
$$142$$ 130.742 + 226.453i 0.0772652 + 0.133827i
$$143$$ −1006.60 + 1743.49i −0.588646 + 1.01956i
$$144$$ −72.0000 + 124.708i −0.0416667 + 0.0721688i
$$145$$ 1902.10 + 3294.54i 1.08939 + 1.88687i
$$146$$ 362.598 0.205540
$$147$$ −246.699 + 998.990i −0.138418 + 0.560512i
$$148$$ −646.136 −0.358865
$$149$$ −180.489 312.615i −0.0992363 0.171882i 0.812132 0.583473i $$-0.198307\pi$$
−0.911369 + 0.411591i $$0.864973\pi$$
$$150$$ −377.443 + 653.751i −0.205454 + 0.355857i
$$151$$ −774.195 + 1340.95i −0.417239 + 0.722679i −0.995661 0.0930587i $$-0.970336\pi$$
0.578422 + 0.815738i $$0.303669\pi$$
$$152$$ −306.045 530.086i −0.163313 0.282866i
$$153$$ 246.136 0.130058
$$154$$ 1901.09 269.354i 0.994766 0.140942i
$$155$$ 4698.47 2.43477
$$156$$ −233.023 403.607i −0.119595 0.207144i
$$157$$ 483.534 837.506i 0.245798 0.425734i −0.716558 0.697528i $$-0.754283\pi$$
0.962356 + 0.271794i $$0.0876168\pi$$
$$158$$ 409.697 709.616i 0.206289 0.357304i
$$159$$ 99.7330 + 172.743i 0.0497443 + 0.0861596i
$$160$$ −506.788 −0.250407
$$161$$ −1682.51 2148.54i −0.823604 1.05173i
$$162$$ 162.000 0.0785674
$$163$$ 663.250 + 1148.78i 0.318710 + 0.552022i 0.980219 0.197915i $$-0.0634170\pi$$
−0.661509 + 0.749937i $$0.730084\pi$$
$$164$$ 205.955 356.724i 0.0980631 0.169850i
$$165$$ 1231.43 2132.89i 0.581008 1.00634i
$$166$$ −347.928 602.629i −0.162677 0.281766i
$$167$$ 1416.70 0.656451 0.328225 0.944599i $$-0.393549\pi$$
0.328225 + 0.944599i $$0.393549\pi$$
$$168$$ −166.045 + 412.307i −0.0762541 + 0.189346i
$$169$$ −688.678 −0.313463
$$170$$ 433.121 + 750.188i 0.195405 + 0.338452i
$$171$$ −344.301 + 596.347i −0.153973 + 0.266689i
$$172$$ 657.114 1138.15i 0.291305 0.504555i
$$173$$ 518.299 + 897.721i 0.227778 + 0.394523i 0.957149 0.289595i $$-0.0935207\pi$$
−0.729371 + 0.684118i $$0.760187\pi$$
$$174$$ 1441.25 0.627936
$$175$$ −870.454 + 2161.42i −0.376001 + 0.933647i
$$176$$ 829.394 0.355215
$$177$$ 692.892 + 1200.12i 0.294243 + 0.509643i
$$178$$ −1157.16 + 2004.26i −0.487263 + 0.843964i
$$179$$ 383.716 664.615i 0.160225 0.277518i −0.774724 0.632299i $$-0.782111\pi$$
0.934949 + 0.354781i $$0.115445\pi$$
$$180$$ 285.068 + 493.753i 0.118043 + 0.204456i
$$181$$ −3957.71 −1.62527 −0.812636 0.582772i $$-0.801968\pi$$
−0.812636 + 0.582772i $$0.801968\pi$$
$$182$$ −886.928 1132.60i −0.361228 0.461284i
$$183$$ 556.045 0.224612
$$184$$ −589.394 1020.86i −0.236145 0.409015i
$$185$$ −1279.12 + 2215.50i −0.508338 + 0.880468i
$$186$$ 890.023 1541.56i 0.350858 0.607704i
$$187$$ −708.833 1227.74i −0.277193 0.480112i
$$188$$ 271.818 0.105449
$$189$$ 495.102 70.1481i 0.190547 0.0269975i
$$190$$ −2423.44 −0.925341
$$191$$ 902.648 + 1563.43i 0.341954 + 0.592282i 0.984796 0.173717i $$-0.0555778\pi$$
−0.642841 + 0.765999i $$0.722244\pi$$
$$192$$ −96.0000 + 166.277i −0.0360844 + 0.0625000i
$$193$$ −1685.42 + 2919.23i −0.628597 + 1.08876i 0.359237 + 0.933247i $$0.383037\pi$$
−0.987833 + 0.155515i $$0.950296\pi$$
$$194$$ −1618.30 2802.98i −0.598903 1.03733i
$$195$$ −1845.20 −0.677630
$$196$$ −328.932 + 1331.99i −0.119873 + 0.485418i
$$197$$ −4612.31 −1.66809 −0.834044 0.551697i $$-0.813980\pi$$
−0.834044 + 0.551697i $$0.813980\pi$$
$$198$$ −466.534 808.061i −0.167450 0.290032i
$$199$$ 1114.93 1931.12i 0.397163 0.687906i −0.596212 0.802827i $$-0.703328\pi$$
0.993375 + 0.114921i $$0.0366615\pi$$
$$200$$ −503.258 + 871.668i −0.177928 + 0.308181i
$$201$$ −817.812 1416.49i −0.286985 0.497073i
$$202$$ 1437.48 0.500698
$$203$$ 4404.73 624.080i 1.52291 0.215772i
$$204$$ 328.182 0.112634
$$205$$ −815.432 1412.37i −0.277816 0.481191i
$$206$$ 1611.58 2791.34i 0.545068 0.944086i
$$207$$ −663.068 + 1148.47i −0.222640 + 0.385623i
$$208$$ −310.697 538.143i −0.103572 0.179392i
$$209$$ 3966.13 1.31265
$$210$$ 1085.02 + 1385.56i 0.356541 + 0.455299i
$$211$$ 912.614 0.297758 0.148879 0.988855i $$-0.452434\pi$$
0.148879 + 0.988855i $$0.452434\pi$$
$$212$$ 132.977 + 230.323i 0.0430798 + 0.0746164i
$$213$$ 196.114 339.679i 0.0630868 0.109270i
$$214$$ −934.670 + 1618.90i −0.298564 + 0.517129i
$$215$$ −2601.70 4506.27i −0.825276 1.42942i
$$216$$ 216.000 0.0680414
$$217$$ 2052.56 5096.70i 0.642105 1.59441i
$$218$$ −2394.04 −0.743783
$$219$$ −271.949 471.029i −0.0839114 0.145339i
$$220$$ 1641.90 2843.86i 0.503168 0.871513i
