Properties

Label 880.2.cd.c.289.4
Level $880$
Weight $2$
Character 880.289
Analytic conductor $7.027$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(49,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 5, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cd (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{14} + 25x^{12} - 57x^{10} + 194x^{8} - 303x^{6} + 235x^{4} - 33x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 289.4
Root \(-1.92464 + 0.625353i\) of defining polynomial
Character \(\chi\) \(=\) 880.289
Dual form 880.2.cd.c.609.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.49233 - 0.809808i) q^{3} +(1.54147 - 1.61983i) q^{5} +(-0.918552 - 0.298456i) q^{7} +(3.12889 - 2.27327i) q^{9} +(3.31118 - 0.189896i) q^{11} +(-2.65978 - 3.66088i) q^{13} +(2.53011 - 5.28546i) q^{15} +(-1.96126 + 2.69944i) q^{17} +(1.01283 + 3.11717i) q^{19} -2.53103 q^{21} -3.36643i q^{23} +(-0.247725 - 4.99386i) q^{25} +(1.33628 - 1.83923i) q^{27} +(-1.51820 + 4.67254i) q^{29} +(-0.338464 + 0.245909i) q^{31} +(8.09880 - 3.15471i) q^{33} +(-1.89937 + 1.02784i) q^{35} +(6.02737 + 1.95841i) q^{37} +(-9.59368 - 6.97021i) q^{39} +(1.78786 + 5.50247i) q^{41} -2.26205i q^{43} +(1.14077 - 8.57246i) q^{45} +(4.11260 - 1.33626i) q^{47} +(-4.90846 - 3.56620i) q^{49} +(-2.70208 + 8.31615i) q^{51} +(-1.56392 - 2.15255i) q^{53} +(4.79650 - 5.65629i) q^{55} +(5.04863 + 6.94884i) q^{57} +(-3.12889 + 9.62972i) q^{59} +(1.99897 + 1.45233i) q^{61} +(-3.55252 + 1.15428i) q^{63} +(-10.0300 - 1.33473i) q^{65} +9.60059i q^{67} +(-2.72616 - 8.39026i) q^{69} +(-4.41166 - 3.20526i) q^{71} +(-1.36528 - 0.443607i) q^{73} +(-4.66148 - 12.2458i) q^{75} +(-3.09817 - 0.813812i) q^{77} +(-0.812218 + 0.590111i) q^{79} +(-1.74436 + 5.36858i) q^{81} +(4.34692 - 5.98302i) q^{83} +(1.34942 + 7.33802i) q^{85} +12.8750i q^{87} +12.1964 q^{89} +(1.35054 + 4.15654i) q^{91} +(-0.644427 + 0.886978i) q^{93} +(6.61056 + 3.16442i) q^{95} +(1.77467 + 2.44262i) q^{97} +(9.92863 - 8.12138i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{5} + 2 q^{9} + 6 q^{11} + 16 q^{15} - 6 q^{19} + 8 q^{21} - 16 q^{25} + 2 q^{29} - 8 q^{31} - 22 q^{35} - 30 q^{39} - 52 q^{41} + 12 q^{45} - 10 q^{49} + 42 q^{51} + 8 q^{55} - 2 q^{59} - 40 q^{61}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.49233 0.809808i 1.43895 0.467543i 0.517380 0.855756i \(-0.326907\pi\)
0.921570 + 0.388213i \(0.126907\pi\)
\(4\) 0 0
\(5\) 1.54147 1.61983i 0.689367 0.724412i
\(6\) 0 0
\(7\) −0.918552 0.298456i −0.347180 0.112806i 0.130236 0.991483i \(-0.458427\pi\)
−0.477416 + 0.878677i \(0.658427\pi\)
\(8\) 0 0
\(9\) 3.12889 2.27327i 1.04296 0.757756i
\(10\) 0 0
\(11\) 3.31118 0.189896i 0.998360 0.0572559i
\(12\) 0 0
\(13\) −2.65978 3.66088i −0.737691 1.01534i −0.998748 0.0500213i \(-0.984071\pi\)
0.261057 0.965323i \(-0.415929\pi\)
\(14\) 0 0
\(15\) 2.53011 5.28546i 0.653271 1.36470i
\(16\) 0 0
\(17\) −1.96126 + 2.69944i −0.475675 + 0.654710i −0.977667 0.210162i \(-0.932601\pi\)
0.501992 + 0.864872i \(0.332601\pi\)
\(18\) 0 0
\(19\) 1.01283 + 3.11717i 0.232359 + 0.715129i 0.997461 + 0.0712189i \(0.0226889\pi\)
−0.765101 + 0.643910i \(0.777311\pi\)
\(20\) 0 0
\(21\) −2.53103 −0.552316
\(22\) 0 0
\(23\) 3.36643i 0.701948i −0.936385 0.350974i \(-0.885851\pi\)
0.936385 0.350974i \(-0.114149\pi\)
\(24\) 0 0
\(25\) −0.247725 4.99386i −0.0495450 0.998772i
\(26\) 0 0
\(27\) 1.33628 1.83923i 0.257167 0.353959i
\(28\) 0 0
\(29\) −1.51820 + 4.67254i −0.281923 + 0.867668i 0.705382 + 0.708828i \(0.250776\pi\)
−0.987304 + 0.158841i \(0.949224\pi\)
\(30\) 0 0
\(31\) −0.338464 + 0.245909i −0.0607900 + 0.0441665i −0.617765 0.786363i \(-0.711962\pi\)
0.556975 + 0.830529i \(0.311962\pi\)
\(32\) 0 0
\(33\) 8.09880 3.15471i 1.40982 0.549164i
\(34\) 0 0
\(35\) −1.89937 + 1.02784i −0.321052 + 0.173737i
\(36\) 0 0
\(37\) 6.02737 + 1.95841i 0.990894 + 0.321961i 0.759221 0.650833i \(-0.225580\pi\)
0.231673 + 0.972794i \(0.425580\pi\)
\(38\) 0 0
\(39\) −9.59368 6.97021i −1.53622 1.11613i
\(40\) 0 0
\(41\) 1.78786 + 5.50247i 0.279217 + 0.859341i 0.988073 + 0.153988i \(0.0492117\pi\)
−0.708856 + 0.705353i \(0.750788\pi\)
\(42\) 0 0
\(43\) 2.26205i 0.344960i −0.985013 0.172480i \(-0.944822\pi\)
0.985013 0.172480i \(-0.0551780\pi\)
\(44\) 0 0
\(45\) 1.14077 8.57246i 0.170057 1.27791i
\(46\) 0 0
\(47\) 4.11260 1.33626i 0.599884 0.194914i 0.00669531 0.999978i \(-0.497869\pi\)
0.593189 + 0.805063i \(0.297869\pi\)
\(48\) 0 0
\(49\) −4.90846 3.56620i −0.701208 0.509457i
\(50\) 0 0
\(51\) −2.70208 + 8.31615i −0.378367 + 1.16449i
\(52\) 0 0
\(53\) −1.56392 2.15255i −0.214821 0.295676i 0.687984 0.725726i \(-0.258496\pi\)
−0.902805 + 0.430050i \(0.858496\pi\)
\(54\) 0 0
\(55\) 4.79650 5.65629i 0.646760 0.762694i
\(56\) 0 0
\(57\) 5.04863 + 6.94884i 0.668707 + 0.920396i
\(58\) 0 0
\(59\) −3.12889 + 9.62972i −0.407346 + 1.25368i 0.511574 + 0.859239i \(0.329063\pi\)
−0.918920 + 0.394444i \(0.870937\pi\)
\(60\) 0 0
\(61\) 1.99897 + 1.45233i 0.255941 + 0.185952i 0.708356 0.705856i \(-0.249437\pi\)
−0.452414 + 0.891808i \(0.649437\pi\)
\(62\) 0 0
\(63\) −3.55252 + 1.15428i −0.447575 + 0.145426i
\(64\) 0 0
\(65\) −10.0300 1.33473i −1.24407 0.165553i
\(66\) 0 0
\(67\) 9.60059i 1.17290i 0.809986 + 0.586449i \(0.199475\pi\)
−0.809986 + 0.586449i \(0.800525\pi\)
\(68\) 0 0
\(69\) −2.72616 8.39026i −0.328191 1.01007i
\(70\) 0 0
\(71\) −4.41166 3.20526i −0.523567 0.380394i 0.294379 0.955689i \(-0.404887\pi\)
−0.817946 + 0.575295i \(0.804887\pi\)
\(72\) 0 0
\(73\) −1.36528 0.443607i −0.159794 0.0519203i 0.228028 0.973655i \(-0.426772\pi\)
−0.387822 + 0.921734i \(0.626772\pi\)
\(74\) 0 0
\(75\) −4.66148 12.2458i −0.538262 1.41402i
