Properties

Label 495.2.ba.a.289.4
Level $495$
Weight $2$
Character 495.289
Analytic conductor $3.953$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,2,Mod(64,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.64"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.ba (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{14} + 25x^{12} - 57x^{10} + 194x^{8} - 303x^{6} + 235x^{4} - 33x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 289.4
Root \(-1.92464 + 0.625353i\) of defining polynomial
Character \(\chi\) \(=\) 495.289
Dual form 495.2.ba.a.334.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.18949 + 1.63719i) q^{2} +(-0.647481 + 1.99274i) q^{4} +(1.06421 - 1.96658i) q^{5} +(-0.918552 - 0.298456i) q^{7} +(-0.183406 + 0.0595923i) q^{8} +(4.48555 - 0.596911i) q^{10} +(3.31118 - 0.189896i) q^{11} +(2.65978 + 3.66088i) q^{13} +(-0.603980 - 1.85886i) q^{14} +(3.07453 + 2.23378i) q^{16} +(-1.96126 + 2.69944i) q^{17} +(-1.01283 - 3.11717i) q^{19} +(3.22984 + 3.39403i) q^{20} +(4.24952 + 5.19517i) q^{22} +3.36643i q^{23} +(-2.73490 - 4.18573i) q^{25} +(-2.82978 + 8.70916i) q^{26} +(1.18949 - 1.63719i) q^{28} +(1.51820 - 4.67254i) q^{29} +(0.338464 - 0.245909i) q^{31} +8.07636i q^{32} -6.75241 q^{34} +(-1.56447 + 1.48879i) q^{35} +(-6.02737 - 1.95841i) q^{37} +(3.89867 - 5.36605i) q^{38} +(-0.0779900 + 0.424103i) q^{40} +(-1.78786 - 5.50247i) q^{41} -2.26205i q^{43} +(-1.76552 + 6.72129i) q^{44} +(-5.51149 + 4.00433i) q^{46} +(-4.11260 + 1.33626i) q^{47} +(-4.90846 - 3.56620i) q^{49} +(3.59970 - 9.45645i) q^{50} +(-9.01735 + 2.92991i) q^{52} +(-1.56392 - 2.15255i) q^{53} +(3.15036 - 6.71381i) q^{55} +0.186254 q^{56} +(9.45574 - 3.07235i) q^{58} +(-3.12889 + 9.62972i) q^{59} +(1.99897 + 1.45233i) q^{61} +(0.805201 + 0.261626i) q^{62} +(-7.07350 + 5.13920i) q^{64} +(10.0300 - 1.33473i) q^{65} +9.60059i q^{67} +(-4.10941 - 5.65612i) q^{68} +(-4.29836 - 0.790444i) q^{70} +(-4.41166 - 3.20526i) q^{71} +(1.36528 + 0.443607i) q^{73} +(-3.96321 - 12.1975i) q^{74} +6.86752 q^{76} +(-3.09817 - 0.813812i) q^{77} +(0.812218 - 0.590111i) q^{79} +(7.66487 - 3.66911i) q^{80} +(6.88197 - 9.47221i) q^{82} +(-4.34692 + 5.98302i) q^{83} +(3.22148 + 6.72976i) q^{85} +(3.70342 - 2.69069i) q^{86} +(-0.595976 + 0.232149i) q^{88} -12.1964 q^{89} +(-1.35054 - 4.15654i) q^{91} +(-6.70842 - 2.17970i) q^{92} +(-7.07962 - 5.14365i) q^{94} +(-7.20805 - 1.32552i) q^{95} +(-1.77467 - 2.44262i) q^{97} -12.2781i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} + 2 q^{5} + 6 q^{11} + 12 q^{14} + 16 q^{16} + 6 q^{19} + 8 q^{20} - 16 q^{25} - 40 q^{26} - 2 q^{29} + 8 q^{31} - 16 q^{34} - 22 q^{35} + 12 q^{40} + 52 q^{41} - 4 q^{44} - 62 q^{46} - 10 q^{49}+ \cdots - 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.18949 + 1.63719i 0.841097 + 1.15767i 0.985755 + 0.168189i \(0.0537920\pi\)
−0.144657 + 0.989482i \(0.546208\pi\)
\(3\) 0 0
\(4\) −0.647481 + 1.99274i −0.323741 + 0.996371i
\(5\) 1.06421 1.96658i 0.475930 0.879483i
\(6\) 0 0
\(7\) −0.918552 0.298456i −0.347180 0.112806i 0.130236 0.991483i \(-0.458427\pi\)
−0.477416 + 0.878677i \(0.658427\pi\)
\(8\) −0.183406 + 0.0595923i −0.0648439 + 0.0210691i
\(9\) 0 0
\(10\) 4.48555 0.596911i 1.41846 0.188760i
\(11\) 3.31118 0.189896i 0.998360 0.0572559i
\(12\) 0 0
\(13\) 2.65978 + 3.66088i 0.737691 + 1.01534i 0.998748 + 0.0500213i \(0.0159289\pi\)
−0.261057 + 0.965323i \(0.584071\pi\)
\(14\) −0.603980 1.85886i −0.161420 0.496801i
\(15\) 0 0
\(16\) 3.07453 + 2.23378i 0.768633 + 0.558445i
\(17\) −1.96126 + 2.69944i −0.475675 + 0.654710i −0.977667 0.210162i \(-0.932601\pi\)
0.501992 + 0.864872i \(0.332601\pi\)
\(18\) 0 0
\(19\) −1.01283 3.11717i −0.232359 0.715129i −0.997461 0.0712189i \(-0.977311\pi\)
0.765101 0.643910i \(-0.222689\pi\)
\(20\) 3.22984 + 3.39403i 0.722214 + 0.758928i
\(21\) 0 0
\(22\) 4.24952 + 5.19517i 0.906001 + 1.10761i
\(23\) 3.36643i 0.701948i 0.936385 + 0.350974i \(0.114149\pi\)
−0.936385 + 0.350974i \(0.885851\pi\)
\(24\) 0 0
\(25\) −2.73490 4.18573i −0.546981 0.837145i
\(26\) −2.82978 + 8.70916i −0.554965 + 1.70801i
\(27\) 0 0
\(28\) 1.18949 1.63719i 0.224793 0.309401i
\(29\) 1.51820 4.67254i 0.281923 0.867668i −0.705382 0.708828i \(-0.749224\pi\)
0.987304 0.158841i \(-0.0507756\pi\)
\(30\) 0 0
\(31\) 0.338464 0.245909i 0.0607900 0.0441665i −0.556975 0.830529i \(-0.688038\pi\)
0.617765 + 0.786363i \(0.288038\pi\)
\(32\) 8.07636i 1.42771i
\(33\) 0 0
\(34\) −6.75241 −1.15803
\(35\) −1.56447 + 1.48879i −0.264444 + 0.251651i
\(36\) 0 0
\(37\) −6.02737 1.95841i −0.990894 0.321961i −0.231673 0.972794i \(-0.574420\pi\)
−0.759221 + 0.650833i \(0.774420\pi\)
\(38\) 3.89867 5.36605i 0.632447 0.870489i
\(39\) 0 0
\(40\) −0.0779900 + 0.424103i −0.0123313 + 0.0670565i
\(41\) −1.78786 5.50247i −0.279217 0.859341i −0.988073 0.153988i \(-0.950788\pi\)
0.708856 0.705353i \(-0.249212\pi\)