$$221$$ −531.068 + 919.837i −0.161645 + 0.279977i
$$222$$ 484.602 + 839.356i 0.146506 + 0.253756i
$$223$$ −4319.47 −1.29710 −0.648549 0.761173i $$-0.724624\pi$$
−0.648549 + 0.761173i $$0.724624\pi$$
$$224$$ −221.394 + 549.742i −0.0660380 + 0.163979i
$$225$$ 1132.33 0.335505
$$226$$ 2384.64 + 4130.32i 0.701877 + 1.21569i
$$227$$ −1030.64 + 1785.12i −0.301349 + 0.521951i −0.976442 0.215782i $$-0.930770\pi$$
0.675093 + 0.737733i $$0.264103\pi$$
$$228$$ −459.068 + 795.129i −0.133344 + 0.230959i
$$229$$ 1737.32 + 3009.12i 0.501332 + 0.868333i 0.999999 + 0.00153905i $$0.000489896\pi$$
−0.498667 + 0.866794i $$0.666177\pi$$
$$230$$ −4667.15 −1.33801
$$231$$ −1775.72 2267.57i −0.505773 0.645866i
$$232$$ 1921.67 0.543809
$$233$$ −388.049 672.121i −0.109107 0.188979i 0.806302 0.591505i $$-0.201466\pi$$
−0.915409 + 0.402525i $$0.868132\pi$$
$$234$$ −349.534 + 605.411i −0.0976485 + 0.169132i
$$235$$ 538.102 932.020i 0.149370 0.258716i
$$236$$ 923.856 + 1600.17i 0.254822 + 0.441364i
$$237$$ −1229.09 −0.336869
$$238$$ 1002.98 142.107i 0.273167 0.0387035i
$$239$$ 2006.80 0.543133 0.271567 0.962420i $$-0.412458\pi$$
0.271567 + 0.962420i $$0.412458\pi$$
$$240$$ 380.091 + 658.337i 0.102228 + 0.177064i
$$241$$ −402.824 + 697.711i −0.107669 + 0.186488i −0.914825 0.403850i $$-0.867672\pi$$
0.807157 + 0.590337i $$0.201005\pi$$
$$242$$ −1356.09 + 2348.81i −0.360217 + 0.623915i
$$243$$ −121.500 210.444i −0.0320750 0.0555556i
$$244$$ 741.394 0.194520
$$245$$ 3916.00 + 3764.71i 1.02116 + 0.981707i
$$246$$ −617.864 −0.160136
$$247$$ −1485.74 2573.38i −0.382734 0.662915i
$$248$$ 1186.70 2055.42i 0.303852 0.526287i
$$249$$ −521.892 + 903.944i −0.132826 + 0.230061i
$$250$$ 12.8977 + 22.3394i 0.00326289 + 0.00565148i
$$251$$ 1421.78 0.357539 0.178769 0.983891i $$-0.442788\pi$$
0.178769 + 0.983891i $$0.442788\pi$$
$$252$$ 660.136 93.5307i 0.165019 0.0233805i
$$253$$ 7638.12 1.89804
$$254$$ 2673.92 + 4631.37i 0.660539 + 1.14409i
$$255$$ 649.682 1125.28i 0.159548 0.276345i
$$256$$ −128.000 + 221.703i −0.0312500 + 0.0541266i
$$257$$ 732.909 + 1269.44i 0.177890 + 0.308114i 0.941157 0.337968i $$-0.109740\pi$$
−0.763268 + 0.646082i $$0.776406\pi$$
$$258$$ −1971.34 −0.475699
$$259$$ 1844.49 + 2355.39i 0.442513 + 0.565084i
$$260$$ −2460.27 −0.586845
$$261$$ −1080.94 1872.24i −0.256354 0.444018i
$$262$$ 38.8598 67.3072i 0.00916324 0.0158712i
$$263$$ −3495.69 + 6054.72i −0.819596 + 1.41958i 0.0863847 + 0.996262i $$0.472469\pi$$
−0.905980 + 0.423320i $$0.860865\pi$$
$$264$$ −622.045 1077.41i −0.145016 0.251175i
$$265$$ 1052.99 0.244093
$$266$$ −1058.70 + 2628.85i −0.244033 + 0.605958i
$$267$$ 3471.48 0.795696
$$268$$ −1090.42 1888.66i −0.248537 0.430478i
$$269$$ −404.479 + 700.578i −0.0916786 + 0.158792i −0.908218 0.418498i $$-0.862557\pi$$
0.816539 + 0.577290i $$0.195890\pi$$
$$270$$ 427.602 740.629i 0.0963816 0.166938i
$$271$$ −3330.88 5769.26i −0.746630 1.29320i −0.949429 0.313981i $$-0.898337\pi$$
0.202799 0.979220i $$-0.434996\pi$$
$$272$$ 437.576 0.0975438
$$273$$ −806.091 + 2001.60i −0.178706 + 0.443745i
$$274$$ −1536.29 −0.338725
$$275$$ −3260.93 5648.09i −0.715059 1.23852i
$$276$$ −884.091 + 1531.29i −0.192812 + 0.333960i
$$277$$ 3765.73 6522.44i 0.816827 1.41479i −0.0911823 0.995834i $$-0.529065\pi$$
0.908009 0.418951i $$-0.137602\pi$$
$$278$$ −1052.55 1823.07i −0.227078 0.393311i
$$279$$ −2670.07 −0.572949
$$280$$ 1446.70 + 1847.42i 0.308774 + 0.394301i
$$281$$ 1690.19 0.358819 0.179410 0.983774i $$-0.442581\pi$$
0.179410 + 0.983774i $$0.442581\pi$$
$$282$$ −203.864 353.102i −0.0430493 0.0745636i
$$283$$ −1589.12 + 2752.43i −0.333792 + 0.578145i −0.983252 0.182251i $$-0.941662\pi$$
0.649460 + 0.760396i $$0.274995\pi$$
$$284$$ 261.485 452.905i 0.0546348 0.0946302i
$$285$$ 1817.58 + 3148.14i 0.377769 + 0.654315i
$$286$$ 4026.41 0.832470
$$287$$ −1888.31 + 267.543i −0.388374 + 0.0550263i
$$288$$ 288.000 0.0589256
$$289$$ 2082.53 + 3607.05i 0.423882 + 0.734184i
$$290$$ 3804.21 6589.08i 0.770313 1.33422i
$$291$$ −2427.45 + 4204.46i −0.489002 + 0.846976i
$$292$$ −362.598 628.039i −0.0726694 0.125867i
$$293$$ −2176.53 −0.433974 −0.216987 0.976174i $$-0.569623\pi$$
−0.216987 + 0.976174i $$0.569623\pi$$
$$294$$ 1977.00 571.695i 0.392180 0.113408i