\(76\) 0 0
\(77\) −3.09817 0.813812i −0.353069 0.0927425i
\(78\) 0 0
\(79\) −0.812218 + 0.590111i −0.0913817 + 0.0663927i −0.632538 0.774529i \(-0.717987\pi\)
0.541156 + 0.840922i \(0.317987\pi\)
\(80\) 0 0
\(81\) −1.74436 + 5.36858i −0.193818 + 0.596509i
\(82\) 0 0
\(83\) 4.34692 5.98302i 0.477136 0.656721i −0.500815 0.865554i \(-0.666966\pi\)
0.977951 + 0.208833i \(0.0669664\pi\)
\(84\) 0 0
\(85\) 1.34942 + 7.33802i 0.146365 + 0.795920i
\(86\) 0 0
\(87\) 12.8750i 1.38034i
\(88\) 0 0
\(89\) 12.1964 1.29282 0.646410 0.762991i \(-0.276270\pi\)
0.646410 + 0.762991i \(0.276270\pi\)
\(90\) 0 0
\(91\) 1.35054 + 4.15654i 0.141575 + 0.435723i
\(92\) 0 0
\(93\) −0.644427 + 0.886978i −0.0668240 + 0.0919754i
\(94\) 0 0
\(95\) 6.61056 + 3.16442i 0.678229 + 0.324663i
\(96\) 0 0
\(97\) 1.77467 + 2.44262i 0.180190 + 0.248010i 0.889552 0.456834i \(-0.151017\pi\)
−0.709362 + 0.704844i \(0.751017\pi\)
\(98\) 0 0
\(99\) 9.92863 8.12138i 0.997865 0.816229i
\(100\) 0 0
\(101\) −12.2940 + 8.93210i −1.22330 + 0.888777i −0.996369 0.0851342i \(-0.972868\pi\)
−0.226928 + 0.973912i \(0.572868\pi\)
\(102\) 0 0
\(103\) −9.26987 3.01196i −0.913387 0.296778i −0.185636 0.982619i \(-0.559435\pi\)
−0.727751 + 0.685841i \(0.759435\pi\)
\(104\) 0 0
\(105\) −3.90151 + 4.09985i −0.380749 + 0.400104i
\(106\) 0 0
\(107\) 7.26778 2.36144i 0.702602 0.228289i 0.0641384 0.997941i \(-0.479570\pi\)
0.638464 + 0.769652i \(0.279570\pi\)
\(108\) 0 0
\(109\) 9.85576 0.944010 0.472005 0.881596i \(-0.343530\pi\)
0.472005 + 0.881596i \(0.343530\pi\)
\(110\) 0 0
\(111\) 16.6082 1.57638
\(112\) 0 0
\(113\) 4.77298 1.55084i 0.449004 0.145890i −0.0757819 0.997124i \(-0.524145\pi\)
0.524786 + 0.851234i \(0.324145\pi\)
\(114\) 0 0
\(115\) −5.45305 5.18925i −0.508500 0.483900i
\(116\) 0 0
\(117\) −16.6443 5.40807i −1.53877 0.499976i
\(118\) 0 0
\(119\) 2.60718 1.89423i 0.239000 0.173644i
\(120\) 0 0
\(121\) 10.9279 1.25756i 0.993444 0.114324i
\(122\) 0 0
\(123\) 8.91189 + 12.2662i 0.803558 + 1.10600i
\(124\) 0 0
\(125\) −8.47108 7.29662i −0.757677 0.652630i
\(126\) 0 0
\(127\) −4.16764 + 5.73626i −0.369818 + 0.509011i −0.952851 0.303438i \(-0.901866\pi\)
0.583033 + 0.812448i \(0.301866\pi\)
\(128\) 0 0
\(129\) −1.83183 5.63779i −0.161284 0.496380i
\(130\) 0 0
\(131\) −7.21704 −0.630556 −0.315278 0.948999i \(-0.602098\pi\)
−0.315278 + 0.948999i \(0.602098\pi\)
\(132\) 0 0
\(133\) 3.16557i 0.274490i
\(134\) 0 0
\(135\) −0.919409 4.99967i −0.0791301 0.430303i
\(136\) 0 0
\(137\) 4.99076 6.86920i 0.426390 0.586875i −0.540730 0.841196i \(-0.681852\pi\)
0.967120 + 0.254321i \(0.0818520\pi\)
\(138\) 0 0
\(139\) 2.39184 7.36133i 0.202873 0.624380i −0.796921 0.604084i \(-0.793539\pi\)
0.999794 0.0202958i \(-0.00646080\pi\)
\(140\) 0 0
\(141\) 9.16785 6.66083i 0.772072 0.560943i
\(142\) 0 0
\(143\) −9.50222 11.6168i −0.794615 0.971442i
\(144\) 0 0
\(145\) 5.22847 + 9.66182i 0.434201 + 0.802370i
\(146\) 0 0
\(147\) −15.1215 4.91326i −1.24720 0.405239i
\(148\) 0 0
\(149\) −13.6589 9.92376i −1.11898 0.812986i −0.134925 0.990856i \(-0.543079\pi\)
−0.984054 + 0.177870i \(0.943079\pi\)
\(150\) 0 0
\(151\) 3.79555 + 11.6815i 0.308877 + 0.950626i 0.978202 + 0.207656i \(0.0665835\pi\)
−0.669325 + 0.742970i \(0.733416\pi\)
\(152\) 0 0
\(153\) 12.9047i 1.04328i
\(154\) 0 0
\(155\) −0.123402 + 0.927318i −0.00991190 + 0.0744840i
\(156\) 0 0
\(157\) −4.00368 + 1.30087i −0.319528 + 0.103821i −0.464390 0.885631i \(-0.653726\pi\)
0.144862 + 0.989452i \(0.453726\pi\)
\(158\) 0 0
\(159\) −5.64096 4.09840i −0.447357 0.325024i
\(160\) 0 0
\(161\) −1.00473 + 3.09224i −0.0791837 + 0.243702i
\(162\) 0 0
\(163\) 9.74169 + 13.4083i 0.763028 + 1.05022i 0.996956 + 0.0779643i \(0.0248420\pi\)
−0.233928 + 0.972254i \(0.575158\pi\)
\(164\) 0 0
\(165\) 7.37397 17.9816i 0.574062 1.39987i
\(166\) 0 0
\(167\) 5.38810 + 7.41608i 0.416944 + 0.573874i 0.964895 0.262637i \(-0.0845920\pi\)
−0.547951 + 0.836510i \(0.684592\pi\)
\(168\) 0 0
\(169\) −2.31036 + 7.11055i −0.177720 + 0.546965i
\(170\) 0 0
\(171\) 10.2552 + 7.45085i 0.784236 + 0.569781i
\(172\) 0 0
\(173\) −3.90853 + 1.26996i −0.297160 + 0.0965531i −0.453803 0.891102i \(-0.649933\pi\)
0.156643 + 0.987655i \(0.449933\pi\)
\(174\) 0 0
\(175\) −1.26290 + 4.66106i −0.0954661 + 0.352343i
\(176\) 0 0
\(177\) 26.5343i 1.99444i
\(178\) 0 0
\(179\) −5.03576 15.4985i −0.376390 1.15841i −0.942536 0.334105i \(-0.891566\pi\)
0.566145 0.824305i \(-0.308434\pi\)
\(180\) 0 0
\(181\) 4.48753 + 3.26038i 0.333555 + 0.242342i 0.741938 0.670469i \(-0.233907\pi\)
−0.408382 + 0.912811i \(0.633907\pi\)
\(182\) 0 0
\(183\) 6.15820 + 2.00092i 0.455227 + 0.147912i
\(184\) 0 0
\(185\) 12.4633 6.74451i 0.916322 0.495866i
\(186\) 0 0
\(187\) −5.98147 + 9.31078i −0.437408 + 0.680871i
\(188\) 0 0
\(189\) −1.77637 + 1.29061i −0.129212 + 0.0938779i
\(190\) 0 0
\(191\) −6.74155 + 20.7484i −0.487802 + 1.50130i 0.340080 + 0.940396i \(0.389546\pi\)
−0.827882 + 0.560903i \(0.810454\pi\)
\(192\) 0 0
\(193\) −13.2128 + 18.1858i −0.951076 + 1.30904i −2.83481e−5 1.00000i \(0.500009\pi\)
−0.951048 + 0.309044i \(0.899991\pi\)
\(194\) 0 0
\(195\) −26.0790 + 4.79577i −1.86755 + 0.343432i
\(196\) 0 0
\(197\) 25.7479i 1.83446i −0.398358 0.917230i \(-0.630420\pi\)
0.398358 0.917230i \(-0.369580\pi\)
\(198\) 0 0
\(199\) 16.9671 1.20277 0.601385 0.798960i \(-0.294616\pi\)
0.601385 + 0.798960i \(0.294616\pi\)
\(200\) 0 0
\(201\) 7.77463 + 23.9279i 0.548380 + 1.68774i
\(202\) 0 0
\(203\) 2.78909 3.83886i 0.195756 0.269435i
\(204\) 0 0
\(205\) 11.6690 + 5.58587i 0.815000 + 0.390134i
\(206\) 0 0
\(207\) −7.65279 10.5332i −0.531906 0.732106i
\(208\) 0 0
\(209\) 3.94561 + 10.1292i 0.272924 + 0.700652i