\(42\) 0 0
\(43\) 2.26205i 0.344960i −0.985013 0.172480i \(-0.944822\pi\)
0.985013 0.172480i \(-0.0551780\pi\)
\(44\) −1.76552 + 6.72129i −0.266161 + 1.01327i
\(45\) 0 0
\(46\) −5.51149 + 4.00433i −0.812625 + 0.590407i
\(47\) −4.11260 + 1.33626i −0.599884 + 0.194914i −0.593189 0.805063i \(-0.702131\pi\)
−0.00669531 + 0.999978i \(0.502131\pi\)
\(48\) 0 0
\(49\) −4.90846 3.56620i −0.701208 0.509457i
\(50\) 3.59970 9.45645i 0.509075 1.33734i
\(51\) 0 0
\(52\) −9.01735 + 2.92991i −1.25048 + 0.406306i
\(53\) −1.56392 2.15255i −0.214821 0.295676i 0.687984 0.725726i \(-0.258496\pi\)
−0.902805 + 0.430050i \(0.858496\pi\)
\(54\) 0 0
\(55\) 3.15036 6.71381i 0.424794 0.905290i
\(56\) 0.186254 0.0248892
\(57\) 0 0
\(58\) 9.45574 3.07235i 1.24160 0.403420i
\(59\) −3.12889 + 9.62972i −0.407346 + 1.25368i 0.511574 + 0.859239i \(0.329063\pi\)
−0.918920 + 0.394444i \(0.870937\pi\)
\(60\) 0 0
\(61\) 1.99897 + 1.45233i 0.255941 + 0.185952i 0.708356 0.705856i \(-0.249437\pi\)
−0.452414 + 0.891808i \(0.649437\pi\)
\(62\) 0.805201 + 0.261626i 0.102261 + 0.0332265i
\(63\) 0 0
\(64\) −7.07350 + 5.13920i −0.884187 + 0.642400i
\(65\) 10.0300 1.33473i 1.24407 0.165553i
\(66\) 0 0
\(67\) 9.60059i 1.17290i 0.809986 + 0.586449i \(0.199475\pi\)
−0.809986 + 0.586449i \(0.800525\pi\)
\(68\) −4.10941 5.65612i −0.498339 0.685905i
\(69\) 0 0
\(70\) −4.29836 0.790444i −0.513753 0.0944761i
\(71\) −4.41166 3.20526i −0.523567 0.380394i 0.294379 0.955689i \(-0.404887\pi\)
−0.817946 + 0.575295i \(0.804887\pi\)
\(72\) 0 0
\(73\) 1.36528 + 0.443607i 0.159794 + 0.0519203i 0.387822 0.921734i \(-0.373228\pi\)
−0.228028 + 0.973655i \(0.573228\pi\)
\(74\) −3.96321 12.1975i −0.460713 1.41793i
\(75\) 0 0
\(76\) 6.86752 0.787758
\(77\) −3.09817 0.813812i −0.353069 0.0927425i
\(78\) 0 0
\(79\) 0.812218 0.590111i 0.0913817 0.0663927i −0.541156 0.840922i \(-0.682013\pi\)
0.632538 + 0.774529i \(0.282013\pi\)
\(80\) 7.66487 3.66911i 0.856958 0.410219i
\(81\) 0 0
\(82\) 6.88197 9.47221i 0.759986 1.04603i
\(83\) −4.34692 + 5.98302i −0.477136 + 0.656721i −0.977951 0.208833i \(-0.933034\pi\)
0.500815 + 0.865554i \(0.333034\pi\)
\(84\) 0 0
\(85\) 3.22148 + 6.72976i 0.349418 + 0.729944i
\(86\) 3.70342 2.69069i 0.399350 0.290145i
\(87\) 0 0
\(88\) −0.595976 + 0.232149i −0.0635312 + 0.0247472i
\(89\) −12.1964 −1.29282 −0.646410 0.762991i \(-0.723730\pi\)
−0.646410 + 0.762991i \(0.723730\pi\)
\(90\) 0 0
\(91\) −1.35054 4.15654i −0.141575 0.435723i
\(92\) −6.70842 2.17970i −0.699401 0.227249i
\(93\) 0 0
\(94\) −7.07962 5.14365i −0.730207 0.530527i
\(95\) −7.20805 1.32552i −0.739531 0.135995i
\(96\) 0 0
\(97\) −1.77467 2.44262i −0.180190 0.248010i 0.709362 0.704844i \(-0.248983\pi\)
−0.889552 + 0.456834i \(0.848983\pi\)
\(98\) 12.2781i 1.24027i
\(99\) 0 0
\(100\) 10.1119 2.73978i 1.01119 0.273978i
\(101\) 12.2940 8.93210i 1.22330 0.888777i 0.226928 0.973912i \(-0.427132\pi\)
0.996369 + 0.0851342i \(0.0271319\pi\)
\(102\) 0 0
\(103\) −9.26987 3.01196i −0.913387 0.296778i −0.185636 0.982619i \(-0.559435\pi\)
−0.727751 + 0.685841i \(0.759435\pi\)
\(104\) −0.705981 0.512925i −0.0692272 0.0502965i
\(105\) 0 0
\(106\) 1.66387 5.12088i 0.161610 0.497384i
\(107\) −7.26778 + 2.36144i −0.702602 + 0.228289i −0.638464 0.769652i \(-0.720430\pi\)
−0.0641384 + 0.997941i \(0.520430\pi\)
\(108\) 0 0
\(109\) 9.85576 0.944010 0.472005 0.881596i \(-0.343530\pi\)
0.472005 + 0.881596i \(0.343530\pi\)
\(110\) 14.7391 2.82827i 1.40532 0.269665i
\(111\) 0 0
\(112\) −2.15743 2.96945i −0.203858 0.280587i
\(113\) 4.77298 1.55084i 0.449004 0.145890i −0.0757819 0.997124i \(-0.524145\pi\)
0.524786 + 0.851234i \(0.324145\pi\)
\(114\) 0 0
\(115\) 6.62036 + 3.58259i 0.617352 + 0.334078i
\(116\) 8.32816 + 6.05076i 0.773250 + 0.561799i
\(117\) 0 0
\(118\) −19.4875 + 6.33188i −1.79397 + 0.582896i
\(119\) 2.60718 1.89423i 0.239000 0.173644i
\(120\) 0 0
\(121\) 10.9279 1.25756i 0.993444 0.114324i
\(122\) 5.00023i 0.452700i
\(123\) 0 0
\(124\) 0.270884 + 0.833694i 0.0243261 + 0.0748679i
\(125\) −11.1421 + 0.923914i −0.996580 + 0.0826374i
\(126\) 0 0
\(127\) −4.16764 + 5.73626i −0.369818 + 0.509011i −0.952851 0.303438i \(-0.901866\pi\)
0.583033 + 0.812448i \(0.301866\pi\)
\(128\) −1.46559 0.476198i −0.129541 0.0420903i
\(129\) 0 0
\(130\) 14.1158 + 14.8334i 1.23804 + 1.30097i
\(131\) −7.21704 −0.630556 −0.315278 0.948999i \(-0.602098\pi\)
−0.315278 + 0.948999i \(0.602098\pi\)
\(132\) 0 0
\(133\) 3.16557i 0.274490i
\(134\) −15.7180 + 11.4198i −1.35783 + 0.986521i
\(135\) 0 0
\(136\) 0.198841 0.611970i 0.0170505 0.0524760i
\(137\) 4.99076 6.86920i 0.426390 0.586875i −0.540730 0.841196i \(-0.681852\pi\)
0.967120 + 0.254321i \(0.0818520\pi\)
\(138\) 0 0
\(139\) −2.39184 + 7.36133i −0.202873 + 0.624380i 0.796921 + 0.604084i \(0.206461\pi\)
−0.999794 + 0.0202958i \(0.993539\pi\)
\(140\) −1.95381 4.08156i −0.165127 0.344954i
\(141\) 0 0