$$295$$ 7315.61 1.44383
$$296$$ 646.136 + 1119.14i 0.126878 + 0.219759i
$$297$$ −699.801 + 1212.09i −0.136722 + 0.236810i
$$298$$ −360.977 + 625.231i −0.0701706 + 0.121539i
$$299$$ −2861.30 4955.91i −0.553421 0.958554i
$$300$$ 1509.77 0.290556
$$301$$ −6024.79 + 853.616i −1.15370 + 0.163460i
$$302$$ 3096.78 0.590065
$$303$$ −1078.11 1867.35i −0.204409 0.354047i
$$304$$ −612.091 + 1060.17i −0.115480 + 0.200017i
$$305$$ 1467.69 2542.12i 0.275541 0.477250i
$$306$$ −246.136 426.321i −0.0459826 0.0796442i
$$307$$ 623.504 0.115913 0.0579564 0.998319i $$-0.481542\pi$$
0.0579564 + 0.998319i $$0.481542\pi$$
$$308$$ −2367.62 3023.43i −0.438012 0.559337i
$$309$$ −4834.74 −0.890093
$$310$$ −4698.47 8137.98i −0.860822 1.49099i
$$311$$ −233.996 + 405.293i −0.0426647 + 0.0738973i −0.886569 0.462596i $$-0.846918\pi$$
0.843905 + 0.536493i $$0.180251\pi$$
$$312$$ −466.045 + 807.214i −0.0845661 + 0.146473i
$$313$$ −1806.41 3128.79i −0.326211 0.565014i 0.655546 0.755156i $$-0.272439\pi$$
−0.981757 + 0.190141i $$0.939105\pi$$
$$314$$ −1934.14 −0.347610
$$315$$ 986.131 2448.66i 0.176388 0.437988i
$$316$$ −1638.79 −0.291737
$$317$$ −2265.87 3924.60i −0.401463 0.695355i 0.592439 0.805615i $$-0.298165\pi$$
−0.993903 + 0.110260i $$0.964832\pi$$
$$318$$ 199.466 345.485i 0.0351745 0.0609240i
$$319$$ −6225.85 + 10783.5i −1.09273 + 1.89266i
$$320$$ 506.788 + 877.782i 0.0885322 + 0.153342i
$$321$$ 2804.01 0.487553
$$322$$ −2038.88 + 5062.73i −0.352864 + 0.876196i
$$323$$ 2092.47 0.360459
$$324$$ −162.000 280.592i −0.0277778 0.0481125i
$$325$$ −2443.13 + 4231.63i −0.416987 + 0.722242i
$$326$$ 1326.50 2297.57i 0.225362 0.390339i
$$327$$ 1795.53 + 3109.95i 0.303648 + 0.525934i
$$328$$ −823.818 −0.138682
$$329$$ −775.943 990.871i −0.130028 0.166044i
$$330$$ −4925.70 −0.821670
$$331$$ 618.528 + 1071.32i 0.102711 + 0.177901i 0.912801 0.408405i $$-0.133915\pi$$
−0.810090 + 0.586306i $$0.800582\pi$$
$$332$$ −695.856 + 1205.26i −0.115030 + 0.199238i
$$333$$ 726.903 1259.03i 0.119622 0.207191i
$$334$$ −1416.70 2453.79i −0.232090 0.401992i
$$335$$ −8634.53 −1.40822
$$336$$ 880.182 124.708i 0.142910 0.0202481i
$$337$$ −1867.83 −0.301921 −0.150960 0.988540i $$-0.548237\pi$$
−0.150960 + 0.988540i $$0.548237\pi$$
$$338$$ 688.678 + 1192.83i 0.110826 + 0.191956i
$$339$$ 3576.97 6195.49i 0.573080 0.992604i
$$340$$ 866.242 1500.38i 0.138172 0.239322i
$$341$$ 7689.37 + 13318.4i 1.22112 + 2.11505i
$$342$$ 1377.20 0.217751
$$343$$ 5794.53 2603.27i 0.912173 0.409806i
$$344$$ −2628.45 −0.411967
$$345$$ 3500.36 + 6062.81i 0.546241 + 0.946118i
$$346$$ 1036.60 1795.44i 0.161063 0.278970i
$$347$$ 31.6819 54.8746i 0.00490136 0.00848940i −0.863564 0.504239i $$-0.831773\pi$$
0.868466 + 0.495749i $$0.165107\pi$$
$$348$$ −1441.25 2496.32i −0.222009 0.384531i
$$349$$ 1223.79 0.187702 0.0938508 0.995586i $$-0.470082\pi$$
0.0938508 + 0.995586i $$0.470082\pi$$
$$350$$ 4614.15 653.751i 0.704676 0.0998413i
$$351$$ 1048.60 0.159459
$$352$$ −829.394 1436.55i −0.125588 0.217524i
$$353$$ 2257.81 3910.64i 0.340428 0.589638i −0.644085 0.764954i $$-0.722762\pi$$
0.984512 + 0.175316i $$0.0560949\pi$$
$$354$$ 1385.78 2400.25i 0.208061 0.360372i
$$355$$ −1035.29 1793.18i −0.154782 0.268090i
$$356$$ 4628.64 0.689093
$$357$$ −936.841 1196.34i −0.138888 0.177358i
$$358$$ −1534.86 −0.226592
$$359$$ −1114.25 1929.93i −0.163810 0.283727i 0.772422 0.635109i $$-0.219045\pi$$
−0.936232 + 0.351383i $$0.885712\pi$$
$$360$$ 570.136 987.505i 0.0834690 0.144572i
$$361$$ 502.506 870.365i 0.0732622 0.126894i
$$362$$ 3957.71 + 6854.95i 0.574620 + 0.995271i
$$363$$ 4068.26 0.588232
$$364$$ −1074.79 + 2668.80i −0.154764 + 0.384295i
$$365$$ −2871.26 −0.411749
$$366$$ −556.045 963.099i −0.0794125 0.137546i
$$367$$ 718.670 1244.77i 0.102219 0.177048i −0.810380 0.585905i $$-0.800739\pi$$
0.912598 + 0.408857i $$0.134072\pi$$
$$368$$ −1178.79 + 2041.72i −0.166980 + 0.289217i
$$369$$ 463.398 + 802.628i 0.0653754 + 0.113234i
$$370$$ 5116.47 0.718899
$$371$$ 460.006 1142.24i 0.0643728 0.159844i
$$372$$ −3560.09 −0.496188
$$373$$ 6118.71 + 10597.9i 0.849370 + 1.47115i 0.881771 + 0.471677i $$0.156351\pi$$
−0.0324014 + 0.999475i $$0.510315\pi$$
$$374$$ −1417.67 + 2455.47i −0.196005 + 0.339490i
$$375$$ 19.3465 33.5092i 0.00266413 0.00461442i