\(210\) 0 0
\(211\) −4.71363 + 3.42465i −0.324500 + 0.235763i −0.738093 0.674699i \(-0.764274\pi\)
0.413593 + 0.910462i \(0.364274\pi\)
\(212\) 0 0
\(213\) −13.5910 4.41597i −0.931238 0.302577i
\(214\) 0 0
\(215\) −3.66415 3.48689i −0.249893 0.237804i
\(216\) 0 0
\(217\) 0.384290 0.124863i 0.0260873 0.00847628i
\(218\) 0 0
\(219\) −3.76197 −0.254211
\(220\) 0 0
\(221\) 15.0988 1.01566
\(222\) 0 0
\(223\) −18.0913 + 5.87820i −1.21148 + 0.393634i −0.843972 0.536387i \(-0.819789\pi\)
−0.367508 + 0.930020i \(0.619789\pi\)
\(224\) 0 0
\(225\) −12.1275 15.0621i −0.808499 1.00414i
\(226\) 0 0
\(227\) −27.0727 8.79646i −1.79688 0.583841i −0.797079 0.603874i \(-0.793623\pi\)
−0.999799 + 0.0200332i \(0.993623\pi\)
\(228\) 0 0
\(229\) −20.5420 + 14.9247i −1.35746 + 0.986250i −0.358854 + 0.933394i \(0.616832\pi\)
−0.998602 + 0.0528558i \(0.983168\pi\)
\(230\) 0 0
\(231\) −8.38071 + 0.480634i −0.551410 + 0.0316234i
\(232\) 0 0
\(233\) 7.35755 + 10.1268i 0.482009 + 0.663429i 0.978890 0.204390i \(-0.0655211\pi\)
−0.496880 + 0.867819i \(0.665521\pi\)
\(234\) 0 0
\(235\) 4.17493 8.72154i 0.272342 0.568931i
\(236\) 0 0
\(237\) −1.54644 + 2.12849i −0.100452 + 0.138261i
\(238\) 0 0
\(239\) 6.30011 + 19.3897i 0.407520 + 1.25422i 0.918773 + 0.394787i \(0.129182\pi\)
−0.511252 + 0.859431i \(0.670818\pi\)
\(240\) 0 0
\(241\) −22.7935 −1.46826 −0.734129 0.679010i \(-0.762409\pi\)
−0.734129 + 0.679010i \(0.762409\pi\)
\(242\) 0 0
\(243\) 21.6131i 1.38648i
\(244\) 0 0
\(245\) −13.3429 + 2.45368i −0.852447 + 0.156760i
\(246\) 0 0
\(247\) 8.71768 11.9989i 0.554693 0.763469i
\(248\) 0 0
\(249\) 5.98887 18.4318i 0.379529 1.16807i
\(250\) 0 0
\(251\) 13.7151 9.96460i 0.865689 0.628960i −0.0637374 0.997967i \(-0.520302\pi\)
0.929427 + 0.369007i \(0.120302\pi\)
\(252\) 0 0
\(253\) −0.639272 11.1469i −0.0401907 0.700797i
\(254\) 0 0
\(255\) 9.30560 + 17.1960i 0.582739 + 1.07686i
\(256\) 0 0
\(257\) 4.50405 + 1.46346i 0.280955 + 0.0912879i 0.446105 0.894981i \(-0.352811\pi\)
−0.165150 + 0.986268i \(0.552811\pi\)
\(258\) 0 0
\(259\) −4.95196 3.59781i −0.307700 0.223557i
\(260\) 0 0
\(261\) 5.87166 + 18.0711i 0.363447 + 1.11857i
\(262\) 0 0
\(263\) 18.1037i 1.11632i −0.829732 0.558162i \(-0.811507\pi\)
0.829732 0.558162i \(-0.188493\pi\)
\(264\) 0 0
\(265\) −5.89751 0.784807i −0.362281 0.0482103i
\(266\) 0 0
\(267\) 30.3976 9.87677i 1.86030 0.604449i
\(268\) 0 0
\(269\) −1.85914 1.35074i −0.113354 0.0823562i 0.529664 0.848207i \(-0.322318\pi\)
−0.643018 + 0.765851i \(0.722318\pi\)
\(270\) 0 0
\(271\) −0.248971 + 0.766255i −0.0151239 + 0.0465467i −0.958334 0.285651i \(-0.907790\pi\)
0.943210 + 0.332198i \(0.107790\pi\)
\(272\) 0 0
\(273\) 6.73199 + 9.26579i 0.407439 + 0.560791i
\(274\) 0 0
\(275\) −1.76858 16.4885i −0.106649 0.994297i
\(276\) 0 0
\(277\) 6.95521 + 9.57302i 0.417898 + 0.575187i 0.965122 0.261799i \(-0.0843157\pi\)
−0.547225 + 0.836986i \(0.684316\pi\)
\(278\) 0 0
\(279\) −0.500000 + 1.53884i −0.0299342 + 0.0921280i
\(280\) 0 0
\(281\) −5.03960 3.66148i −0.300637 0.218426i 0.427231 0.904142i \(-0.359489\pi\)
−0.727869 + 0.685717i \(0.759489\pi\)
\(282\) 0 0
\(283\) 8.22250 2.67165i 0.488777 0.158813i −0.0542519 0.998527i \(-0.517277\pi\)
0.543029 + 0.839714i \(0.317277\pi\)
\(284\) 0 0
\(285\) 19.0383 + 2.53351i 1.12773 + 0.150072i
\(286\) 0 0
\(287\) 5.58790i 0.329843i
\(288\) 0 0
\(289\) 1.81285 + 5.57937i 0.106638 + 0.328198i
\(290\) 0 0
\(291\) 6.40111 + 4.65068i 0.375240 + 0.272628i
\(292\) 0 0
\(293\) −5.52610 1.79554i −0.322838 0.104896i 0.143115 0.989706i \(-0.454288\pi\)
−0.465953 + 0.884810i \(0.654288\pi\)
\(294\) 0 0
\(295\) 10.7755 + 19.9122i 0.627372 + 1.15933i
\(296\) 0 0
\(297\) 4.07540 6.34377i 0.236478 0.368103i
\(298\) 0 0
\(299\) −12.3241 + 8.95396i −0.712719 + 0.517821i
\(300\) 0 0
\(301\) −0.675123 + 2.07781i −0.0389134 + 0.119763i
\(302\) 0 0
\(303\) −23.4074 + 32.2176i −1.34472 + 1.85085i
\(304\) 0 0
\(305\) 5.43389 0.999260i 0.311144 0.0572175i
\(306\) 0 0
\(307\) 18.4721i 1.05426i −0.849785 0.527130i \(-0.823268\pi\)
0.849785 0.527130i \(-0.176732\pi\)
\(308\) 0 0
\(309\) −25.5427 −1.45307
\(310\) 0 0
\(311\) 3.50158 + 10.7768i 0.198557 + 0.611094i 0.999917 + 0.0129120i \(0.00411014\pi\)
−0.801360 + 0.598182i \(0.795890\pi\)
\(312\) 0 0
\(313\) 3.00651 4.13811i 0.169938 0.233900i −0.715550 0.698561i \(-0.753824\pi\)
0.885488 + 0.464661i \(0.153824\pi\)
\(314\) 0 0
\(315\) −3.60636 + 7.53378i −0.203195 + 0.424481i
\(316\) 0 0
\(317\) −6.94368 9.55715i −0.389996 0.536783i 0.568202 0.822889i \(-0.307639\pi\)
−0.958198 + 0.286106i \(0.907639\pi\)
\(318\) 0 0
\(319\) −4.13974 + 15.7599i −0.231781 + 0.882387i
\(320\) 0 0
\(321\) 16.2014 11.7710i 0.904274 0.656994i
\(322\) 0 0
\(323\) −10.4010 3.37951i −0.578730 0.188041i
\(324\) 0 0
\(325\) −17.6230 + 14.1895i −0.977549 + 0.787090i
\(326\) 0 0
\(327\) 24.5638 7.98127i 1.35838 0.441365i
\(328\) 0 0
\(329\) −4.17645 −0.230255
\(330\) 0 0
\(331\) −29.2692 −1.60878 −0.804391 0.594100i \(-0.797508\pi\)
−0.804391 + 0.594100i \(0.797508\pi\)
\(332\) 0 0
\(333\) 23.3110 7.57419i 1.27743 0.415063i
\(334\) 0 0
\(335\) 15.5514 + 14.7990i 0.849661 + 0.808558i
\(336\) 0 0
\(337\) −25.3400 8.23348i −1.38036 0.448506i −0.477572 0.878593i \(-0.658483\pi\)
−0.902788 + 0.430087i \(0.858483\pi\)
\(338\) 0 0
\(339\) 10.6400 7.73040i 0.577885 0.419858i
\(340\) 0 0
\(341\) −1.07402 + 0.878523i −0.0581615 + 0.0475747i
\(342\) 0 0
\(343\) 7.41820 + 10.2103i 0.400545 + 0.551303i
\(344\) 0 0
\(345\) −17.7931 8.51742i −0.957949 0.458563i
\(346\) 0 0
\(347\) −2.53411 + 3.48790i −0.136038 + 0.187240i −0.871601 0.490216i \(-0.836918\pi\)
0.735563 + 0.677457i \(0.236918\pi\)
\(348\) 0 0