\(142\) 11.0354i 0.926067i
\(143\) 9.50222 + 11.6168i 0.794615 + 0.971442i
\(144\) 0 0
\(145\) −7.57325 7.95824i −0.628924 0.660896i
\(146\) 0.897720 + 2.76290i 0.0742958 + 0.228659i
\(147\) 0 0
\(148\) 7.80522 10.7430i 0.641585 0.883067i
\(149\) 13.6589 + 9.92376i 1.11898 + 0.812986i 0.984054 0.177870i \(-0.0569206\pi\)
0.134925 + 0.990856i \(0.456921\pi\)
\(150\) 0 0
\(151\) −3.79555 11.6815i −0.308877 0.950626i −0.978202 0.207656i \(-0.933416\pi\)
0.669325 0.742970i \(-0.266584\pi\)
\(152\) 0.371519 + 0.511353i 0.0301342 + 0.0414762i
\(153\) 0 0
\(154\) −2.35288 6.04033i −0.189600 0.486744i
\(155\) −0.123402 0.927318i −0.00991190 0.0744840i
\(156\) 0 0
\(157\) 4.00368 1.30087i 0.319528 0.103821i −0.144862 0.989452i \(-0.546274\pi\)
0.464390 + 0.885631i \(0.346274\pi\)
\(158\) 1.93225 + 0.627827i 0.153722 + 0.0499472i
\(159\) 0 0
\(160\) 15.8828 + 8.59496i 1.25565 + 0.679491i
\(161\) 1.00473 3.09224i 0.0791837 0.243702i
\(162\) 0 0
\(163\) 9.74169 + 13.4083i 0.763028 + 1.05022i 0.996956 + 0.0779643i \(0.0248420\pi\)
−0.233928 + 0.972254i \(0.575158\pi\)
\(164\) 12.1226 0.946617
\(165\) 0 0
\(166\) −14.9660 −1.16159
\(167\) −5.38810 7.41608i −0.416944 0.573874i 0.547951 0.836510i \(-0.315408\pi\)
−0.964895 + 0.262637i \(0.915408\pi\)
\(168\) 0 0
\(169\) −2.31036 + 7.11055i −0.177720 + 0.546965i
\(170\) −7.18599 + 13.2792i −0.551141 + 1.01847i
\(171\) 0 0
\(172\) 4.50769 + 1.46464i 0.343708 + 0.111678i
\(173\) −3.90853 + 1.26996i −0.297160 + 0.0965531i −0.453803 0.891102i \(-0.649933\pi\)
0.156643 + 0.987655i \(0.449933\pi\)
\(174\) 0 0
\(175\) 1.26290 + 4.66106i 0.0954661 + 0.352343i
\(176\) 10.6045 + 6.81261i 0.799346 + 0.513520i
\(177\) 0 0
\(178\) −14.5075 19.9679i −1.08739 1.49666i
\(179\) −5.03576 15.4985i −0.376390 1.15841i −0.942536 0.334105i \(-0.891566\pi\)
0.566145 0.824305i \(-0.308434\pi\)
\(180\) 0 0
\(181\) 4.48753 + 3.26038i 0.333555 + 0.242342i 0.741938 0.670469i \(-0.233907\pi\)
−0.408382 + 0.912811i \(0.633907\pi\)
\(182\) 5.19860 7.15526i 0.385346 0.530383i
\(183\) 0 0
\(184\) −0.200613 0.617424i −0.0147894 0.0455171i
\(185\) −10.2658 + 9.76917i −0.754756 + 0.718243i
\(186\) 0 0
\(187\) −5.98147 + 9.31078i −0.437408 + 0.680871i
\(188\) 9.06056i 0.660809i
\(189\) 0 0
\(190\) −6.40378 13.3777i −0.464579 0.970518i
\(191\) −6.74155 + 20.7484i −0.487802 + 1.50130i 0.340080 + 0.940396i \(0.389546\pi\)
−0.827882 + 0.560903i \(0.810454\pi\)
\(192\) 0 0
\(193\) 13.2128 18.1858i 0.951076 1.30904i 2.83481e−5 1.00000i \(-0.499991\pi\)
0.951048 0.309044i \(-0.100009\pi\)
\(194\) 1.88809 5.81094i 0.135557 0.417201i
\(195\) 0 0
\(196\) 10.2847 7.47224i 0.734619 0.533732i
\(197\) 25.7479i 1.83446i −0.398358 0.917230i \(-0.630420\pi\)
0.398358 0.917230i \(-0.369580\pi\)
\(198\) 0 0
\(199\) −16.9671 −1.20277 −0.601385 0.798960i \(-0.705384\pi\)
−0.601385 + 0.798960i \(0.705384\pi\)
\(200\) 0.751036 + 0.604709i 0.0531063 + 0.0427594i
\(201\) 0 0
\(202\) 29.2472 + 9.50298i 2.05782 + 0.668627i
\(203\) −2.78909 + 3.83886i −0.195756 + 0.269435i
\(204\) 0 0
\(205\) −12.7237 2.33982i −0.888664 0.163420i
\(206\) −6.09526 18.7593i −0.424677 1.30702i
\(207\) 0 0
\(208\) 17.1969i 1.19239i
\(209\) −3.94561 10.1292i −0.272924 0.700652i
\(210\) 0 0
\(211\) 4.71363 3.42465i 0.324500 0.235763i −0.413593 0.910462i \(-0.635726\pi\)
0.738093 + 0.674699i \(0.235726\pi\)
\(212\) 5.30209 1.72275i 0.364149 0.118319i
\(213\) 0 0
\(214\) −12.5111 9.08984i −0.855241 0.621369i
\(215\) −4.44852 2.40730i −0.303386 0.164177i
\(216\) 0 0
\(217\) −0.384290 + 0.124863i −0.0260873 + 0.00847628i
\(218\) 11.7233 + 16.1358i 0.794005 + 1.09285i
\(219\) 0 0
\(220\) 11.3391 + 10.6249i 0.764482 + 0.716332i
\(221\) −15.0988 −1.01566
\(222\) 0 0
\(223\) −18.0913 + 5.87820i −1.21148 + 0.393634i −0.843972 0.536387i \(-0.819789\pi\)
−0.367508 + 0.930020i \(0.619789\pi\)
\(224\) 2.41043 7.41856i 0.161054 0.495673i
\(225\) 0 0
\(226\) 8.21644 + 5.96959i 0.546549 + 0.397091i
\(227\) 27.0727 + 8.79646i 1.79688 + 0.583841i 0.999799 0.0200332i \(-0.00637719\pi\)
0.797079 + 0.603874i \(0.206377\pi\)
\(228\) 0 0
\(229\) −20.5420 + 14.9247i −1.35746 + 0.986250i −0.358854 + 0.933394i \(0.616832\pi\)
−0.998602 + 0.0528558i \(0.983168\pi\)
\(230\) 2.00946 + 15.1003i 0.132500 + 0.995682i
\(231\) 0 0
\(232\) 0.947446i 0.0622029i
\(233\) 7.35755 + 10.1268i 0.482009 + 0.663429i 0.978890 0.204390i \(-0.0655211\pi\)
−0.496880 + 0.867819i \(0.665521\pi\)
\(234\) 0 0
\(235\) −1.74880 + 9.50984i −0.114079 + 0.620353i
\(236\) −17.1637 12.4701i −1.11726 0.811737i
\(237\) 0 0
\(238\) 6.20244 + 2.01529i 0.402044 + 0.130632i
\(239\) 6.30011 + 19.3897i 0.407520 + 1.25422i 0.918773 + 0.394787i \(0.129182\pi\)
−0.511252 + 0.859431i \(0.670818\pi\)
\(240\) 0 0
\(241\) −22.7935 −1.46826 −0.734129 0.679010i \(-0.762409\pi\)
−0.734129 + 0.679010i \(0.762409\pi\)
\(242\) 15.0575 + 16.3952i 0.967932 + 1.05392i
