Properties

Label 882.4.g.bj
Level $882$
Weight $4$
Character orbit 882.g
Analytic conductor $52.040$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,4,Mod(361,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,-8,7,0,0,-32,0,-14,25,0,98] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.0396846251\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{193})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 49x^{2} + 48x + 2304 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta_{2} q^{2} + (4 \beta_{2} - 4) q^{4} + (4 \beta_{2} - \beta_1) q^{5} - 8 q^{8} + ( - 2 \beta_{3} + 8 \beta_{2} + \cdots - 6) q^{10} + (7 \beta_{3} - 16 \beta_{2} + 7 \beta_1 + 9) q^{11} + (5 \beta_{3} + 22) q^{13}+ \cdots + ( - 155 \beta_{3} + 109) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{4} + 7 q^{5} - 32 q^{8} - 14 q^{10} + 25 q^{11} + 98 q^{13} - 32 q^{16} + 98 q^{17} - 119 q^{19} - 56 q^{20} + 100 q^{22} - 122 q^{23} + 129 q^{25} + 98 q^{26} + 146 q^{29} + 98 q^{31}+ \cdots + 126 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 49x^{2} + 48x + 2304 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 49\nu^{2} - 49\nu + 2304 ) / 2352 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 97 ) / 49 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 48\beta_{2} + \beta _1 - 49 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 49\beta_{3} - 97 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(-\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
3.72311 + 6.44862i
−3.22311 5.58259i
3.72311 6.44862i
−3.22311 + 5.58259i
1.00000 + 1.73205i 0 −2.00000 + 3.46410i −1.72311 2.98452i 0 0 −8.00000 0 3.44622 5.96903i
361.2 1.00000 + 1.73205i 0 −2.00000 + 3.46410i 5.22311 + 9.04669i 0 0 −8.00000 0 −10.4462 + 18.0934i
667.1 1.00000 1.73205i 0 −2.00000 3.46410i −1.72311 + 2.98452i 0 0 −8.00000 0 3.44622 + 5.96903i
667.2 1.00000 1.73205i 0 −2.00000 3.46410i 5.22311 9.04669i 0 0 −8.00000 0 −10.4462 18.0934i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.g.bj 4
3.b odd 2 1 882.4.g.z 4
7.b odd 2 1 126.4.g.f yes 4
7.c even 3 1 882.4.a.u 2
7.c even 3 1 inner 882.4.g.bj 4
7.d odd 6 1 126.4.g.f yes 4
7.d odd 6 1 882.4.a.ba 2
21.c even 2 1 126.4.g.e 4
21.g even 6 1 126.4.g.e 4
21.g even 6 1 882.4.a.bd 2
21.h odd 6 1 882.4.a.bh 2
21.h odd 6 1 882.4.g.z 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.4.g.e 4 21.c even 2 1
126.4.g.e 4 21.g even 6 1
126.4.g.f yes 4 7.b odd 2 1
126.4.g.f yes 4 7.d odd 6 1
882.4.a.u 2 7.c even 3 1
882.4.a.ba 2 7.d odd 6 1
882.4.a.bd 2 21.g even 6 1
882.4.a.bh 2 21.h odd 6 1
882.4.g.z 4 3.b odd 2 1
882.4.g.z 4 21.h odd 6 1
882.4.g.bj 4 1.a even 1 1 trivial
882.4.g.bj 4 7.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(882, [\chi])\):

\( T_{5}^{4} - 7T_{5}^{3} + 85T_{5}^{2} + 252T_{5} + 1296 \) Copy content Toggle raw display
\( T_{11}^{4} - 25T_{11}^{3} + 2833T_{11}^{2} + 55200T_{11} + 4875264 \) Copy content Toggle raw display
\( T_{13}^{2} - 49T_{13} - 606 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 7 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 25 T^{3} + \cdots + 4875264 \) Copy content Toggle raw display
$13$ \( (T^{2} - 49 T - 606)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 98 T^{3} + \cdots + 5875776 \) Copy content Toggle raw display
$19$ \( T^{4} + 119 T^{3} + \cdots + 9647236 \) Copy content Toggle raw display
$23$ \( T^{4} + 122 T^{3} + \cdots + 32901696 \) Copy content Toggle raw display
$29$ \( (T^{2} - 73 T - 1032)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 1255072329 \) Copy content Toggle raw display
$37$ \( T^{4} + 289 T^{3} + \cdots + 158404 \) Copy content Toggle raw display
$41$ \( (T + 168)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 307 T + 2284)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 7242690816 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 24444697104 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 1155728016 \) Copy content Toggle raw display
$61$ \( T^{4} + 406 T^{3} + \cdots + 212226624 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 44865170596 \) Copy content Toggle raw display
$71$ \( (T^{2} - 1652 T + 644448)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 198073062916 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 155826773001 \) Copy content Toggle raw display
$83$ \( (T^{2} + 287 T - 361596)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 1669553420544 \) Copy content Toggle raw display
$97$ \( (T^{2} - 63 T - 1158214)^{2} \) Copy content Toggle raw display
show more
show less