\(349\) 4.06960 + 12.5249i 0.217841 + 0.670444i 0.998940 + 0.0460373i \(0.0146593\pi\)
−0.781099 + 0.624407i \(0.785341\pi\)
\(350\) 0 0
\(351\) −10.2874 −0.549100
\(352\) 0 0
\(353\) 25.4904i 1.35672i −0.734732 0.678358i \(-0.762692\pi\)
0.734732 0.678358i \(-0.237308\pi\)
\(354\) 0 0
\(355\) −11.9924 + 2.20534i −0.636492 + 0.117047i
\(356\) 0 0
\(357\) 4.96400 6.83237i 0.262723 0.361607i
\(358\) 0 0
\(359\) 8.11915 24.9882i 0.428512 1.31883i −0.471078 0.882091i \(-0.656135\pi\)
0.899591 0.436734i \(-0.143865\pi\)
\(360\) 0 0
\(361\) 6.68037 4.85358i 0.351599 0.255451i
\(362\) 0 0
\(363\) 26.2175 11.9838i 1.37606 0.628984i
\(364\) 0 0
\(365\) −2.82311 + 1.52772i −0.147769 + 0.0799646i
\(366\) 0 0
\(367\) −1.91993 0.623823i −0.100220 0.0325633i 0.258478 0.966017i \(-0.416779\pi\)
−0.358698 + 0.933454i \(0.616779\pi\)
\(368\) 0 0
\(369\) 18.1026 + 13.1523i 0.942384 + 0.684682i
\(370\) 0 0
\(371\) 0.794101 + 2.44399i 0.0412277 + 0.126886i
\(372\) 0 0
\(373\) 8.87153i 0.459351i 0.973267 + 0.229675i \(0.0737664\pi\)
−0.973267 + 0.229675i \(0.926234\pi\)
\(374\) 0 0
\(375\) −27.0216 11.3257i −1.39539 0.584855i
\(376\) 0 0
\(377\) 21.1437 6.86999i 1.08895 0.353823i
\(378\) 0 0
\(379\) −17.0412 12.3812i −0.875348 0.635978i 0.0566685 0.998393i \(-0.481952\pi\)
−0.932017 + 0.362415i \(0.881952\pi\)
\(380\) 0 0
\(381\) −5.74187 + 17.6717i −0.294165 + 0.905346i
\(382\) 0 0
\(383\) −15.2704 21.0179i −0.780281 1.07396i −0.995251 0.0973436i \(-0.968965\pi\)
0.214970 0.976621i \(-0.431035\pi\)
\(384\) 0 0
\(385\) −6.09399 + 3.76405i −0.310578 + 0.191834i
\(386\) 0 0
\(387\) −5.14225 7.07771i −0.261396 0.359780i
\(388\) 0 0
\(389\) 0.507965 1.56335i 0.0257548 0.0792652i −0.937353 0.348381i \(-0.886731\pi\)
0.963108 + 0.269116i \(0.0867315\pi\)
\(390\) 0 0
\(391\) 9.08746 + 6.60243i 0.459573 + 0.333899i
\(392\) 0 0
\(393\) −17.9873 + 5.84442i −0.907338 + 0.294812i
\(394\) 0 0
\(395\) −0.296130 + 2.22530i −0.0148999 + 0.111967i
\(396\) 0 0
\(397\) 16.7088i 0.838588i 0.907850 + 0.419294i \(0.137722\pi\)
−0.907850 + 0.419294i \(0.862278\pi\)
\(398\) 0 0
\(399\) −2.56351 7.88966i −0.128336 0.394977i
\(400\) 0 0
\(401\) −22.4842 16.3357i −1.12281 0.815766i −0.138174 0.990408i \(-0.544123\pi\)
−0.984632 + 0.174641i \(0.944123\pi\)
\(402\) 0 0
\(403\) 1.80048 + 0.585013i 0.0896885 + 0.0291416i
\(404\) 0 0
\(405\) 6.00733 + 11.1011i 0.298507 + 0.551618i
\(406\) 0 0
\(407\) 20.3296 + 5.34009i 1.00770 + 0.264698i
\(408\) 0 0
\(409\) 31.9019 23.1781i 1.57745 1.14608i 0.657902 0.753104i \(-0.271444\pi\)
0.919547 0.392980i \(-0.128556\pi\)
\(410\) 0 0
\(411\) 6.87591 21.1619i 0.339164 1.04384i
\(412\) 0 0
\(413\) 5.74809 7.91157i 0.282845 0.389303i
\(414\) 0 0
\(415\) −2.99084 16.2639i −0.146815 0.798365i
\(416\) 0 0
\(417\) 20.2838i 0.993303i
\(418\) 0 0
\(419\) 14.7812 0.722111 0.361055 0.932544i \(-0.382417\pi\)
0.361055 + 0.932544i \(0.382417\pi\)
\(420\) 0 0
\(421\) −3.33036 10.2498i −0.162312 0.499545i 0.836516 0.547942i \(-0.184589\pi\)
−0.998828 + 0.0483974i \(0.984589\pi\)
\(422\) 0 0
\(423\) 9.83016 13.5301i 0.477959 0.657854i
\(424\) 0 0
\(425\) 13.9665 + 9.12553i 0.677474 + 0.442653i
\(426\) 0 0
\(427\) −1.40270 1.93065i −0.0678813 0.0934306i
\(428\) 0 0
\(429\) −33.0900 21.2579i −1.59760 1.02634i
\(430\) 0 0
\(431\) 26.0435 18.9217i 1.25447 0.911428i 0.256000 0.966677i \(-0.417595\pi\)
0.998473 + 0.0552489i \(0.0175952\pi\)
\(432\) 0 0
\(433\) −0.363904 0.118240i −0.0174881 0.00568223i 0.300260 0.953857i \(-0.402927\pi\)
−0.317748 + 0.948175i \(0.602927\pi\)
\(434\) 0 0
\(435\) 20.8553 + 19.8464i 0.999936 + 0.951563i
\(436\) 0 0
\(437\) 10.4937 3.40962i 0.501983 0.163104i
\(438\) 0 0
\(439\) 26.5331 1.26635 0.633177 0.774007i \(-0.281751\pi\)
0.633177 + 0.774007i \(0.281751\pi\)
\(440\) 0 0
\(441\) −23.4649 −1.11738
\(442\) 0 0
\(443\) 13.7913 4.48106i 0.655243 0.212901i 0.0375185 0.999296i \(-0.488055\pi\)
0.617725 + 0.786395i \(0.288055\pi\)
\(444\) 0 0
\(445\) 18.8005 19.7562i 0.891228 0.936534i
\(446\) 0 0
\(447\) −42.0788 13.6722i −1.99026 0.646675i
\(448\) 0 0
\(449\) 8.18240 5.94486i 0.386151 0.280555i −0.377725 0.925918i \(-0.623294\pi\)
0.763876 + 0.645362i \(0.223294\pi\)
\(450\) 0 0
\(451\) 6.96483 + 17.8802i 0.327961 + 0.841945i
\(452\) 0 0
\(453\) 18.9195 + 26.0405i 0.888917 + 1.22349i
\(454\) 0 0
\(455\) 8.81472 + 4.21953i 0.413240 + 0.197815i
\(456\) 0 0
\(457\) 22.9758 31.6235i 1.07476 1.47928i 0.209602 0.977787i \(-0.432783\pi\)
0.865160 0.501496i \(-0.167217\pi\)
\(458\) 0 0
\(459\) 2.34410 + 7.21440i 0.109413 + 0.336739i
\(460\) 0 0
\(461\) 39.1322 1.82257 0.911285 0.411776i \(-0.135092\pi\)
0.911285 + 0.411776i \(0.135092\pi\)
\(462\) 0 0
\(463\) 12.9189i 0.600392i −0.953878 0.300196i \(-0.902948\pi\)
0.953878 0.300196i \(-0.0970521\pi\)
\(464\) 0 0
\(465\) 0.443390 + 2.41112i 0.0205617 + 0.111813i
\(466\) 0 0
\(467\) 6.61206 9.10071i 0.305969 0.421131i −0.628150 0.778093i \(-0.716187\pi\)
0.934119 + 0.356962i \(0.116187\pi\)
\(468\) 0 0
\(469\) 2.86535 8.81864i 0.132310 0.407207i
\(470\) 0 0
\(471\) −8.92504 + 6.48442i −0.411244 + 0.298786i
\(472\) 0 0
\(473\) −0.429556 7.49007i −0.0197510 0.344394i
\(474\) 0 0
\(475\) 15.3158 5.83014i 0.702738 0.267505i
\(476\) 0 0
\(477\) −9.78665 3.17988i −0.448100 0.145597i
\(478\) 0 0
\(479\) −16.9621 12.3237i −0.775017 0.563083i 0.128462 0.991714i \(-0.458996\pi\)
−0.903479 + 0.428632i \(0.858996\pi\)
\(480\) 0 0
\(481\) −8.86200 27.2744i −0.404072 1.24361i
\(482\) 0 0
\(483\) 8.52053i 0.387697i
\(484\) 0 0
\(485\) 6.69223 + 0.890564i 0.303879 + 0.0404384i
\(486\) 0 0
\(487\) 21.4645 6.97424i 0.972649 0.316033i 0.220764 0.975327i \(-0.429145\pi\)