\(243\) 0 0
\(244\) −4.18842 + 3.04307i −0.268136 + 0.194812i
\(245\) −12.2369 + 5.85769i −0.781785 + 0.374234i
\(246\) 0 0
\(247\) 8.71768 11.9989i 0.554693 0.763469i
\(248\) −0.0474222 + 0.0652711i −0.00301132 + 0.00414472i
\(249\) 0 0
\(250\) −14.7661 17.1428i −0.933887 1.08421i
\(251\) 13.7151 9.96460i 0.865689 0.628960i −0.0637374 0.997967i \(-0.520302\pi\)
0.929427 + 0.369007i \(0.120302\pi\)
\(252\) 0 0
\(253\) 0.639272 + 11.1469i 0.0401907 + 0.700797i
\(254\) −14.3487 −0.900320
\(255\) 0 0
\(256\) 4.44000 + 13.6649i 0.277500 + 0.854057i
\(257\) 4.50405 + 1.46346i 0.280955 + 0.0912879i 0.446105 0.894981i \(-0.352811\pi\)
−0.165150 + 0.986268i \(0.552811\pi\)
\(258\) 0 0
\(259\) 4.95196 + 3.59781i 0.307700 + 0.223557i
\(260\) −3.83445 + 20.8514i −0.237803 + 1.29315i
\(261\) 0 0
\(262\) −8.58461 11.8157i −0.530359 0.729976i
\(263\) 18.1037i 1.11632i 0.829732 + 0.558162i \(0.188493\pi\)
−0.829732 + 0.558162i \(0.811507\pi\)
\(264\) 0 0
\(265\) −5.89751 + 0.784807i −0.362281 + 0.0482103i
\(266\) −5.18266 + 3.76542i −0.317769 + 0.230873i
\(267\) 0 0
\(268\) −19.1315 6.21620i −1.16864 0.379715i
\(269\) 1.85914 + 1.35074i 0.113354 + 0.0823562i 0.643018 0.765851i \(-0.277682\pi\)
−0.529664 + 0.848207i \(0.677682\pi\)
\(270\) 0 0
\(271\) 0.248971 0.766255i 0.0151239 0.0465467i −0.943210 0.332198i \(-0.892210\pi\)
0.958334 + 0.285651i \(0.0922098\pi\)
\(272\) −12.0599 + 3.91850i −0.731239 + 0.237594i
\(273\) 0 0
\(274\) 17.1827 1.03804
\(275\) −9.85062 13.3404i −0.594015 0.804454i
\(276\) 0 0
\(277\) −6.95521 9.57302i −0.417898 0.575187i 0.547225 0.836986i \(-0.315684\pi\)
−0.965122 + 0.261799i \(0.915684\pi\)
\(278\) −14.8970 + 4.84033i −0.893462 + 0.290304i
\(279\) 0 0
\(280\) 0.198214 0.366284i 0.0118455 0.0218897i
\(281\) 5.03960 + 3.66148i 0.300637 + 0.218426i 0.727869 0.685717i \(-0.240511\pi\)
−0.427231 + 0.904142i \(0.640511\pi\)
\(282\) 0 0
\(283\) 8.22250 2.67165i 0.488777 0.158813i −0.0542519 0.998527i \(-0.517277\pi\)
0.543029 + 0.839714i \(0.317277\pi\)
\(284\) 9.24372 6.71596i 0.548514 0.398519i
\(285\) 0 0
\(286\) −7.71608 + 29.3750i −0.456261 + 1.73698i
\(287\) 5.58790i 0.329843i
\(288\) 0 0
\(289\) 1.81285 + 5.57937i 0.106638 + 0.328198i
\(290\) 4.02087 21.8651i 0.236114 1.28397i
\(291\) 0 0
\(292\) −1.76799 + 2.43343i −0.103464 + 0.142406i
\(293\) −5.52610 1.79554i −0.322838 0.104896i 0.143115 0.989706i \(-0.454288\pi\)
−0.465953 + 0.884810i \(0.654288\pi\)
\(294\) 0 0
\(295\) 15.6079 + 16.4013i 0.908725 + 0.954920i
\(296\) 1.22216 0.0710369
\(297\) 0 0
\(298\) 34.1665i 1.97921i
\(299\) −12.3241 + 8.95396i −0.712719 + 0.517821i
\(300\) 0 0
\(301\) −0.675123 + 2.07781i −0.0389134 + 0.119763i
\(302\) 14.6101 20.1091i 0.840717 1.15715i
\(303\) 0 0
\(304\) 3.84909 11.8463i 0.220761 0.679432i
\(305\) 4.98346 2.38554i 0.285352 0.136596i
\(306\) 0 0
\(307\) 18.4721i 1.05426i −0.849785 0.527130i \(-0.823268\pi\)
0.849785 0.527130i \(-0.176732\pi\)
\(308\) 3.62773 5.64693i 0.206709 0.321764i
\(309\) 0 0
\(310\) 1.37141 1.30507i 0.0778911 0.0741230i
\(311\) 3.50158 + 10.7768i 0.198557 + 0.611094i 0.999917 + 0.0129120i \(0.00411014\pi\)
−0.801360 + 0.598182i \(0.795890\pi\)
\(312\) 0 0
\(313\) −3.00651 + 4.13811i −0.169938 + 0.233900i −0.885488 0.464661i \(-0.846176\pi\)
0.715550 + 0.698561i \(0.246176\pi\)
\(314\) 6.89212 + 5.00742i 0.388945 + 0.282585i
\(315\) 0 0
\(316\) 0.650043 + 2.00063i 0.0365678 + 0.112544i
\(317\) −6.94368 9.55715i −0.389996 0.536783i 0.568202 0.822889i \(-0.307639\pi\)
−0.958198 + 0.286106i \(0.907639\pi\)
\(318\) 0 0
\(319\) 4.13974 15.7599i 0.231781 0.882387i
\(320\) 2.57896 + 19.3798i 0.144168 + 1.08337i
\(321\) 0 0
\(322\) 6.25771 2.03325i 0.348729 0.113309i
\(323\) 10.4010 + 3.37951i 0.578730 + 0.188041i
\(324\) 0 0
\(325\) 8.04918 21.1453i 0.446488 1.17293i
\(326\) −10.3643 + 31.8981i −0.574026 + 1.76667i
\(327\) 0 0
\(328\) 0.655810 + 0.902645i 0.0362110 + 0.0498402i
\(329\) 4.17645 0.230255
\(330\) 0 0
\(331\) 29.2692 1.60878 0.804391 0.594100i \(-0.202492\pi\)
0.804391 + 0.594100i \(0.202492\pi\)
\(332\) −9.10807 12.5362i −0.499870 0.688012i
\(333\) 0 0
\(334\) 5.73247 17.6427i 0.313667 0.965367i
\(335\) 18.8804 + 10.2171i 1.03154 + 0.558218i
\(336\) 0 0
\(337\) 25.3400 + 8.23348i 1.38036 + 0.448506i 0.902788 0.430087i \(-0.141517\pi\)
0.477572 + 0.878593i \(0.341517\pi\)
\(338\) −14.3895 + 4.67543i −0.782685 + 0.254310i
\(339\) 0 0
\(340\) −15.4965 + 2.06219i −0.840417 + 0.111838i
\(341\) 1.07402 0.878523i 0.0581615 0.0475747i
\(342\) 0 0
\(343\) 7.41820 + 10.2103i 0.400545 + 0.551303i
\(344\) 0.134801 + 0.414875i 0.00726798 + 0.0223686i
\(345\) 0 0
\(346\) −6.72833 4.88842i −0.361717 0.262803i
\(347\) 2.53411 3.48790i 0.136038 0.187240i −0.735563 0.677457i \(-0.763082\pi\)
0.871601 + 0.490216i \(0.163082\pi\)
\(348\) 0 0
\(349\) 4.06960 + 12.5249i 0.217841 + 0.670444i 0.998940 + 0.0460373i \(0.0146593\pi\)