$$376$$ −271.818 470.803i −0.0372818 0.0645740i
$$377$$ 9329.00 1.27445
$$378$$ −616.602 787.394i −0.0839011 0.107141i
$$379$$ −10647.0 −1.44301 −0.721503 0.692411i $$-0.756549\pi$$
−0.721503 + 0.692411i $$0.756549\pi$$
$$380$$ 2423.44 + 4197.52i 0.327157 + 0.566653i
$$381$$ 4010.89 6947.06i 0.539328 0.934143i
$$382$$ 1805.30 3126.86i 0.241798 0.418807i
$$383$$ 3357.41 + 5815.20i 0.447925 + 0.775829i 0.998251 0.0591208i $$-0.0188297\pi$$
−0.550326 + 0.834950i $$0.685496\pi$$
$$384$$ 384.000 0.0510310
$$385$$ −15053.9 + 2132.89i −1.99277 + 0.282344i
$$386$$ 6741.68 0.888970
$$387$$ 1478.51 + 2560.85i 0.194203 + 0.336370i
$$388$$ −3236.60 + 5605.95i −0.423488 + 0.733503i
$$389$$ 5326.54 9225.83i 0.694258 1.20249i −0.276173 0.961108i $$-0.589066\pi$$
0.970430 0.241381i $$-0.0776005\pi$$
$$390$$ 1845.20 + 3195.99i 0.239578 + 0.414962i
$$391$$ 4029.76 0.521211
$$392$$ 2636.00 762.260i 0.339638 0.0982141i
$$393$$ −116.580 −0.0149635
$$394$$ 4612.31 + 7988.76i 0.589758 + 1.02149i
$$395$$ −3244.21 + 5619.14i −0.413250 + 0.715771i
$$396$$ −933.068 + 1616.12i −0.118405 + 0.205084i
$$397$$ −1610.52 2789.50i −0.203601 0.352648i 0.746085 0.665851i $$-0.231931\pi$$
−0.949686 + 0.313203i $$0.898598\pi$$
$$398$$ −4459.73 −0.561673
$$399$$ 4208.99 596.347i 0.528103 0.0748238i
$$400$$ 2013.03 0.251629
$$401$$ −6242.50 10812.3i −0.777395 1.34649i −0.933438 0.358738i $$-0.883207\pi$$
0.156043 0.987750i $$-0.450126\pi$$
$$402$$ −1635.62 + 2832.99i −0.202929 + 0.351484i
$$403$$ 5760.99 9978.32i 0.712097 1.23339i
$$404$$ −1437.48 2489.80i −0.177024 0.306614i
$$405$$ −1282.81 −0.157391
$$406$$ −5485.67 7005.14i −0.670564 0.856303i
$$407$$ −8373.46 −1.01980
$$408$$ −328.182 568.428i −0.0398221 0.0689739i
$$409$$ −3518.69 + 6094.56i −0.425399 + 0.736813i −0.996458 0.0840967i $$-0.973200\pi$$
0.571059 + 0.820909i $$0.306533\pi$$
$$410$$ −1630.86 + 2824.74i −0.196445 + 0.340253i
$$411$$ 1152.22 + 1995.70i 0.138284 + 0.239514i
$$412$$ −6446.32 −0.770843
$$413$$ 3195.88 7935.67i 0.380772 0.945493i
$$414$$ 2652.27 0.314860
$$415$$ 2755.09 + 4771.95i 0.325884 + 0.564448i
$$416$$ −621.394 + 1076.29i −0.0732364 + 0.126849i
$$417$$ −1578.82 + 2734.60i −0.185408 + 0.321137i
$$418$$ −3966.13 6869.54i −0.464090 0.803828i
$$419$$ −1549.66 −0.180682 −0.0903410 0.995911i $$-0.528796\pi$$
−0.0903410 + 0.995911i $$0.528796\pi$$
$$420$$ 1314.84 3264.88i 0.152756 0.379309i
$$421$$ 5531.63 0.640369 0.320184 0.947355i $$-0.396255\pi$$
0.320184 + 0.947355i $$0.396255\pi$$
$$422$$ −912.614 1580.69i −0.105273 0.182339i
$$423$$ −305.795 + 529.653i −0.0351496 + 0.0608809i
$$424$$ 265.955 460.647i 0.0304620 0.0527618i
$$425$$ −1720.42 2979.85i −0.196359 0.340103i
$$426$$ −784.454 −0.0892182
$$427$$ −2116.41 2702.64i −0.239860 0.306299i
$$428$$ 3738.68 0.422234
$$429$$ −3019.81 5230.46i −0.339855 0.588646i
$$430$$ −5203.39 + 9012.54i −0.583558 + 1.01075i
$$431$$ 1014.97 1757.97i 0.113432 0.196470i −0.803720 0.595008i $$-0.797149\pi$$
0.917152 + 0.398538i $$0.130482\pi$$
$$432$$ −216.000 374.123i −0.0240563 0.0416667i
$$433$$ −327.739 −0.0363744 −0.0181872 0.999835i $$-0.505789\pi$$
−0.0181872 + 0.999835i $$0.505789\pi$$
$$434$$ −10880.3 + 1541.56i −1.20339 + 0.170501i
$$435$$ −11412.6 −1.25792
$$436$$ 2394.04 + 4146.60i 0.262967 + 0.455472i
$$437$$ −5636.92 + 9763.43i −0.617049 + 1.06876i
$$438$$ −543.898 + 942.058i −0.0593343 + 0.102770i
$$439$$ −3954.34 6849.12i −0.429910 0.744625i 0.566955 0.823749i $$-0.308121\pi$$
−0.996865 + 0.0791234i $$0.974788\pi$$
$$440$$ −6567.61 −0.711587
$$441$$ −2225.40 2139.43i −0.240298 0.231015i
$$442$$ 2124.27 0.228600
$$443$$ 1460.41 + 2529.51i 0.156628 + 0.271288i 0.933651 0.358185i $$-0.116604\pi$$
−0.777023 + 0.629473i $$0.783271\pi$$
$$444$$ 969.205 1678.71i 0.103596 0.179433i
$$445$$ 9163.03 15870.8i 0.976111 1.69067i
$$446$$ 4319.47 + 7481.53i 0.458593 + 0.794307i
$$447$$ 1082.93 0.114588
$$448$$ 1173.58 166.277i 0.123764 0.0175354i
$$449$$ −10240.2 −1.07631 −0.538156 0.842845i $$-0.680879\pi$$
−0.538156 + 0.842845i $$0.680879\pi$$
$$450$$ −1132.33 1961.25i −0.118619 0.205454i
$$451$$ 2669.02 4622.88i 0.278668 0.482668i
$$452$$ 4769.29 8260.65i 0.496302 0.859620i
$$453$$ −2322.59 4022.84i −0.240893 0.417239i
$$454$$ 4122.57 0.426171