0.751885 + 0.659294i \(0.229145\pi\)
\(488\) 0 0
\(489\) 35.1377 + 25.5290i 1.58898 + 1.15446i
\(490\) 0 0
\(491\) 6.20389 19.0936i 0.279977 0.861682i −0.707882 0.706331i \(-0.750349\pi\)
0.987859 0.155351i \(-0.0496509\pi\)
\(492\) 0 0
\(493\) −9.63565 13.2623i −0.433968 0.597306i
\(494\) 0 0
\(495\) 2.14943 28.6016i 0.0966098 1.28555i
\(496\) 0 0
\(497\) 3.09571 + 4.26088i 0.138862 + 0.191127i
\(498\) 0 0
\(499\) 1.43750 4.42417i 0.0643513 0.198053i −0.913711 0.406364i \(-0.866797\pi\)
0.978063 + 0.208311i \(0.0667966\pi\)
\(500\) 0 0
\(501\) 19.4346 + 14.1200i 0.868272 + 0.630836i
\(502\) 0 0
\(503\) −12.3611 + 4.01636i −0.551154 + 0.179081i −0.571337 0.820716i \(-0.693575\pi\)
0.0201833 + 0.999796i \(0.493575\pi\)
\(504\) 0 0
\(505\) −4.48232 + 33.6828i −0.199460 + 1.49887i
\(506\) 0 0
\(507\) 19.5928i 0.870147i
\(508\) 0 0
\(509\) −9.12976 28.0985i −0.404669 1.24544i −0.921171 0.389158i \(-0.872766\pi\)
0.516501 0.856286i \(-0.327234\pi\)
\(510\) 0 0
\(511\) 1.12169 + 0.814952i 0.0496205 + 0.0360514i
\(512\) 0 0
\(513\) 7.08662 + 2.30258i 0.312882 + 0.101661i
\(514\) 0 0
\(515\) −19.1681 + 10.3728i −0.844649 + 0.457080i
\(516\) 0 0
\(517\) 13.3638 5.20558i 0.587740 0.228941i
\(518\) 0 0
\(519\) −8.71293 + 6.33032i −0.382455 + 0.277870i
\(520\) 0 0
\(521\) −9.71896 + 29.9119i −0.425796 + 1.31046i 0.476435 + 0.879210i \(0.341929\pi\)
−0.902230 + 0.431254i \(0.858071\pi\)
\(522\) 0 0
\(523\) 5.30194 7.29750i 0.231838 0.319097i −0.677210 0.735790i \(-0.736811\pi\)
0.909047 + 0.416693i \(0.136811\pi\)
\(524\) 0 0
\(525\) 0.626999 + 12.6396i 0.0273645 + 0.551638i
\(526\) 0 0
\(527\) 1.39595i 0.0608088i
\(528\) 0 0
\(529\) 11.6672 0.507269
\(530\) 0 0
\(531\) 12.1010 + 37.2431i 0.525140 + 1.61621i
\(532\) 0 0
\(533\) 15.3885 21.1805i 0.666552 0.917430i
\(534\) 0 0
\(535\) 7.37793 15.4127i 0.318976 0.666349i
\(536\) 0 0
\(537\) −25.1016 34.5494i −1.08321 1.49092i
\(538\) 0 0
\(539\) −16.9300 10.8763i −0.729227 0.468473i
\(540\) 0 0
\(541\) 6.91720 5.02564i 0.297394 0.216069i −0.429075 0.903269i \(-0.641160\pi\)
0.726468 + 0.687200i \(0.241160\pi\)
\(542\) 0 0
\(543\) 13.8247 + 4.49192i 0.593275 + 0.192767i
\(544\) 0 0
\(545\) 15.1924 15.9647i 0.650770 0.683852i
\(546\) 0 0
\(547\) −32.2693 + 10.4849i −1.37974 + 0.448304i −0.902583 0.430516i \(-0.858332\pi\)
−0.477154 + 0.878820i \(0.658332\pi\)
\(548\) 0 0
\(549\) 9.55608 0.407844
\(550\) 0 0
\(551\) −16.1028 −0.686002
\(552\) 0 0
\(553\) 0.922187 0.299637i 0.0392154 0.0127418i
\(554\) 0 0
\(555\) 25.6010 26.9025i 1.08670 1.14195i
\(556\) 0 0
\(557\) −21.8178 7.08904i −0.924451 0.300372i −0.192160 0.981364i \(-0.561549\pi\)
−0.732291 + 0.680991i \(0.761549\pi\)
\(558\) 0 0
\(559\) −8.28110 + 6.01657i −0.350253 + 0.254474i
\(560\) 0 0
\(561\) −7.36788 + 28.0494i −0.311072 + 1.18425i
\(562\) 0 0
\(563\) −5.45619 7.50980i −0.229951 0.316500i 0.678413 0.734681i \(-0.262668\pi\)
−0.908364 + 0.418180i \(0.862668\pi\)
\(564\) 0 0
\(565\) 4.84532 10.1220i 0.203844 0.425836i
\(566\) 0 0
\(567\) 3.20457 4.41071i 0.134579 0.185232i
\(568\) 0 0
\(569\) −9.55701 29.4135i −0.400651 1.23308i −0.924473 0.381248i \(-0.875494\pi\)
0.523822 0.851828i \(-0.324506\pi\)
\(570\) 0 0
\(571\) 2.63736 0.110370 0.0551851 0.998476i \(-0.482425\pi\)
0.0551851 + 0.998476i \(0.482425\pi\)
\(572\) 0 0
\(573\) 57.1712i 2.38836i
\(574\) 0 0
\(575\) −16.8115 + 0.833947i −0.701086 + 0.0347780i
\(576\) 0 0
\(577\) −21.5309 + 29.6347i −0.896342 + 1.23371i 0.0752785 + 0.997163i \(0.476015\pi\)
−0.971620 + 0.236546i \(0.923985\pi\)
\(578\) 0 0
\(579\) −18.2036 + 56.0249i −0.756516 + 2.32832i
\(580\) 0 0
\(581\) −5.77854 + 4.19835i −0.239734 + 0.174177i
\(582\) 0 0
\(583\) −5.58719 6.83051i −0.231398 0.282891i
\(584\) 0 0
\(585\) −34.4169 + 18.6247i −1.42297 + 0.770035i
\(586\) 0 0
\(587\) −13.0793 4.24973i −0.539842 0.175405i 0.0263892 0.999652i \(-0.491599\pi\)
−0.566231 + 0.824246i \(0.691599\pi\)
\(588\) 0 0
\(589\) −1.10935 0.805989i −0.0457099 0.0332102i
\(590\) 0 0
\(591\) −20.8508 64.1723i −0.857689 2.63970i
\(592\) 0 0
\(593\) 20.1550i 0.827668i −0.910352 0.413834i \(-0.864189\pi\)
0.910352 0.413834i \(-0.135811\pi\)
\(594\) 0 0
\(595\) 0.950563 7.14310i 0.0389693 0.292839i
\(596\) 0 0
\(597\) 42.2878 13.7401i 1.73072 0.562346i
\(598\) 0 0
\(599\) −3.49753 2.54110i −0.142905 0.103827i 0.514036 0.857769i \(-0.328150\pi\)
−0.656941 + 0.753942i \(0.728150\pi\)
\(600\) 0 0
\(601\) 11.1214 34.2281i 0.453650 1.39619i −0.419063 0.907957i \(-0.637641\pi\)
0.872713 0.488234i \(-0.162359\pi\)
\(602\) 0 0
\(603\) 21.8247 + 30.0391i 0.888771 + 1.22329i
\(604\) 0 0
\(605\) 14.8080 19.6399i 0.602030 0.798473i
\(606\) 0 0
\(607\) 23.3056 + 32.0774i 0.945945 + 1.30198i 0.953305 + 0.302009i \(0.0976572\pi\)
−0.00736018 + 0.999973i \(0.502343\pi\)
\(608\) 0 0
\(609\) 3.84261 11.8263i 0.155710 0.479227i
\(610\) 0 0
\(611\) −15.8305 11.5015i −0.640434 0.465303i
\(612\) 0 0
\(613\) −3.62818 + 1.17887i −0.146541 + 0.0476139i −0.381369 0.924423i \(-0.624547\pi\)
0.234828 + 0.972037i \(0.424547\pi\)
\(614\) 0 0
\(615\) 33.6066 + 4.47217i 1.35515 + 0.180335i
\(616\) 0 0
\(617\) 28.4055i 1.14356i 0.820407 + 0.571781i \(0.193747\pi\)
−0.820407 + 0.571781i \(0.806253\pi\)
\(618\) 0 0
\(619\) 7.43830 + 22.8927i 0.298971 + 0.920137i 0.981859 + 0.189614i \(0.0607236\pi\)
−0.682888 + 0.730523i \(0.739276\pi\)
\(620\) 0 0
\(621\) −6.19162 4.49848i −0.248461 0.180518i
\(622\) 0 0
\(623\) −11.2031 3.64010i −0.448841 0.145837i
\(624\) 0 0
\(625\) −24.8773 + 2.47421i −0.995091 + 0.0989682i
\(626\) 0 0
\(627\) 18.0365 + 22.0502i 0.720308 + 0.880599i
\(628\) 0 0
\(629\) −17.1078 + 12.4296i −0.682135 + 0.495600i
\(630\) 0 0
