Properties

Label 882.4.a.bh
Level 882882
Weight 44
Character orbit 882.a
Self dual yes
Analytic conductor 52.04052.040
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,4,Mod(1,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: N N == 882=23272 882 = 2 \cdot 3^{2} \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 882.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,0,8,7,0,0,16,0,14,25,0,49] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 52.039684625152.0396846251
Analytic rank: 00
Dimension: 22
Coefficient field: Q(193)\Q(\sqrt{193})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x48 x^{2} - x - 48 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 126)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+193)\beta = \frac{1}{2}(1 + \sqrt{193}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2q2+4q4+(β+4)q5+8q8+(2β+8)q10+(7β+16)q11+(5β+27)q13+16q16+(10β+44)q17+(3β+61)q19+(4β+16)q20++(155β46)q97+O(q100) q + 2 q^{2} + 4 q^{4} + ( - \beta + 4) q^{5} + 8 q^{8} + ( - 2 \beta + 8) q^{10} + ( - 7 \beta + 16) q^{11} + ( - 5 \beta + 27) q^{13} + 16 q^{16} + (10 \beta + 44) q^{17} + ( - 3 \beta + 61) q^{19} + ( - 4 \beta + 16) q^{20}+ \cdots + (155 \beta - 46) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q2+8q4+7q5+16q8+14q10+25q11+49q13+32q16+98q17+119q19+28q20+50q22122q23129q25+98q2673q2998q31++63q97+O(q100) 2 q + 4 q^{2} + 8 q^{4} + 7 q^{5} + 16 q^{8} + 14 q^{10} + 25 q^{11} + 49 q^{13} + 32 q^{16} + 98 q^{17} + 119 q^{19} + 28 q^{20} + 50 q^{22} - 122 q^{23} - 129 q^{25} + 98 q^{26} - 73 q^{29} - 98 q^{31}+ \cdots + 63 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
7.44622
−6.44622
2.00000 0 4.00000 −3.44622 0 0 8.00000 0 −6.89244
1.2 2.00000 0 4.00000 10.4462 0 0 8.00000 0 20.8924
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.a.bh 2
3.b odd 2 1 882.4.a.u 2
7.b odd 2 1 882.4.a.bd 2
7.c even 3 2 882.4.g.z 4
7.d odd 6 2 126.4.g.e 4
21.c even 2 1 882.4.a.ba 2
21.g even 6 2 126.4.g.f yes 4
21.h odd 6 2 882.4.g.bj 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.4.g.e 4 7.d odd 6 2
126.4.g.f yes 4 21.g even 6 2
882.4.a.u 2 3.b odd 2 1
882.4.a.ba 2 21.c even 2 1
882.4.a.bd 2 7.b odd 2 1
882.4.a.bh 2 1.a even 1 1 trivial
882.4.g.z 4 7.c even 3 2
882.4.g.bj 4 21.h odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(882))S_{4}^{\mathrm{new}}(\Gamma_0(882)):

T527T536 T_{5}^{2} - 7T_{5} - 36 Copy content Toggle raw display
T11225T112208 T_{11}^{2} - 25T_{11} - 2208 Copy content Toggle raw display
T13249T13606 T_{13}^{2} - 49T_{13} - 606 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2)2 (T - 2)^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T27T36 T^{2} - 7T - 36 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T225T2208 T^{2} - 25T - 2208 Copy content Toggle raw display
1313 T249T606 T^{2} - 49T - 606 Copy content Toggle raw display
1717 T298T2424 T^{2} - 98T - 2424 Copy content Toggle raw display
1919 T2119T+3106 T^{2} - 119T + 3106 Copy content Toggle raw display
2323 T2+122T5736 T^{2} + 122T - 5736 Copy content Toggle raw display
2929 T2+73T1032 T^{2} + 73T - 1032 Copy content Toggle raw display
3131 T2+98T35427 T^{2} + 98T - 35427 Copy content Toggle raw display
3737 T2289T398 T^{2} - 289T - 398 Copy content Toggle raw display
4141 (T168)2 (T - 168)^{2} Copy content Toggle raw display
4343 T2307T+2284 T^{2} - 307T + 2284 Copy content Toggle raw display
4747 T2672T+85104 T^{2} - 672T + 85104 Copy content Toggle raw display
5353 T2375T156348 T^{2} - 375T - 156348 Copy content Toggle raw display
5959 T2763T33996 T^{2} - 763T - 33996 Copy content Toggle raw display
6161 T2406T14568 T^{2} - 406T - 14568 Copy content Toggle raw display
6767 T2+1041T+211814 T^{2} + 1041 T + 211814 Copy content Toggle raw display
7171 T2+1652T+644448 T^{2} + 1652 T + 644448 Copy content Toggle raw display
7373 T2189T445054 T^{2} - 189T - 445054 Copy content Toggle raw display
7979 T2524T394749 T^{2} - 524T - 394749 Copy content Toggle raw display
8383 T2287T361596 T^{2} - 287T - 361596 Copy content Toggle raw display
8989 T22394T+1292112 T^{2} - 2394 T + 1292112 Copy content Toggle raw display
9797 T263T1158214 T^{2} - 63T - 1158214 Copy content Toggle raw display
show more
show less