$$455$$ 7023.19 + 8968.54i 0.723632 + 0.924069i
$$456$$ 1836.27 0.188578
$$457$$ −2946.31 5103.17i −0.301582 0.522355i 0.674913 0.737897i $$-0.264181\pi$$
−0.976494 + 0.215543i $$0.930848\pi$$
$$458$$ 3474.63 6018.24i 0.354495 0.614004i
$$459$$ −369.205 + 639.481i −0.0375446 + 0.0650292i
$$460$$ 4667.15 + 8083.74i 0.473059 + 0.819362i
$$461$$ −12643.4 −1.27735 −0.638677 0.769475i $$-0.720518\pi$$
−0.638677 + 0.769475i $$0.720518\pi$$
$$462$$ −2151.83 + 5343.20i −0.216693 + 0.538070i
$$463$$ 15093.2 1.51499 0.757494 0.652842i $$-0.226423\pi$$
0.757494 + 0.652842i $$0.226423\pi$$
$$464$$ −1921.67 3328.42i −0.192265 0.333013i
$$465$$ −7047.70 + 12207.0i −0.702858 + 1.21739i
$$466$$ −776.099 + 1344.24i −0.0771504 + 0.133628i
$$467$$ 1410.12 + 2442.39i 0.139727 + 0.242014i 0.927393 0.374088i $$-0.122044\pi$$
−0.787666 + 0.616102i $$0.788711\pi$$
$$468$$ 1398.14 0.138096
$$469$$ −3772.06 + 9366.38i −0.371380 + 0.922173i
$$470$$ −2152.41 −0.211241
$$471$$ 1450.60 + 2512.52i 0.141911 + 0.245798i
$$472$$ 1847.71 3200.33i 0.180186 0.312091i
$$473$$ 8515.72 14749.7i 0.827808 1.43381i
$$474$$ 1229.09 + 2128.85i 0.119101 + 0.206289i
$$475$$ 9626.23 0.929856
$$476$$ −1249.12 1595.11i −0.120280 0.153596i
$$477$$ −598.398 −0.0574397
$$478$$ −2006.80 3475.87i −0.192027 0.332600i
$$479$$ 8224.25 14244.8i 0.784500 1.35879i −0.144798 0.989461i $$-0.546253\pi$$
0.929297 0.369332i $$-0.120414\pi$$
$$480$$ 760.182 1316.67i 0.0722862 0.125203i
$$481$$ 3136.76 + 5433.03i 0.297347 + 0.515020i
$$482$$ 1611.30 0.152267
$$483$$ 8105.84 1148.47i 0.763620 0.108193i
$$484$$ 5424.35 0.509424
$$485$$ 12814.6 + 22195.5i 1.19975 + 2.07804i
$$486$$ −243.000 + 420.888i −0.0226805 + 0.0392837i
$$487$$ −3165.53 + 5482.87i −0.294546 + 0.510169i −0.974879 0.222734i $$-0.928502\pi$$
0.680333 + 0.732903i $$0.261835\pi$$
$$488$$ −741.394 1284.13i −0.0687732 0.119119i
$$489$$ −3979.50 −0.368015
$$490$$ 2604.67 10547.4i 0.240136 0.972416i
$$491$$ −9286.90 −0.853588 −0.426794 0.904349i $$-0.640357\pi$$
−0.426794 + 0.904349i $$0.640357\pi$$
$$492$$ 617.864 + 1070.17i 0.0566168 + 0.0980631i
$$493$$ −3284.67 + 5689.21i −0.300069 + 0.519735i
$$494$$ −2971.48 + 5146.76i −0.270634 + 0.468752i
$$495$$ 3694.28 + 6398.68i 0.335445 + 0.581008i
$$496$$ −4746.79 −0.429712
$$497$$ −2397.44 + 339.679i −0.216378 + 0.0306573i
$$498$$ 2087.57 0.187844
$$499$$ 121.725 + 210.835i 0.0109202 + 0.0189143i 0.871434 0.490513i $$-0.163191\pi$$
−0.860514 + 0.509427i $$0.829857\pi$$
$$500$$ 25.7954 44.6789i 0.00230721 0.00399620i
$$501$$ −2125.05 + 3680.69i −0.189501 + 0.328225i
$$502$$ −1421.78 2462.60i −0.126409 0.218947i
$$503$$ 8499.30 0.753409 0.376705 0.926333i $$-0.377057\pi$$
0.376705 + 0.926333i $$0.377057\pi$$
$$504$$ −822.136 1049.86i −0.0726604 0.0927866i
$$505$$ −11382.8 −1.00303
$$506$$ −7638.12 13229.6i −0.671059 1.16231i
$$507$$ 1033.02 1789.24i 0.0904890 0.156731i
$$508$$ 5347.85 9262.75i 0.467072 0.808992i
$$509$$ 3841.55 + 6653.76i 0.334526 + 0.579416i 0.983394 0.181485i $$-0.0580904\pi$$
−0.648868 + 0.760901i $$0.724757\pi$$
$$510$$ −2598.73 −0.225634
$$511$$ −1254.33 + 3114.62i −0.108588 + 0.269634i
$$512$$ 512.000 0.0441942
$$513$$ −1032.90 1789.04i −0.0888963 0.153973i
$$514$$ 1465.82 2538.87i 0.125787 0.217869i
$$515$$ −12761.4 + 22103.4i −1.09191 + 1.89124i
$$516$$ 1971.34 + 3414.46i 0.168185 + 0.291305i
$$517$$ 3522.57 0.299656
$$518$$ 2235.17 5550.13i 0.189590 0.470770i
$$519$$ −3109.80 −0.263015
$$520$$ 2460.27 + 4261.32i 0.207481 + 0.359368i
$$521$$ 10765.3 18646.1i 0.905253 1.56794i 0.0846750 0.996409i $$-0.473015\pi$$
0.820578 0.571535i $$-0.193652\pi$$
$$522$$ −2161.87 + 3744.48i −0.181270 + 0.313968i
$$523$$ 8423.53 + 14590.0i 0.704274 + 1.21984i 0.966953 + 0.254955i $$0.0820606\pi$$
−0.262679 + 0.964883i $$0.584606\pi$$
$$524$$ −155.439 −0.0129588
$$525$$ −4309.86 5503.64i −0.358281 0.457521i
$$526$$ 13982.8 1.15908
$$527$$ 4056.80 + 7026.58i 0.335326 + 0.580802i
$$528$$ −1244.09 + 2154.83i −0.102542 + 0.177608i
$$529$$ −4772.29 + 8265.84i −0.392232 + 0.679366i
$$530$$ −1052.99 1823.83i −0.0862998 0.149476i
$$531$$ −4157.35 −0.339762
$$532$$ 5611.99 795.129i 0.457351 0.0647993i
$$533$$ −3999.34 −0.325011
$$534$$ −3471.48 6012.77i −0.281321 0.487263i