\(631\) −5.90889 + 18.1857i −0.235229 + 0.723961i 0.761862 + 0.647740i \(0.224286\pi\)
−0.997091 + 0.0762213i \(0.975714\pi\)
\(632\) 0 0
\(633\) −8.97463 + 12.3525i −0.356710 + 0.490969i
\(634\) 0 0
\(635\) 2.86749 + 15.5932i 0.113793 + 0.618796i
\(636\) 0 0
\(637\) 27.4546i 1.08779i
\(638\) 0 0
\(639\) −21.0900 −0.834307
\(640\) 0 0
\(641\) 3.70172 + 11.3927i 0.146209 + 0.449985i 0.997165 0.0752526i \(-0.0239763\pi\)
−0.850955 + 0.525238i \(0.823976\pi\)
\(642\) 0 0
\(643\) 15.1301 20.8248i 0.596672 0.821248i −0.398727 0.917070i \(-0.630548\pi\)
0.995399 + 0.0958216i \(0.0305478\pi\)
\(644\) 0 0
\(645\) −11.9560 5.72324i −0.470767 0.225352i
\(646\) 0 0
\(647\) −5.46774 7.52570i −0.214959 0.295866i 0.687897 0.725808i \(-0.258534\pi\)
−0.902856 + 0.429942i \(0.858534\pi\)
\(648\) 0 0
\(649\) −8.53167 + 32.4800i −0.334897 + 1.27495i
\(650\) 0 0
\(651\) 0.856664 0.622403i 0.0335753 0.0243939i
\(652\) 0 0
\(653\) −35.6177 11.5729i −1.39383 0.452882i −0.486637 0.873604i \(-0.661777\pi\)
−0.907189 + 0.420723i \(0.861777\pi\)
\(654\) 0 0
\(655\) −11.1249 + 11.6904i −0.434685 + 0.456782i
\(656\) 0 0
\(657\) −5.28025 + 1.71566i −0.206002 + 0.0669342i
\(658\) 0 0
\(659\) −4.93753 −0.192339 −0.0961693 0.995365i \(-0.530659\pi\)
−0.0961693 + 0.995365i \(0.530659\pi\)
\(660\) 0 0
\(661\) −4.82155 −0.187537 −0.0937683 0.995594i \(-0.529891\pi\)
−0.0937683 + 0.995594i \(0.529891\pi\)
\(662\) 0 0
\(663\) 37.6313 12.2272i 1.46148 0.474864i
\(664\) 0 0
\(665\) −5.12770 4.87964i −0.198844 0.189224i
\(666\) 0 0
\(667\) 15.7297 + 5.11091i 0.609058 + 0.197895i
\(668\) 0 0
\(669\) −40.3292 + 29.3009i −1.55922 + 1.13284i
\(670\) 0 0
\(671\) 6.89474 + 4.42935i 0.266168 + 0.170993i
\(672\) 0 0
\(673\) −19.3464 26.6280i −0.745749 1.02644i −0.998267 0.0588431i \(-0.981259\pi\)
0.252518 0.967592i \(-0.418741\pi\)
\(674\) 0 0
\(675\) −9.51587 6.21756i −0.366266 0.239314i
\(676\) 0 0
\(677\) −10.0761 + 13.8686i −0.387258 + 0.533014i −0.957489 0.288470i \(-0.906854\pi\)
0.570231 + 0.821484i \(0.306854\pi\)
\(678\) 0 0
\(679\) −0.901110 2.77333i −0.0345814 0.106431i
\(680\) 0 0
\(681\) −74.5977 −2.85859
\(682\) 0 0
\(683\) 19.3586i 0.740737i −0.928885 0.370368i \(-0.879231\pi\)
0.928885 0.370368i \(-0.120769\pi\)
\(684\) 0 0
\(685\) −3.43383 18.6729i −0.131200 0.713454i
\(686\) 0 0
\(687\) −39.1115 + 53.8324i −1.49220 + 2.05383i
\(688\) 0 0
\(689\) −3.72054 + 11.4506i −0.141741 + 0.436234i
\(690\) 0 0
\(691\) −7.39559 + 5.37321i −0.281342 + 0.204407i −0.719502 0.694490i \(-0.755630\pi\)
0.438161 + 0.898897i \(0.355630\pi\)
\(692\) 0 0
\(693\) −11.5438 + 4.49665i −0.438514 + 0.170814i
\(694\) 0 0
\(695\) −8.23717 15.2217i −0.312454 0.577391i
\(696\) 0 0
\(697\) −18.3600 5.96554i −0.695436 0.225961i
\(698\) 0 0
\(699\) 26.5383 + 19.2812i 1.00377 + 0.729281i
\(700\) 0 0
\(701\) −4.72594 14.5450i −0.178496 0.549355i 0.821279 0.570526i \(-0.193261\pi\)
−0.999776 + 0.0211707i \(0.993261\pi\)
\(702\) 0 0
\(703\) 20.7719i 0.783428i
\(704\) 0 0
\(705\) 3.34254 25.1179i 0.125887 0.945994i
\(706\) 0 0
\(707\) 13.9585 4.53539i 0.524964 0.170571i
\(708\) 0 0
\(709\) 34.7172 + 25.2235i 1.30383 + 0.947290i 0.999985 0.00543044i \(-0.00172857\pi\)
0.303848 + 0.952721i \(0.401729\pi\)
\(710\) 0 0
\(711\) −1.19986 + 3.69278i −0.0449982 + 0.138490i
\(712\) 0 0
\(713\) 0.827834 + 1.13942i 0.0310026 + 0.0426714i
\(714\) 0 0
\(715\) −33.4646 2.51489i −1.25151 0.0940516i
\(716\) 0 0
\(717\) 31.4039 + 43.2238i 1.17280 + 1.61422i
\(718\) 0 0
\(719\) 1.48738 4.57768i 0.0554699 0.170719i −0.919483 0.393129i \(-0.871393\pi\)
0.974953 + 0.222411i \(0.0713925\pi\)
\(720\) 0 0
\(721\) 7.61592 + 5.53329i 0.283632 + 0.206071i
\(722\) 0 0
\(723\) −56.8090 + 18.4584i −2.11275 + 0.686473i
\(724\) 0 0
\(725\) 23.7101 + 6.42417i 0.880571 + 0.238588i
\(726\) 0 0
\(727\) 21.8922i 0.811937i 0.913887 + 0.405969i \(0.133066\pi\)
−0.913887 + 0.405969i \(0.866934\pi\)
\(728\) 0 0
\(729\) 12.2694 + 37.7614i 0.454423 + 1.39857i
\(730\) 0 0
\(731\) 6.10627 + 4.43647i 0.225849 + 0.164089i
\(732\) 0 0
\(733\) 45.6788 + 14.8419i 1.68718 + 0.548199i 0.986284 0.165060i \(-0.0527817\pi\)
0.700901 + 0.713259i \(0.252782\pi\)
\(734\) 0 0
\(735\) −31.2680 + 16.9206i −1.15334 + 0.624125i
\(736\) 0 0
\(737\) 1.82312 + 31.7893i 0.0671554 + 1.17097i
\(738\) 0 0
\(739\) 27.5934 20.0478i 1.01504 0.737470i 0.0497805 0.998760i \(-0.484148\pi\)
0.965260 + 0.261290i \(0.0841478\pi\)
\(740\) 0 0
\(741\) 12.0106 36.9648i 0.441220 1.35794i
\(742\) 0 0
\(743\) −15.5411 + 21.3906i −0.570149 + 0.784743i −0.992572 0.121656i \(-0.961180\pi\)
0.422423 + 0.906399i \(0.361180\pi\)
\(744\) 0 0
\(745\) −37.1296 + 6.82792i −1.36032 + 0.250156i
\(746\) 0 0
\(747\) 28.6019i 1.04649i
\(748\) 0 0
\(749\) −7.38062 −0.269682
\(750\) 0 0
\(751\) −14.1963 43.6918i −0.518032 1.59434i −0.777697 0.628639i \(-0.783612\pi\)
0.259666 0.965699i \(-0.416388\pi\)
\(752\) 0 0
\(753\) 26.1132 35.9417i 0.951617 1.30979i
\(754\) 0 0
\(755\) 24.7728 + 11.8585i 0.901575 + 0.431577i
\(756\) 0 0
\(757\) 18.1365 + 24.9628i 0.659183 + 0.907288i 0.999454 0.0330398i \(-0.0105188\pi\)
−0.340271 + 0.940327i \(0.610519\pi\)
\(758\) 0 0
\(759\) −10.6201 27.2640i −0.385485 0.989620i
\(760\) 0 0
\(761\) 11.4860 8.34507i 0.416367 0.302508i −0.359807 0.933027i \(-0.617158\pi\)
0.776175 + 0.630518i \(0.217158\pi\)
\(762\) 0 0
\(763\) −9.05303 2.94151i −0.327742 0.106490i
\(764\) 0 0
\(765\) 20.9035 + 19.8923i 0.755767 + 0.719206i
\(766\) 0 0
\(767\) 43.5754 14.1585i 1.57342 0.511234i
\(768\) 0 0
\(769\) 30.0208 1.08258 0.541290 0.840836i \(-0.317936\pi\)
0.541290 + 0.840836i \(0.317936\pi\)
\(770\) 0 0
\(771\) 12.4107 0.446961
\(772\) 0 0