−0.781099 + 0.624407i \(0.785341\pi\)
\(350\) −6.12885 + 7.61189i −0.327601 + 0.406873i
\(351\) 0 0
\(352\) 1.53367 + 26.7423i 0.0817449 + 1.42537i
\(353\) 25.4904i 1.35672i −0.734732 0.678358i \(-0.762692\pi\)
0.734732 0.678358i \(-0.237308\pi\)
\(354\) 0 0
\(355\) −10.9983 + 5.26482i −0.583732 + 0.279428i
\(356\) 7.89696 24.3044i 0.418538 1.28813i
\(357\) 0 0
\(358\) 19.3840 26.6798i 1.02448 1.41007i
\(359\) 8.11915 24.9882i 0.428512 1.31883i −0.471078 0.882091i \(-0.656135\pi\)
0.899591 0.436734i \(-0.143865\pi\)
\(360\) 0 0
\(361\) 6.68037 4.85358i 0.351599 0.255451i
\(362\) 11.2252i 0.589981i
\(363\) 0 0
\(364\) 9.15736 0.479976
\(365\) 2.32534 2.21285i 0.121714 0.115826i
\(366\) 0 0
\(367\) −1.91993 0.623823i −0.100220 0.0325633i 0.258478 0.966017i \(-0.416779\pi\)
−0.358698 + 0.933454i \(0.616779\pi\)
\(368\) −7.51985 + 10.3502i −0.391999 + 0.539541i
\(369\) 0 0
\(370\) −28.2051 5.18675i −1.46631 0.269646i
\(371\) 0.794101 + 2.44399i 0.0412277 + 0.126886i
\(372\) 0 0
\(373\) 8.87153i 0.459351i −0.973267 0.229675i \(-0.926234\pi\)
0.973267 0.229675i \(-0.0737664\pi\)
\(374\) −22.3585 + 1.28226i −1.15613 + 0.0663040i
\(375\) 0 0
\(376\) 0.674645 0.490159i 0.0347922 0.0252780i
\(377\) 21.1437 6.86999i 1.08895 0.353823i
\(378\) 0 0
\(379\) 17.0412 + 12.3812i 0.875348 + 0.635978i 0.932017 0.362415i \(-0.118048\pi\)
−0.0566685 + 0.998393i \(0.518048\pi\)
\(380\) 7.30850 13.5055i 0.374918 0.692820i
\(381\) 0 0
\(382\) −41.9881 + 13.6428i −2.14830 + 0.698025i
\(383\) 15.2704 + 21.0179i 0.780281 + 1.07396i 0.995251 + 0.0973436i \(0.0310346\pi\)
−0.214970 + 0.976621i \(0.568965\pi\)
\(384\) 0 0
\(385\) −4.89754 + 5.22674i −0.249602 + 0.266380i
\(386\) 45.4902 2.31539
\(387\) 0 0
\(388\) 6.01657 1.95490i 0.305445 0.0992451i
\(389\) −0.507965 + 1.56335i −0.0257548 + 0.0792652i −0.963108 0.269116i \(-0.913269\pi\)
0.937353 + 0.348381i \(0.113269\pi\)
\(390\) 0 0
\(391\) −9.08746 6.60243i −0.459573 0.333899i
\(392\) 1.11276 + 0.361558i 0.0562029 + 0.0182614i
\(393\) 0 0
\(394\) 42.1543 30.6269i 2.12370 1.54296i
\(395\) −0.296130 2.22530i −0.0148999 0.111967i
\(396\) 0 0
\(397\) 16.7088i 0.838588i −0.907850 0.419294i \(-0.862278\pi\)
0.907850 0.419294i \(-0.137722\pi\)
\(398\) −20.1823 27.7785i −1.01165 1.39241i
\(399\) 0 0
\(400\) 0.941436 18.9783i 0.0470718 0.948916i
\(401\) 22.4842 + 16.3357i 1.12281 + 0.815766i 0.984632 0.174641i \(-0.0558766\pi\)
0.138174 + 0.990408i \(0.455877\pi\)
\(402\) 0 0
\(403\) 1.80048 + 0.585013i 0.0896885 + 0.0291416i
\(404\) 9.83926 + 30.2821i 0.489521 + 1.50659i
\(405\) 0 0
\(406\) −9.60255 −0.476567
\(407\) −20.3296 5.34009i −1.00770 0.264698i
\(408\) 0 0
\(409\) 31.9019 23.1781i 1.57745 1.14608i 0.657902 0.753104i \(-0.271444\pi\)
0.919547 0.392980i \(-0.128556\pi\)
\(410\) −11.3040 23.6144i −0.558266 1.16623i
\(411\) 0 0
\(412\) 12.0041 16.5223i 0.591401 0.813994i
\(413\) 5.74809 7.91157i 0.282845 0.389303i
\(414\) 0 0
\(415\) 7.14006 + 14.9158i 0.350492 + 0.732187i
\(416\) −29.5665 + 21.4814i −1.44962 + 1.05321i
\(417\) 0 0
\(418\) 11.8902 18.5083i 0.581569 0.905272i
\(419\) 14.7812 0.722111 0.361055 0.932544i \(-0.382417\pi\)
0.361055 + 0.932544i \(0.382417\pi\)
\(420\) 0 0
\(421\) −3.33036 10.2498i −0.162312 0.499545i 0.836516 0.547942i \(-0.184589\pi\)
−0.998828 + 0.0483974i \(0.984589\pi\)
\(422\) 11.2136 + 3.64354i 0.545872 + 0.177365i
\(423\) 0 0
\(424\) 0.415108 + 0.301594i 0.0201594 + 0.0146467i
\(425\) 16.6630 + 0.826581i 0.808273 + 0.0400951i
\(426\) 0 0
\(427\) −1.40270 1.93065i −0.0678813 0.0934306i
\(428\) 16.0118i 0.773960i
\(429\) 0 0
\(430\) −1.35025 10.1466i −0.0651146 0.489310i
\(431\) 26.0435 18.9217i 1.25447 0.911428i 0.256000 0.966677i \(-0.417595\pi\)
0.998473 + 0.0552489i \(0.0175952\pi\)
\(432\) 0 0
\(433\) 0.363904 + 0.118240i 0.0174881 + 0.00568223i 0.317748 0.948175i \(-0.397073\pi\)
−0.300260 + 0.953857i \(0.597073\pi\)
\(434\) −0.661536 0.480634i −0.0317547 0.0230712i
\(435\) 0 0
\(436\) −6.38142 + 19.6400i −0.305615 + 0.940585i
\(437\) 10.4937 3.40962i 0.501983 0.163104i
\(438\) 0 0
\(439\) −26.5331 −1.26635 −0.633177 0.774007i \(-0.718249\pi\)
−0.633177 + 0.774007i \(0.718249\pi\)
\(440\) −0.177704 + 1.41909i −0.00847169 + 0.0676526i
\(441\) 0 0
\(442\) −17.9599 24.7197i −0.854267 1.17580i
\(443\) −13.7913 + 4.48106i −0.655243 + 0.212901i −0.617725 0.786395i \(-0.711945\pi\)
−0.0375185 + 0.999296i \(0.511945\pi\)
\(444\) 0 0
\(445\) −12.9796 + 23.9853i −0.615292 + 1.13701i
\(446\) −31.1432 22.6268i −1.47467 1.07141i
\(447\) 0 0
\(448\) 8.03120 2.60950i 0.379439 0.123287i
\(449\) −8.18240 + 5.94486i −0.386151 + 0.280555i −0.763876 0.645362i \(-0.776706\pi\)
0.377725 + 0.925918i \(0.376706\pi\)
\(450\) 0 0
\(451\) −6.96483 17.8802i −0.327961 0.841945i
\(452\) 10.5155i 0.494606i
\(453\) 0 0
\(454\) 17.8012 + 54.7866i 0.835454 + 2.57126i