$$535$$ 7401.24 12819.3i 0.598100 1.03594i
$$536$$ −2180.83 + 3777.31i −0.175742 + 0.304394i
$$537$$ 1151.15 + 1993.85i 0.0925059 + 0.160225i
$$538$$ 1617.92 0.129653
$$539$$ −4262.72 + 17261.6i −0.340646 + 1.37942i
$$540$$ −1710.41 −0.136304
$$541$$ −8720.02 15103.5i −0.692981 1.20028i −0.970856 0.239662i $$-0.922963\pi$$
0.277875 0.960617i $$-0.410370\pi$$
$$542$$ −6661.77 + 11538.5i −0.527947 + 0.914432i
$$543$$ 5936.56 10282.4i 0.469175 0.812636i
$$544$$ −437.576 757.903i −0.0344870 0.0597332i
$$545$$ 18957.3 1.48999
$$546$$ 4272.97 605.411i 0.334920 0.0474527i
$$547$$ 11520.7 0.900530 0.450265 0.892895i $$-0.351329\pi$$
0.450265 + 0.892895i $$0.351329\pi$$
$$548$$ 1536.29 + 2660.93i 0.119757 + 0.207426i
$$549$$ −834.068 + 1444.65i −0.0648400 + 0.112306i
$$550$$ −6521.86 + 11296.2i −0.505623 + 0.875765i
$$551$$ −9189.33 15916.4i −0.710488 1.23060i
$$552$$ 3536.36 0.272677
$$553$$ 4678.15 + 5973.94i 0.359738 + 0.459382i
$$554$$ −15062.9 −1.15517
$$555$$ −3837.35 6646.49i −0.293489 0.508338i
$$556$$ −2105.10 + 3646.14i −0.160568 + 0.278113i
$$557$$ −5746.51 + 9953.25i −0.437141 + 0.757151i −0.997468 0.0711212i $$-0.977342\pi$$
0.560327 + 0.828272i $$0.310676\pi$$
$$558$$ 2670.07 + 4624.69i 0.202568 + 0.350858i
$$559$$ −12760.2 −0.965472
$$560$$ 1753.12 4353.17i 0.132291 0.328491i
$$561$$ 4253.00 0.320075
$$562$$ −1690.19 2927.49i −0.126862 0.219731i
$$563$$ −9055.65 + 15684.8i −0.677886 + 1.17413i 0.297730 + 0.954650i $$0.403770\pi$$
−0.975616 + 0.219483i $$0.929563\pi$$
$$564$$ −407.727 + 706.204i −0.0304405 + 0.0527244i
$$565$$ −18882.9 32706.2i −1.40604 2.43533i
$$566$$ 6356.46 0.472053
$$567$$ −560.403 + 1391.54i −0.0415075 + 0.103067i
$$568$$ −1045.94 −0.0772652
$$569$$ −2208.81 3825.77i −0.162738 0.281871i 0.773112 0.634270i $$-0.218699\pi$$
−0.935850 + 0.352399i $$0.885366\pi$$
$$570$$ 3635.16 6296.28i 0.267123 0.462670i
$$571$$ −6609.87 + 11448.6i −0.484439 + 0.839073i −0.999840 0.0178762i $$-0.994310\pi$$
0.515401 + 0.856949i $$0.327643\pi$$
$$572$$ −4026.41 6973.95i −0.294323 0.509782i
$$573$$ −5415.89 −0.394855
$$574$$ 2351.70 + 3003.10i 0.171007 + 0.218375i
$$575$$ 18538.6 1.34454
$$576$$ −288.000 498.831i −0.0208333 0.0360844i
$$577$$ 8748.20 15152.3i 0.631182 1.09324i −0.356128 0.934437i $$-0.615903\pi$$
0.987310 0.158803i $$-0.0507634\pi$$
$$578$$ 4165.06 7214.10i 0.299730 0.519147i
$$579$$ −5056.26 8757.70i −0.362921 0.628597i
$$580$$ −15216.8 −1.08939
$$581$$ 6380.00 903.944i 0.455571 0.0645472i
$$582$$ 9709.80 0.691553
$$583$$ 1723.29 + 2984.83i 0.122421 + 0.212039i
$$584$$ −725.197 + 1256.08i −0.0513850 + 0.0890015i
$$585$$ 2767.81 4793.98i 0.195615 0.338815i
$$586$$ 2176.53 + 3769.87i 0.153433 + 0.265754i
$$587$$ −4280.53 −0.300982 −0.150491 0.988611i $$-0.548085\pi$$
−0.150491 + 0.988611i $$0.548085\pi$$
$$588$$ −2967.20 2852.57i −0.208105 0.200065i
$$589$$ −22699.0 −1.58794
$$590$$ −7315.61 12671.0i −0.510473 0.884165i
$$591$$ 6918.47 11983.1i 0.481536 0.834044i
$$592$$ 1292.27 2238.28i 0.0897164 0.155393i
$$593$$ 795.466 + 1377.79i 0.0550858 + 0.0954114i 0.892253 0.451535i $$-0.149123\pi$$
−0.837168 + 0.546946i $$0.815790\pi$$
$$594$$ 2799.20 0.193355
$$595$$ −7942.20 + 1125.28i −0.547224 + 0.0775329i
$$596$$ 1443.91 0.0992363
$$597$$ 3344.80 + 5793.36i 0.229302 + 0.397163i
$$598$$ −5722.59 + 9911.82i −0.391328 + 0.677800i
$$599$$ 6961.42 12057.5i 0.474851 0.822467i −0.524734 0.851266i $$-0.675835\pi$$
0.999585 + 0.0287997i $$0.00916851\pi$$
$$600$$ −1509.77 2615.00i −0.102727 0.177928i
$$601$$ 12559.7 0.852446 0.426223 0.904618i $$-0.359844\pi$$
0.426223 + 0.904618i $$0.359844\pi$$
$$602$$ 7503.29 + 9581.62i 0.507992 + 0.648700i
$$603$$ 4906.87 0.331382
$$604$$ −3096.78 5363.78i −0.208620 0.361340i
$$605$$ 10738.3 18599.2i 0.721607 1.24986i
$$606$$ −2156.23 + 3734.70i −0.144539 + 0.250349i
$$607$$ −3839.19 6649.66i −0.256718 0.444648i 0.708643 0.705567i $$-0.249308\pi$$
−0.965361 + 0.260919i $$0.915974\pi$$
$$608$$ 2448.36 0.163313
$$609$$ −4985.69 + 12379.9i −0.331741 + 0.823745i
$$610$$ −5870.77 −0.389673
$$611$$ −1319.58 2285.58i −0.0873723 0.151333i
$$612$$ −492.273 + 852.641i −0.0325146 + 0.0563170i
$$613$$ −3079.19 + 5333.31i −0.202883 + 0.351403i −0.949456 0.313900i $$-0.898364\pi$$