\(773\) −28.9401 + 9.40320i −1.04090 + 0.338209i −0.779092 0.626910i \(-0.784319\pi\)
−0.261810 + 0.965119i \(0.584319\pi\)
\(774\) 0 0
\(775\) 1.31188 + 1.62933i 0.0471241 + 0.0585271i
\(776\) 0 0
\(777\) −15.2555 4.95680i −0.547287 0.177824i
\(778\) 0 0
\(779\) −15.3414 + 11.1461i −0.549661 + 0.399352i
\(780\) 0 0
\(781\) −15.2165 9.77544i −0.544488 0.349793i
\(782\) 0 0
\(783\) 6.56512 + 9.03612i 0.234618 + 0.322925i
\(784\) 0 0
\(785\) −4.06436 + 8.49055i −0.145063 + 0.303041i
\(786\) 0 0
\(787\) −17.9067 + 24.6465i −0.638306 + 0.878553i −0.998524 0.0543151i \(-0.982702\pi\)
0.360218 + 0.932868i \(0.382702\pi\)
\(788\) 0 0
\(789\) −14.6605 45.1205i −0.521929 1.60633i
\(790\) 0 0
\(791\) −4.84709 −0.172343
\(792\) 0 0
\(793\) 11.1809i 0.397044i
\(794\) 0 0
\(795\) −15.3341 + 2.81985i −0.543845 + 0.100010i
\(796\) 0 0
\(797\) −19.4235 + 26.7341i −0.688014 + 0.946970i −0.999995 0.00311796i \(-0.999008\pi\)
0.311981 + 0.950088i \(0.399008\pi\)
\(798\) 0 0
\(799\) −4.45870 + 13.7225i −0.157737 + 0.485466i
\(800\) 0 0
\(801\) 38.1613 27.7258i 1.34836 0.979642i
\(802\) 0 0
\(803\) −4.60494 1.20960i −0.162505 0.0426859i
\(804\) 0 0
\(805\) 3.46015 + 6.39409i 0.121954 + 0.225362i
\(806\) 0 0
\(807\) −5.72743 1.86095i −0.201615 0.0655087i
\(808\) 0 0
\(809\) 8.89072 + 6.45948i 0.312581 + 0.227103i 0.733003 0.680225i \(-0.238118\pi\)
−0.420422 + 0.907329i \(0.638118\pi\)
\(810\) 0 0
\(811\) −12.5951 38.7638i −0.442275 1.36118i −0.885445 0.464744i \(-0.846146\pi\)
0.443171 0.896437i \(-0.353854\pi\)
\(812\) 0 0
\(813\) 2.11138i 0.0740494i
\(814\) 0 0
\(815\) 36.7358 + 4.88858i 1.28680 + 0.171240i
\(816\) 0 0
\(817\) 7.05121 2.29108i 0.246691 0.0801547i
\(818\) 0 0
\(819\) 13.6746 + 9.93519i 0.477830 + 0.347164i
\(820\) 0 0
\(821\) 4.66851 14.3682i 0.162932 0.501454i −0.835946 0.548812i \(-0.815080\pi\)
0.998878 + 0.0473584i \(0.0150803\pi\)
\(822\) 0 0
\(823\) −21.4138 29.4735i −0.746437 1.02738i −0.998222 0.0595989i \(-0.981018\pi\)
0.251786 0.967783i \(-0.418982\pi\)
\(824\) 0 0
\(825\) −17.7604 39.6627i −0.618339 1.38088i
\(826\) 0 0
\(827\) 2.23560 + 3.07703i 0.0777393 + 0.106999i 0.846116 0.532999i \(-0.178935\pi\)
−0.768376 + 0.639998i \(0.778935\pi\)
\(828\) 0 0
\(829\) 8.43810 25.9698i 0.293067 0.901969i −0.690796 0.723049i \(-0.742740\pi\)
0.983864 0.178919i \(-0.0572601\pi\)
\(830\) 0 0
\(831\) 25.0870 + 18.2268i 0.870259 + 0.632280i
\(832\) 0 0
\(833\) 19.2535 6.25584i 0.667094 0.216752i
\(834\) 0 0
\(835\) 20.3184 + 2.70386i 0.703148 + 0.0935710i
\(836\) 0 0
\(837\) 0.951115i 0.0328754i
\(838\) 0 0
\(839\) 8.75291 + 26.9387i 0.302184 + 0.930026i 0.980713 + 0.195453i \(0.0626177\pi\)
−0.678529 + 0.734573i \(0.737382\pi\)
\(840\) 0 0
\(841\) 3.93381 + 2.85808i 0.135649 + 0.0985546i
\(842\) 0 0
\(843\) −15.5255 5.04453i −0.534725 0.173743i
\(844\) 0 0
\(845\) 7.95655 + 14.7031i 0.273714 + 0.505802i
\(846\) 0 0
\(847\) −10.4132 2.10635i −0.357800 0.0723750i
\(848\) 0 0
\(849\) 18.3297 13.3173i 0.629073 0.457048i
\(850\) 0 0
\(851\) 6.59285 20.2907i 0.226000 0.695556i
\(852\) 0 0
\(853\) −4.90400 + 6.74977i −0.167910 + 0.231108i −0.884677 0.466205i \(-0.845621\pi\)
0.716767 + 0.697313i \(0.245621\pi\)
\(854\) 0 0
\(855\) 27.8773 5.12646i 0.953382 0.175321i
\(856\) 0 0
\(857\) 8.59547i 0.293616i −0.989165 0.146808i \(-0.953100\pi\)
0.989165 0.146808i \(-0.0468999\pi\)
\(858\) 0 0
\(859\) 9.40807 0.320999 0.160500 0.987036i \(-0.448689\pi\)
0.160500 + 0.987036i \(0.448689\pi\)
\(860\) 0 0
\(861\) −4.52513 13.9269i −0.154216 0.474628i
\(862\) 0 0
\(863\) −6.06951 + 8.35396i −0.206608 + 0.284372i −0.899728 0.436450i \(-0.856236\pi\)
0.693120 + 0.720822i \(0.256236\pi\)
\(864\) 0 0
\(865\) −3.96777 + 8.28877i −0.134908 + 0.281827i
\(866\) 0 0
\(867\) 9.03644 + 12.4376i 0.306893 + 0.422403i
\(868\) 0 0
\(869\) −2.57734 + 2.10820i −0.0874304 + 0.0715159i
\(870\) 0 0
\(871\) 35.1466 25.5355i 1.19090 0.865237i
\(872\) 0 0
\(873\) 11.1055 + 3.60838i 0.375863 + 0.122125i
\(874\) 0 0
\(875\) 5.60342 + 9.23057i 0.189430 + 0.312050i
\(876\) 0 0
\(877\) −28.3445 + 9.20969i −0.957126 + 0.310989i −0.745608 0.666385i \(-0.767841\pi\)
−0.211518 + 0.977374i \(0.567841\pi\)
\(878\) 0 0
\(879\) −15.2269 −0.513591
\(880\) 0 0
\(881\) 30.1175 1.01469 0.507343 0.861744i \(-0.330628\pi\)
0.507343 + 0.861744i \(0.330628\pi\)
\(882\) 0 0
\(883\) −47.8970 + 15.5627i −1.61186 + 0.523726i −0.970002 0.243096i \(-0.921837\pi\)
−0.641860 + 0.766822i \(0.721837\pi\)
\(884\) 0 0
\(885\) 42.9811 + 40.9019i 1.44480 + 1.37490i
\(886\) 0 0
\(887\) −39.3789 12.7950i −1.32221 0.429613i −0.438959 0.898507i \(-0.644653\pi\)
−0.883255 + 0.468893i \(0.844653\pi\)
\(888\) 0 0
\(889\) 5.54021 4.02520i 0.185813 0.135001i
\(890\) 0 0
\(891\) −4.75642 + 18.1076i −0.159346 + 0.606628i
\(892\) 0 0
\(893\) 8.33074 + 11.4663i 0.278777 + 0.383704i
\(894\) 0 0
\(895\) −32.8674 15.7334i −1.09864 0.525909i
\(896\) 0 0
\(897\) −23.4647 + 32.2964i −0.783464 + 1.07835i
\(898\) 0 0
\(899\) −0.635162 1.95483i −0.0211838 0.0651971i
\(900\) 0 0
\(901\) 8.87793 0.295767
\(902\) 0 0
\(903\) 5.72532i 0.190527i
\(904\) 0 0
\(905\) 12.1987 2.24327i 0.405498 0.0745687i
\(906\) 0 0
\(907\) 2.72271 3.74749i 0.0904062 0.124433i −0.761418 0.648261i \(-0.775496\pi\)
0.851824 + 0.523828i \(0.175496\pi\)
\(908\) 0 0
\(909\) −18.1614 + 55.8951i −0.602376 + 1.85392i
\(910\) 0 0
\(911\) 5.64577 4.10189i 0.187053 0.135902i −0.490318 0.871544i \(-0.663119\pi\)
0.677371 + 0.735642i \(0.263119\pi\)
\(912\) 0 0
\(913\) 13.2573 20.6363i 0.438752 0.682963i
\(914\) 0 0
\(915\) 12.7339 6.89090i 0.420968 0.227806i
\(916\) 0 0
\(917\) 6.62923 + 2.15397i 0.218916 + 0.0711303i
\(918\) 0 0