\(455\) −9.61144 1.76749i −0.450591 0.0828610i
\(456\) 0 0
\(457\) −22.9758 + 31.6235i −1.07476 + 1.47928i −0.209602 + 0.977787i \(0.567217\pi\)
−0.865160 + 0.501496i \(0.832783\pi\)
\(458\) −48.8691 15.8785i −2.28351 0.741956i
\(459\) 0 0
\(460\) −11.4257 + 10.8730i −0.532728 + 0.506957i
\(461\) −39.1322 −1.82257 −0.911285 0.411776i \(-0.864908\pi\)
−0.911285 + 0.411776i \(0.864908\pi\)
\(462\) 0 0
\(463\) 12.9189i 0.600392i −0.953878 0.300196i \(-0.902948\pi\)
0.953878 0.300196i \(-0.0970521\pi\)
\(464\) 15.1052 10.9745i 0.701240 0.509481i
\(465\) 0 0
\(466\) −7.82780 + 24.0915i −0.362616 + 1.11602i
\(467\) −6.61206 + 9.10071i −0.305969 + 0.421131i −0.934119 0.356962i \(-0.883813\pi\)
0.628150 + 0.778093i \(0.283813\pi\)
\(468\) 0 0
\(469\) 2.86535 8.81864i 0.132310 0.407207i
\(470\) −17.6496 + 8.44874i −0.814117 + 0.389711i
\(471\) 0 0
\(472\) 1.95261i 0.0898762i
\(473\) −0.429556 7.49007i −0.0197510 0.344394i
\(474\) 0 0
\(475\) −10.2776 + 12.7646i −0.471571 + 0.585680i
\(476\) 2.08661 + 6.42192i 0.0956395 + 0.294348i
\(477\) 0 0
\(478\) −24.2508 + 33.3784i −1.10921 + 1.52669i
\(479\) −16.9621 12.3237i −0.775017 0.563083i 0.128462 0.991714i \(-0.458996\pi\)
−0.903479 + 0.428632i \(0.858996\pi\)
\(480\) 0 0
\(481\) −8.86200 27.2744i −0.404072 1.24361i
\(482\) −27.1126 37.3174i −1.23495 1.69976i
\(483\) 0 0
\(484\) −4.56960 + 22.5907i −0.207709 + 1.02685i
\(485\) −6.69223 + 0.890564i −0.303879 + 0.0404384i
\(486\) 0 0
\(487\) 21.4645 6.97424i 0.972649 0.316033i 0.220764 0.975327i \(-0.429145\pi\)
0.751885 + 0.659294i \(0.229145\pi\)
\(488\) −0.453171 0.147244i −0.0205141 0.00666543i
\(489\) 0 0
\(490\) −24.1458 13.0665i −1.09080 0.590283i
\(491\) 6.20389 19.0936i 0.279977 0.861682i −0.707882 0.706331i \(-0.750349\pi\)
0.987859 0.155351i \(-0.0496509\pi\)
\(492\) 0 0
\(493\) 9.63565 + 13.2623i 0.433968 + 0.597306i
\(494\) 30.0141 1.35040
\(495\) 0 0
\(496\) 1.58993 0.0713898
\(497\) 3.09571 + 4.26088i 0.138862 + 0.191127i
\(498\) 0 0
\(499\) −1.43750 + 4.42417i −0.0643513 + 0.198053i −0.978063 0.208311i \(-0.933203\pi\)
0.913711 + 0.406364i \(0.133203\pi\)
\(500\) 5.37318 22.8016i 0.240296 1.01972i
\(501\) 0 0
\(502\) 32.6280 + 10.6015i 1.45626 + 0.473167i
\(503\) 12.3611 4.01636i 0.551154 0.179081i −0.0201833 0.999796i \(-0.506425\pi\)
0.571337 + 0.820716i \(0.306425\pi\)
\(504\) 0 0
\(505\) −4.48232 33.6828i −0.199460 1.49887i
\(506\) −17.4892 + 14.3057i −0.777488 + 0.635966i
\(507\) 0 0
\(508\) −8.73242 12.0191i −0.387439 0.533263i
\(509\) 9.12976 + 28.0985i 0.404669 + 1.24544i 0.921171 + 0.389158i \(0.127234\pi\)
−0.516501 + 0.856286i \(0.672766\pi\)
\(510\) 0 0
\(511\) −1.12169 0.814952i −0.0496205 0.0360514i
\(512\) −18.9023 + 26.0168i −0.835373 + 1.14979i
\(513\) 0 0
\(514\) 2.96157 + 9.11478i 0.130629 + 0.402036i
\(515\) −15.7884 + 15.0246i −0.695720 + 0.662063i
\(516\) 0 0
\(517\) −13.3638 + 5.20558i −0.587740 + 0.228941i
\(518\) 12.3869i 0.544248i
\(519\) 0 0
\(520\) −1.76003 + 0.842510i −0.0771822 + 0.0369465i
\(521\) 9.71896 29.9119i 0.425796 1.31046i −0.476435 0.879210i \(-0.658071\pi\)
0.902230 0.431254i \(-0.141929\pi\)
\(522\) 0 0
\(523\) 5.30194 7.29750i 0.231838 0.319097i −0.677210 0.735790i \(-0.736811\pi\)
0.909047 + 0.416693i \(0.136811\pi\)
\(524\) 4.67290 14.3817i 0.204137 0.628268i
\(525\) 0 0
\(526\) −29.6393 + 21.5342i −1.29234 + 0.938937i
\(527\) 1.39595i 0.0608088i
\(528\) 0 0
\(529\) 11.6672 0.507269
\(530\) −8.29992 8.72185i −0.360526 0.378853i
\(531\) 0 0
\(532\) −6.30817 2.04965i −0.273494 0.0888636i
\(533\) 15.3885 21.1805i 0.666552 0.917430i
\(534\) 0 0
\(535\) −3.09048 + 16.8058i −0.133613 + 0.726577i
\(536\) −0.572121 1.76081i −0.0247119 0.0760553i
\(537\) 0 0
\(538\) 4.65046i 0.200496i
\(539\) −16.9300 10.8763i −0.729227 0.468473i
\(540\) 0 0
\(541\) 6.91720 5.02564i 0.297394 0.216069i −0.429075 0.903269i \(-0.641160\pi\)
0.726468 + 0.687200i \(0.241160\pi\)
\(542\) 1.55066 0.503839i 0.0666064 0.0216417i
\(543\) 0 0
\(544\) −21.8016 15.8398i −0.934737 0.679126i
\(545\) 10.4886 19.3822i 0.449283 0.830241i
\(546\) 0 0
\(547\) −32.2693 + 10.4849i −1.37974 + 0.448304i −0.902583 0.430516i \(-0.858332\pi\)
−0.477154 + 0.878820i \(0.658332\pi\)
\(548\) 10.4571 + 14.3930i 0.446706 + 0.614838i
\(549\) 0 0
\(550\) 10.1235 31.9956i 0.431669 1.36430i
\(551\) −16.1028 −0.686002
\(552\) 0 0
\(553\) −0.922187 + 0.299637i −0.0392154 + 0.0127418i
\(554\) 7.39974 22.7740i 0.314385 0.967577i
\(555\) 0 0
\(556\) −13.1206 9.53265i −0.556436 0.404274i
\(557\) −21.8178 7.08904i −0.924451 0.300372i −0.192160 0.981364i \(-0.561549\pi\)
−0.732291 + 0.680991i \(0.761549\pi\)
\(558\) 0 0
\(559\) 8.28110 6.01657i 0.350253 0.254474i
\(560\) −8.13565 + 1.08265i −0.343794 + 0.0457501i
\(561\) 0 0
\(562\) 12.6061i 0.531757i
\(563\) 5.45619 + 7.50980i 0.229951 + 0.316500i 0.908364 0.418180i \(-0.137332\pi\)