0.746573 + 0.665303i $$0.231698\pi$$
$$614$$ −623.504 1079.94i −0.0409814 0.0709818i
$$615$$ 4892.59 0.320794
$$616$$ −2869.11 + 7124.27i −0.187662 + 0.465982i
$$617$$ 8813.12 0.575045 0.287523 0.957774i $$-0.407168\pi$$
0.287523 + 0.957774i $$0.407168\pi$$
$$618$$ 4834.74 + 8374.01i 0.314695 + 0.545068i
$$619$$ −11595.0 + 20083.1i −0.752894 + 1.30405i 0.193521 + 0.981096i $$0.438009\pi$$
−0.946415 + 0.322954i $$0.895324\pi$$
$$620$$ −9396.93 + 16276.0i −0.608693 + 1.05429i
$$621$$ −1989.20 3445.40i −0.128541 0.222640i
$$622$$ 935.985 0.0603369
$$623$$ −13213.1 16873.0i −0.849713 1.08507i
$$624$$ 1864.18 0.119595
$$625$$ 7761.27 + 13442.9i 0.496721 + 0.860346i
$$626$$ −3612.81 + 6257.57i −0.230666 + 0.399525i
$$627$$ −5949.19 + 10304.3i −0.378928 + 0.656323i
$$628$$ 1934.14 + 3350.02i 0.122899 + 0.212867i
$$629$$ −4417.71 −0.280041
$$630$$ −5227.33 + 740.629i −0.330574 + 0.0468371i
$$631$$ 7936.94 0.500736 0.250368 0.968151i $$-0.419448\pi$$
0.250368 + 0.968151i $$0.419448\pi$$
$$632$$ 1638.79 + 2838.46i 0.103145 + 0.178652i
$$633$$ −1368.92 + 2371.04i −0.0859553 + 0.148879i
$$634$$ −4531.74 + 7849.20i −0.283877 + 0.491690i
$$635$$ −21173.6 36673.8i −1.32323 2.29190i
$$636$$ −797.864 −0.0497443
$$637$$ 12796.8 3700.50i 0.795964 0.230171i
$$638$$ 24903.4 1.54535
$$639$$ 588.341 + 1019.04i 0.0364232 + 0.0630868i
$$640$$ 1013.58 1755.56i 0.0626017 0.108429i
$$641$$ −16057.3 + 27812.1i −0.989432 + 1.71375i −0.369146 + 0.929371i $$0.620350\pi$$
−0.620286 + 0.784376i $$0.712984\pi$$
$$642$$ −2804.01 4856.69i −0.172376 0.298564i
$$643$$ −24786.7 −1.52021 −0.760104 0.649802i $$-0.774852\pi$$
−0.760104 + 0.649802i $$0.774852\pi$$
$$644$$ 10807.8 1531.29i 0.661314 0.0936977i
$$645$$ 15610.2 0.952946
$$646$$ −2092.47 3624.26i −0.127441 0.220735i
$$647$$ −3772.80 + 6534.67i −0.229249 + 0.397070i −0.957586 0.288149i $$-0.906960\pi$$
0.728337 + 0.685219i $$0.240294\pi$$
$$648$$ −324.000 + 561.184i −0.0196419 + 0.0340207i
$$649$$ 11972.5 + 20737.0i 0.724133 + 1.25423i
$$650$$ 9772.54 0.589708
$$651$$ 10162.8 + 12977.8i 0.611844 + 0.781318i
$$652$$ −5306.00 −0.318710
$$653$$ 2444.49 + 4233.99i 0.146494 + 0.253735i 0.929929 0.367738i $$-0.119868\pi$$
−0.783435 + 0.621473i $$0.786534\pi$$
$$654$$ 3591.06 6219.89i 0.214712 0.371892i
$$655$$ −307.714 + 532.976i −0.0183563 + 0.0317941i
$$656$$ 823.818 + 1426.89i 0.0490316 + 0.0849251i
$$657$$ 1631.69 0.0968926
$$658$$ −940.295 + 2334.84i −0.0557090 + 0.138331i
$$659$$ 25895.9 1.53075 0.765374 0.643586i $$-0.222554\pi$$
0.765374 + 0.643586i $$0.222554\pi$$
$$660$$ 4925.70 + 8531.57i 0.290504 + 0.503168i
$$661$$ −4091.68 + 7087.00i −0.240769 + 0.417023i −0.960933 0.276780i $$-0.910733\pi$$
0.720165 + 0.693803i $$0.244066\pi$$
$$662$$ 1237.06 2142.65i 0.0726278 0.125795i
$$663$$ −1593.20 2759.51i −0.0933257 0.161645i
$$664$$ 2783.42 0.162677
$$665$$ 8383.36 20816.7i 0.488861 1.21389i
$$666$$ −2907.61 −0.169171
$$667$$ −17697.2 30652.4i −1.02734 1.77941i
$$668$$ −2833.39 + 4907.58i −0.164113 + 0.284252i
$$669$$ 6479.20 11222.3i 0.374440 0.648549i
$$670$$ 8634.53 + 14955.4i 0.497882 + 0.862357i
$$671$$ 9607.93 0.552772
$$672$$ −1096.18 1399.81i −0.0629258 0.0803555i
$$673$$ −4635.02 −0.265478 −0.132739 0.991151i $$-0.542377\pi$$
−0.132739 + 0.991151i $$0.542377\pi$$
$$674$$ 1867.83 + 3235.18i 0.106745 + 0.184888i
$$675$$ −1698.49 + 2941.88i −0.0968520 + 0.167753i
$$676$$ 1377.36 2385.65i 0.0783657 0.135733i
$$677$$ 12192.9 + 21118.7i 0.692187 + 1.19890i 0.971120 + 0.238593i $$0.0766862\pi$$
−0.278932 + 0.960311i $$0.589980\pi$$
$$678$$ −14307.9 −0.810458
$$679$$ 29674.9 4204.46i 1.67720 0.237633i
$$680$$ −3464.97 −0.195405
$$681$$ −3091.93 5355.37i −0.173984 0.301349i
$$682$$ 15378.7 26636.8i 0.863464 1.49556i
$$683$$ 9196.71 15929.2i 0.515230 0.892405i −0.484613 0.874728i $$-0.661040\pi$$
0.999844 0.0176767i $$-0.00562697\pi$$
$$684$$ −1377.20 2385.39i −0.0769864 0.133344i
$$685$$ 12165.2 0.678552
$$686$$ −10303.5 7433.15i −0.573456 0.413701i
$$687$$ −10423.9 −0.578889
$$688$$ 2628.45 + 4552.62i 0.145652 + 0.252277i
$$689$$ 1291.11 2236.27i 0.0713897 0.123651i
$$690$$ 7000.73 12125.6i 0.386251 0.669006i
$$691$$ 7449.44 + 12902.8i 0.410116 + 0.710341i 0.994902 0.100846i $$-0.0321550\pi$$
−0.584786 + 0.811187i $$0.698822\pi$$