\(919\) 18.9477 + 13.7663i 0.625027 + 0.454109i 0.854674 0.519165i \(-0.173757\pi\)
−0.229647 + 0.973274i \(0.573757\pi\)
\(920\) 0 0
\(921\) −14.9589 46.0387i −0.492912 1.51703i
\(922\) 0 0
\(923\) 24.6758i 0.812215i
\(924\) 0 0
\(925\) 8.28691 30.5850i 0.272472 1.00563i
\(926\) 0 0
\(927\) −35.8514 + 11.6488i −1.17751 + 0.382597i
\(928\) 0 0
\(929\) −14.6355 10.6333i −0.480175 0.348868i 0.321218 0.947005i \(-0.395908\pi\)
−0.801394 + 0.598137i \(0.795908\pi\)
\(930\) 0 0
\(931\) 6.14504 18.9125i 0.201395 0.619831i
\(932\) 0 0
\(933\) 17.4542 + 24.0237i 0.571426 + 0.786500i
\(934\) 0 0
\(935\) 5.86164 + 24.0413i 0.191696 + 0.786235i
\(936\) 0 0
\(937\) −6.47128 8.90696i −0.211408 0.290978i 0.690124 0.723691i \(-0.257556\pi\)
−0.901531 + 0.432714i \(0.857556\pi\)
\(938\) 0 0
\(939\) 4.14216 12.7483i 0.135174 0.416023i
\(940\) 0 0
\(941\) −27.3293 19.8559i −0.890908 0.647283i 0.0452063 0.998978i \(-0.485605\pi\)
−0.936115 + 0.351695i \(0.885605\pi\)
\(942\) 0 0
\(943\) 18.5237 6.01870i 0.603213 0.195996i
\(944\) 0 0
\(945\) −0.647654 + 4.86686i −0.0210682 + 0.158319i
\(946\) 0 0
\(947\) 46.9853i 1.52682i 0.645915 + 0.763409i \(0.276476\pi\)
−0.645915 + 0.763409i \(0.723524\pi\)
\(948\) 0 0
\(949\) 2.00736 + 6.17803i 0.0651618 + 0.200547i
\(950\) 0 0
\(951\) −25.0454 18.1966i −0.812154 0.590064i
\(952\) 0 0
\(953\) −40.4110 13.1303i −1.30904 0.425333i −0.430323 0.902675i \(-0.641600\pi\)
−0.878718 + 0.477341i \(0.841600\pi\)
\(954\) 0 0
\(955\) 23.2170 + 42.9032i 0.751284 + 1.38832i
\(956\) 0 0
\(957\) 2.44491 + 42.6314i 0.0790328 + 1.37808i
\(958\) 0 0
\(959\) −6.63443 + 4.82019i −0.214237 + 0.155652i
\(960\) 0 0
\(961\) −9.52544 + 29.3163i −0.307272 + 0.945687i
\(962\) 0 0
\(963\) 17.3719 23.9103i 0.559800 0.770499i
\(964\) 0 0
\(965\) 9.09089 + 49.4354i 0.292646 + 1.59138i
\(966\) 0 0
\(967\) 54.1642i 1.74180i −0.491458 0.870901i \(-0.663536\pi\)
0.491458 0.870901i \(-0.336464\pi\)
\(968\) 0 0
\(969\) −28.6596 −0.920680
\(970\) 0 0
\(971\) −1.61878 4.98209i −0.0519491 0.159883i 0.921716 0.387865i \(-0.126787\pi\)
−0.973665 + 0.227982i \(0.926787\pi\)
\(972\) 0 0
\(973\) −4.39406 + 6.04791i −0.140867 + 0.193887i
\(974\) 0 0
\(975\) −32.4317 + 49.6362i −1.03864 + 1.58963i
\(976\) 0 0
\(977\) 4.57381 + 6.29530i 0.146329 + 0.201405i 0.875890 0.482512i \(-0.160275\pi\)
−0.729561 + 0.683916i \(0.760275\pi\)
\(978\) 0 0
\(979\) 40.3846 2.31606i 1.29070 0.0740216i
\(980\) 0 0
\(981\) 30.8376 22.4048i 0.984567 0.715330i
\(982\) 0 0
\(983\) 48.9924 + 15.9186i 1.56261 + 0.507724i 0.957504 0.288419i \(-0.0931295\pi\)
0.605109 + 0.796143i \(0.293129\pi\)
\(984\) 0 0
\(985\) −41.7073 39.6896i −1.32890 1.26462i
\(986\) 0 0
\(987\) −10.4091 + 3.38213i −0.331326 + 0.107654i
\(988\) 0 0
\(989\) −7.61503 −0.242144
\(990\) 0 0
\(991\) 22.3382 0.709596 0.354798 0.934943i \(-0.384550\pi\)
0.354798 + 0.934943i \(0.384550\pi\)
\(992\) 0 0
\(993\) −72.9487 + 23.7025i −2.31496 + 0.752175i
\(994\) 0 0
\(995\) 26.1544 27.4840i 0.829150 0.871300i
\(996\) 0 0
\(997\) 0.175514 + 0.0570278i 0.00555857 + 0.00180609i 0.311795 0.950149i \(-0.399070\pi\)
−0.306236 + 0.951955i \(0.599070\pi\)
\(998\) 0 0
\(999\) 11.6562 8.46873i 0.368786 0.267939i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cd.c.289.4 16
4.3 odd 2 55.2.j.a.14.4 yes 16
5.4 even 2 inner 880.2.cd.c.289.1 16
11.4 even 5 inner 880.2.cd.c.609.1 16
12.11 even 2 495.2.ba.a.289.1 16
20.3 even 4 275.2.h.d.201.4 16
20.7 even 4 275.2.h.d.201.1 16
20.19 odd 2 55.2.j.a.14.1 yes 16
44.3 odd 10 605.2.j.h.269.4 16
44.7 even 10 605.2.j.d.444.4 16
44.15 odd 10 55.2.j.a.4.1 16
44.19 even 10 605.2.j.g.269.1 16
44.27 odd 10 605.2.j.h.9.1 16
44.31 odd 10 605.2.b.g.364.1 8
44.35 even 10 605.2.b.f.364.8 8
44.39 even 10 605.2.j.g.9.4 16
44.43 even 2 605.2.j.d.124.1 16
55.4 even 10 inner 880.2.cd.c.609.4 16
60.59 even 2 495.2.ba.a.289.4 16
132.59 even 10 495.2.ba.a.334.4 16
220.19 even 10 605.2.j.g.269.4 16
220.39 even 10 605.2.j.g.9.1 16
220.59 odd 10 55.2.j.a.4.4 yes 16
220.79 even 10 605.2.b.f.364.1 8
220.103 even 20 275.2.h.d.26.4 16
220.119 odd 10 605.2.b.g.364.8 8
220.123 odd 20 3025.2.a.bk.1.8 8
220.139 even 10 605.2.j.d.444.1 16
220.147 even 20 275.2.h.d.26.1 16
220.159 odd 10 605.2.j.h.9.4 16
220.163 even 20 3025.2.a.bl.1.1 8
220.167 odd 20 3025.2.a.bk.1.1 8
220.179 odd 10 605.2.j.h.269.1 16
220.207 even 20 3025.2.a.bl.1.8 8
220.219 even 2 605.2.j.d.124.4 16
660.59 even 10 495.2.ba.a.334.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.j.a.4.1 16 44.15 odd 10
55.2.j.a.4.4 yes 16 220.59 odd 10
55.2.j.a.14.1 yes 16 20.19 odd 2
55.2.j.a.14.4 yes 16 4.3 odd 2
275.2.h.d.26.1 16 220.147 even 20
275.2.h.d.26.4 16 220.103 even 20
275.2.h.d.201.1 16 20.7 even 4
275.2.h.d.201.4 16 20.3 even 4
495.2.ba.a.289.1 16 12.11 even 2
495.2.ba.a.289.4 16 60.59 even 2
495.2.ba.a.334.1 16 660.59 even 10
495.2.ba.a.334.4 16 132.59 even 10
605.2.b.f.364.1 8 220.79 even 10
605.2.b.f.364.8 8 44.35 even 10
605.2.b.g.364.1 8 44.31 odd 10
605.2.b.g.364.8 8 220.119 odd 10
605.2.j.d.124.1 16 44.43 even 2
605.2.j.d.124.4 16 220.219 even 2
605.2.j.d.444.1 16 220.139 even 10
605.2.j.d.444.4 16 44.7 even 10
605.2.j.g.9.1 16 220.39 even 10
605.2.j.g.9.4 16 44.39 even 10
605.2.j.g.269.1 16 44.19 even 10
605.2.j.g.269.4 16 220.19 even 10
605.2.j.h.9.1 16 44.27 odd 10
605.2.j.h.9.4 16 220.159 odd 10
605.2.j.h.269.1 16 220.179 odd 10
605.2.j.h.269.4 16 44.3 odd 10
880.2.cd.c.289.1 16 5.4 even 2 inner
880.2.cd.c.289.4 16 1.1 even 1 trivial
880.2.cd.c.609.1 16 11.4 even 5 inner
880.2.cd.c.609.4 16 55.4 even 10 inner
3025.2.a.bk.1.1 8 220.167 odd 20
3025.2.a.bk.1.8 8 220.123 odd 20
3025.2.a.bl.1.1 8 220.163 even 20
3025.2.a.bl.1.8 8 220.207 even 20