−0.678413 + 0.734681i \(0.737332\pi\)
\(564\) 0 0
\(565\) 2.02962 11.0369i 0.0853867 0.464325i
\(566\) 14.1546 + 10.2839i 0.594962 + 0.432266i
\(567\) 0 0
\(568\) 1.00013 + 0.324963i 0.0419647 + 0.0136352i
\(569\) 9.55701 + 29.4135i 0.400651 + 1.23308i 0.924473 + 0.381248i \(0.124506\pi\)
−0.523822 + 0.851828i \(0.675494\pi\)
\(570\) 0 0
\(571\) −2.63736 −0.110370 −0.0551851 0.998476i \(-0.517575\pi\)
−0.0551851 + 0.998476i \(0.517575\pi\)
\(572\) −29.3017 + 11.4138i −1.22517 + 0.477237i
\(573\) 0 0
\(574\) −9.14848 + 6.64676i −0.381850 + 0.277430i
\(575\) 14.0909 9.20685i 0.587633 0.383952i
\(576\) 0 0
\(577\) 21.5309 29.6347i 0.896342 1.23371i −0.0752785 0.997163i \(-0.523985\pi\)
0.971620 0.236546i \(-0.0760154\pi\)
\(578\) −6.97814 + 9.60459i −0.290252 + 0.399498i
\(579\) 0 0
\(580\) 20.7623 9.93873i 0.862106 0.412683i
\(581\) 5.77854 4.19835i 0.239734 0.174177i
\(582\) 0 0
\(583\) −5.58719 6.83051i −0.231398 0.282891i
\(584\) −0.276837 −0.0114556
\(585\) 0 0
\(586\) −3.63360 11.1831i −0.150103 0.461968i
\(587\) 13.0793 + 4.24973i 0.539842 + 0.175405i 0.566231 0.824246i \(-0.308401\pi\)
−0.0263892 + 0.999652i \(0.508401\pi\)
\(588\) 0 0
\(589\) −1.10935 0.805989i −0.0457099 0.0332102i
\(590\) −8.28669 + 45.0623i −0.341158 + 1.85518i
\(591\) 0 0
\(592\) −14.1567 19.4850i −0.581837 0.800829i
\(593\) 20.1550i 0.827668i −0.910352 0.413834i \(-0.864189\pi\)
0.910352 0.413834i \(-0.135811\pi\)
\(594\) 0 0
\(595\) −0.950563 7.14310i −0.0389693 0.292839i
\(596\) −28.6194 + 20.7932i −1.17230 + 0.851722i
\(597\) 0 0
\(598\) −29.3187 9.52624i −1.19893 0.389557i
\(599\) −3.49753 2.54110i −0.142905 0.103827i 0.514036 0.857769i \(-0.328150\pi\)
−0.656941 + 0.753942i \(0.728150\pi\)
\(600\) 0 0
\(601\) 11.1214 34.2281i 0.453650 1.39619i −0.419063 0.907957i \(-0.637641\pi\)
0.872713 0.488234i \(-0.162359\pi\)
\(602\) −4.20484 + 1.36623i −0.171376 + 0.0556836i
\(603\) 0 0
\(604\) 25.7358 1.04717
\(605\) 9.15648 22.8289i 0.372264 0.928127i
\(606\) 0 0
\(607\) 23.3056 + 32.0774i 0.945945 + 1.30198i 0.953305 + 0.302009i \(0.0976572\pi\)
−0.00736018 + 0.999973i \(0.502343\pi\)
\(608\) 25.1754 8.17999i 1.02100 0.331742i
\(609\) 0 0
\(610\) 9.83338 + 5.32131i 0.398142 + 0.215454i
\(611\) −15.8305 11.5015i −0.640434 0.465303i
\(612\) 0 0
\(613\) 3.62818 1.17887i 0.146541 0.0476139i −0.234828 0.972037i \(-0.575453\pi\)
0.381369 + 0.924423i \(0.375453\pi\)
\(614\) 30.2424 21.9724i 1.22049 0.886735i
\(615\) 0 0
\(616\) 0.616721 0.0353690i 0.0248484 0.00142506i
\(617\) 28.4055i 1.14356i 0.820407 + 0.571781i \(0.193747\pi\)
−0.820407 + 0.571781i \(0.806253\pi\)
\(618\) 0 0
\(619\) −7.43830 22.8927i −0.298971 0.920137i −0.981859 0.189614i \(-0.939276\pi\)
0.682888 0.730523i \(-0.260724\pi\)
\(620\) 1.92781 + 0.354512i 0.0774226 + 0.0142376i
\(621\) 0 0
\(622\) −13.4786 + 18.5516i −0.540441 + 0.743853i
\(623\) 11.2031 + 3.64010i 0.448841 + 0.145837i
\(624\) 0 0
\(625\) −10.0406 + 22.8951i −0.401624 + 0.915805i
\(626\) −10.3511 −0.413714
\(627\) 0 0
\(628\) 8.82059i 0.351980i
\(629\) 17.1078 12.4296i 0.682135 0.495600i
\(630\) 0 0
\(631\) 5.90889 18.1857i 0.235229 0.723961i −0.761862 0.647740i \(-0.775714\pi\)
0.997091 0.0762213i \(-0.0242855\pi\)
\(632\) −0.113800 + 0.156632i −0.00452672 + 0.00623049i
\(633\) 0 0
\(634\) 7.38747 22.7363i 0.293394 0.902974i
\(635\) 6.84558 + 14.3006i 0.271659 + 0.567502i
\(636\) 0 0
\(637\) 27.4546i 1.08779i
\(638\) 30.7263 11.9687i 1.21646 0.473847i
\(639\) 0 0
\(640\) −2.49618 + 2.37542i −0.0986700 + 0.0938968i
\(641\) −3.70172 11.3927i −0.146209 0.449985i 0.850955 0.525238i \(-0.176024\pi\)
−0.997165 + 0.0752526i \(0.976024\pi\)
\(642\) 0 0
\(643\) 15.1301 20.8248i 0.596672 0.821248i −0.398727 0.917070i \(-0.630548\pi\)
0.995399 + 0.0958216i \(0.0305478\pi\)
\(644\) 5.51149 + 4.00433i 0.217183 + 0.157793i
\(645\) 0 0
\(646\) 6.83905 + 21.0484i 0.269079 + 0.828139i
\(647\) 5.46774 + 7.52570i 0.214959 + 0.295866i 0.902856 0.429942i \(-0.141466\pi\)
−0.687897 + 0.725808i \(0.741466\pi\)
\(648\) 0 0
\(649\) −8.53167 + 32.4800i −0.334897 + 1.27495i
\(650\) 44.1933 11.9740i 1.73341 0.469661i
\(651\) 0 0
\(652\) −33.0268 + 10.7311i −1.29343 + 0.420261i
\(653\) −35.6177 11.5729i −1.39383 0.452882i −0.486637 0.873604i \(-0.661777\pi\)
−0.907189 + 0.420723i \(0.861777\pi\)
\(654\) 0 0
\(655\) −7.68047 + 14.1929i −0.300101 + 0.554563i
\(656\) 6.79446 20.9112i 0.265279 0.816445i
\(657\) 0 0
\(658\) 4.96785 + 6.83766i 0.193667 + 0.266560i
\(659\) −4.93753 −0.192339 −0.0961693 0.995365i \(-0.530659\pi\)
−0.0961693 + 0.995365i \(0.530659\pi\)
\(660\) 0 0
\(661\) −4.82155 −0.187537 −0.0937683 0.995594i \(-0.529891\pi\)
−0.0937683 + 0.995594i \(0.529891\pi\)
\(662\) 34.8155 + 47.9194i 1.35314 + 1.86244i
\(663\) 0 0
\(664\) 0.440710 1.35637i 0.0171029 0.0526372i
\(665\) 6.22536 + 3.36884i 0.241409 + 0.130638i
\(666\) 0 0