$$692$$ −4146.39 −0.227778
$$693$$ 8554.89 1212.09i 0.468937 0.0664409i
$$694$$ −126.727 −0.00693157
$$695$$ 8334.67 + 14436.1i 0.454895 + 0.787902i
$$696$$ −2882.50 + 4992.64i −0.156984 + 0.271904i
$$697$$ 1408.14 2438.96i 0.0765236 0.132543i
$$698$$ −1223.79 2119.66i −0.0663625 0.114943i
$$699$$ 2328.30 0.125986
$$700$$ −5746.48 7338.19i −0.310281 0.396225i
$$701$$ −5725.70 −0.308497 −0.154249 0.988032i $$-0.549296\pi$$
−0.154249 + 0.988032i $$0.549296\pi$$
$$702$$ −1048.60 1816.23i −0.0563774 0.0976485i
$$703$$ 6179.60 10703.4i 0.331533 0.574232i
$$704$$ −1658.79 + 2873.10i −0.0888039 + 0.153813i
$$705$$ 1614.31 + 2796.06i 0.0862387 + 0.149370i
$$706$$ −9031.23 −0.481437
$$707$$ −4972.66 + 12347.6i −0.264521 + 0.656831i
$$708$$ −5543.14 −0.294243
$$709$$ 11728.4 + 20314.2i 0.621255 + 1.07604i 0.989252 + 0.146218i $$0.0467101\pi$$
−0.367998 + 0.929827i $$0.619957\pi$$
$$710$$ −2070.58 + 3586.36i −0.109447 + 0.189568i
$$711$$ 1843.64 3193.27i 0.0972458 0.168435i
$$712$$ −4628.64 8017.03i −0.243631 0.421982i
$$713$$ −43714.5 −2.29610
$$714$$ −1135.27 + 2818.99i −0.0595049 + 0.147756i
$$715$$ −31883.4 −1.66765
$$716$$ 1534.86 + 2658.46i 0.0801125 + 0.138759i
$$717$$ −3010.19 + 5213.81i −0.156789 + 0.271567i
$$718$$ −2228.49 + 3859.86i −0.115831 + 0.200625i
$$719$$ 4229.50 + 7325.71i 0.219379 + 0.379976i 0.954618 0.297832i $$-0.0962634\pi$$
−0.735239 + 0.677808i $$0.762930\pi$$
$$720$$ −2280.55 −0.118043
$$721$$ 18401.9 + 23499.0i 0.950518 + 1.21380i
$$722$$ −2010.02 −0.103608
$$723$$ −1208.47 2093.13i −0.0621626 0.107669i
$$724$$ 7915.42 13709.9i 0.406318 0.703763i
$$725$$ −15110.8 + 26172.7i −0.774072 + 1.34073i
$$726$$ −4068.26 7046.44i −0.207972 0.360217i
$$727$$ −11822.2 −0.603111 −0.301555 0.953449i $$-0.597506\pi$$
−0.301555 + 0.953449i $$0.597506\pi$$
$$728$$ 5697.29 807.214i 0.290049 0.0410953i
$$729$$ 729.000 0.0370370
$$730$$ 2871.26 + 4973.16i 0.145575 + 0.252144i
$$731$$ 4492.77 7781.70i 0.227320 0.393730i
$$732$$ −1112.09 + 1926.20i −0.0561531 + 0.0972600i
$$733$$ −2514.48 4355.20i −0.126704 0.219458i 0.795694 0.605699i $$-0.207107\pi$$
−0.922398 + 0.386241i $$0.873773\pi$$
$$734$$ −2874.68 −0.144559
$$735$$ −15655.0 + 4527.00i −0.785637 + 0.227185i
$$736$$ 4715.15 0.236145
$$737$$ −14131.0 24475.6i −0.706272 1.22330i
$$738$$ 926.795 1605.26i 0.0462274 0.0800682i
$$739$$ 8871.95 15366.7i 0.441624 0.764914i −0.556187 0.831057i $$-0.687736\pi$$
0.997810 + 0.0661431i $$0.0210694\pi$$
$$740$$ −5116.47 8861.99i −0.254169 0.440234i
$$741$$ 8914.44 0.441944
$$742$$ −2438.42 + 345.485i −0.120643 + 0.0170932i
$$743$$ −13202.3 −0.651877 −0.325938 0.945391i $$-0.605680\pi$$
−0.325938 + 0.945391i $$0.605680\pi$$
$$744$$ 3560.09 + 6166.26i 0.175429 + 0.303852i
$$745$$ 2858.42 4950.93i 0.140570 0.243474i
$$746$$ 12237.4 21195.8i 0.600595 1.04026i
$$747$$ −1565.68 2711.83i −0.0766869 0.132826i
$$748$$ 5670.67 0.277193
$$749$$ −10672.6 13628.8i −0.520652 0.664866i
$$750$$ −77.3861 −0.00376766
$$751$$ −7800.49 13510.8i −0.379020 0.656482i 0.611900 0.790935i $$-0.290406\pi$$
−0.990920 + 0.134453i $$0.957072\pi$$
$$752$$ −543.636 + 941.606i −0.0263622 + 0.0456607i
$$753$$ −2132.68 + 3693.90i −0.103213 + 0.178769i
$$754$$ −9329.00 16158.3i −0.450586 0.780439i
$$755$$ −24522.0 −1.18205
$$756$$ −747.205 + 1855.38i −0.0359465 + 0.0892587i
$$757$$ 2948.08 0.141545 0.0707725 0.997492i $$-0.477454\pi$$
0.0707725 + 0.997492i $$0.477454\pi$$
$$758$$ 10647.0 + 18441.1i 0.510180 + 0.883657i
$$759$$ −11457.2 + 19844.4i −0.547917 + 0.949021i
$$760$$ 4846.88 8395.04i 0.231335 0.400684i
$$761$$ −848.515 1469.67i −0.0404187 0.0700073i 0.845108 0.534595i $$-0.179536\pi$$
−0.885527 + 0.464588i $$0.846203\pi$$
$$762$$ −16043.5 −0.762725
$$763$$ 8281.65 20564.1i 0.392943 0.975716i
$$764$$ −7221.18 −0.341954
$$765$$ 1949.05 + 3375.85i 0.0921149 + 0.159548i
$$766$$ 6714.81 11630.4i 0.316731 0.548594i
$$767$$ 8969.98 15536.5i 0.422278 0.731407i
$$768$$ −384.000 665.108i −0.0180422 0.0312500i
$$769$$ −96.7799 −0.00453833 −0.00226916 0.999997i $$-0.500722\pi$$
−0.00226916 + 0.999997i $$0.500722\pi$$
$$770$$ 18748.2 + 23941.2i 0.877450 + 1.12049i
$$771$$ −4397.45 −0.205409
$$772$$ −6741.68 11676.9i −0.314298 0.544381i
$$773$$ −18163.4 +