\(667\) 15.7297 + 5.11091i 0.609058 + 0.197895i
\(668\) 18.2670 5.93532i 0.706773 0.229645i
\(669\) 0 0
\(670\) 5.73070 + 43.0639i 0.221396 + 1.66370i
\(671\) 6.89474 + 4.42935i 0.266168 + 0.170993i
\(672\) 0 0
\(673\) 19.3464 + 26.6280i 0.745749 + 1.02644i 0.998267 + 0.0588431i \(0.0187412\pi\)
−0.252518 + 0.967592i \(0.581259\pi\)
\(674\) 16.6619 + 51.2802i 0.641794 + 1.97524i
\(675\) 0 0
\(676\) −12.6736 9.20789i −0.487445 0.354150i
\(677\) −10.0761 + 13.8686i −0.387258 + 0.533014i −0.957489 0.288470i \(-0.906854\pi\)
0.570231 + 0.821484i \(0.306854\pi\)
\(678\) 0 0
\(679\) 0.901110 + 2.77333i 0.0345814 + 0.106431i
\(680\) −0.991882 1.04230i −0.0380369 0.0399705i
\(681\) 0 0
\(682\) 2.71585 + 0.713386i 0.103995 + 0.0273170i
\(683\) 19.3586i 0.740737i 0.928885 + 0.370368i \(0.120769\pi\)
−0.928885 + 0.370368i \(0.879231\pi\)
\(684\) 0 0
\(685\) −8.19762 17.1250i −0.313215 0.654314i
\(686\) −7.89232 + 24.2901i −0.301330 + 0.927399i
\(687\) 0 0
\(688\) 5.05292 6.95475i 0.192641 0.265148i
\(689\) 3.72054 11.4506i 0.141741 0.436234i
\(690\) 0 0
\(691\) 7.39559 5.37321i 0.281342 0.204407i −0.438161 0.898897i \(-0.644370\pi\)
0.719502 + 0.694490i \(0.244370\pi\)
\(692\) 8.61097i 0.327340i
\(693\) 0 0
\(694\) 8.72467 0.331184
\(695\) 11.9312 + 12.5378i 0.452578 + 0.475585i
\(696\) 0 0
\(697\) 18.3600 + 5.96554i 0.695436 + 0.225961i
\(698\) −15.6650 + 21.5610i −0.592929 + 0.816096i
\(699\) 0 0
\(700\) −10.1060 0.501317i −0.381971 0.0189480i
\(701\) 4.72594 + 14.5450i 0.178496 + 0.549355i 0.999776 0.0211707i \(-0.00673934\pi\)
−0.821279 + 0.570526i \(0.806739\pi\)
\(702\) 0 0
\(703\) 20.7719i 0.783428i
\(704\) −22.4457 + 18.3601i −0.845956 + 0.691971i
\(705\) 0 0
\(706\) 41.7327 30.3206i 1.57063 1.14113i
\(707\) −13.9585 + 4.53539i −0.524964 + 0.170571i
\(708\) 0 0
\(709\) 34.7172 + 25.2235i 1.30383 + 0.947290i 0.999985 0.00543044i \(-0.00172857\pi\)
0.303848 + 0.952721i \(0.401729\pi\)
\(710\) −21.7020 11.7440i −0.814460 0.440743i
\(711\) 0 0
\(712\) 2.23690 0.726814i 0.0838315 0.0272385i
\(713\) 0.827834 + 1.13942i 0.0310026 + 0.0426714i
\(714\) 0 0
\(715\) 32.9577 6.32421i 1.23255 0.236512i
\(716\) 34.1450 1.27606
\(717\) 0 0
\(718\) 50.5682 16.4306i 1.88719 0.613184i
\(719\) 1.48738 4.57768i 0.0554699 0.170719i −0.919483 0.393129i \(-0.871393\pi\)
0.974953 + 0.222411i \(0.0713925\pi\)
\(720\) 0 0
\(721\) 7.61592 + 5.53329i 0.283632 + 0.206071i
\(722\) 15.8925 + 5.16378i 0.591457 + 0.192176i
\(723\) 0 0
\(724\) −9.40269 + 6.83146i −0.349448 + 0.253889i
\(725\) −23.7101 + 6.42417i −0.880571 + 0.238588i
\(726\) 0 0
\(727\) 21.8922i 0.811937i 0.913887 + 0.405969i \(0.133066\pi\)
−0.913887 + 0.405969i \(0.866934\pi\)
\(728\) 0.495395 + 0.681853i 0.0183606 + 0.0252712i
\(729\) 0 0
\(730\) 6.38884 + 1.17487i 0.236461 + 0.0434839i
\(731\) 6.10627 + 4.43647i 0.225849 + 0.164089i
\(732\) 0 0
\(733\) −45.6788 14.8419i −1.68718 0.548199i −0.700901 0.713259i \(-0.747218\pi\)
−0.986284 + 0.165060i \(0.947218\pi\)
\(734\) −1.26242 3.88533i −0.0465968 0.143410i
\(735\) 0 0
\(736\) −27.1885 −1.00218
\(737\) 1.82312 + 31.7893i 0.0671554 + 1.17097i
\(738\) 0 0
\(739\) −27.5934 + 20.0478i −1.01504 + 0.737470i −0.965260 0.261290i \(-0.915852\pi\)
−0.0497805 + 0.998760i \(0.515852\pi\)
\(740\) −12.8205 26.7824i −0.471292 0.984542i
\(741\) 0 0
\(742\) −3.05671 + 4.20720i −0.112215 + 0.154451i
\(743\) 15.5411 21.3906i 0.570149 0.784743i −0.422423 0.906399i \(-0.638820\pi\)
0.992572 + 0.121656i \(0.0388203\pi\)
\(744\) 0 0
\(745\) 34.0519 16.3003i 1.24756 0.597199i
\(746\) 14.5244 10.5526i 0.531777 0.386359i
\(747\) 0 0
\(748\) −14.6811 17.9481i −0.536794 0.656247i
\(749\) 7.38062 0.269682
\(750\) 0 0
\(751\) 14.1963 + 43.6918i 0.518032 + 1.59434i 0.777697 + 0.628639i \(0.216388\pi\)
−0.259666 + 0.965699i \(0.583612\pi\)
\(752\) −15.6292 5.07825i −0.569939 0.185185i
\(753\) 0 0
\(754\) 36.3977 + 26.4445i 1.32553 + 0.963052i
\(755\) −27.0119 4.96733i −0.983064 0.180780i
\(756\) 0 0
\(757\) −18.1365 24.9628i −0.659183 0.907288i 0.340271 0.940327i \(-0.389481\pi\)
−0.999454 + 0.0330398i \(0.989481\pi\)
\(758\) 42.6271i 1.54828i
\(759\) 0 0
\(760\) 1.40099 0.186436i 0.0508194 0.00676275i
\(761\) −11.4860 + 8.34507i −0.416367 + 0.302508i −0.776175 0.630518i \(-0.782842\pi\)
0.359807 + 0.933027i \(0.382842\pi\)
\(762\) 0 0
\(763\) −9.05303 2.94151i −0.327742 0.106490i
\(764\) −36.9811 26.8684i −1.33793 0.972063i
\(765\) 0 0
\(766\) −16.2464 + 50.0012i −0.587005 + 1.80662i
\(767\) −43.5754 + 14.1585i −1.57342 + 0.511234i
\(768\) 0 0
\(769\) 30.0208 1.08258 0.541290 0.840836i \(-0.317936\pi\)
0.541290 + 0.840836i \(0.317936\pi\)
\(770\) −14.3828 1.80106i −0.518319 0.0649057i
\(771\) 0 0
\(772\) 27.6846 + 38.1046i 0.996392 + 1.37142i
\(773\) −28.9401 + 9.40320i −1.04090 + 0.338209i −0.779092 0.626910i \(-0.784319\pi\)
−0.261810 + 0.965119i \(0.584319\pi\)
\(774\) 0 0
\(775\) −1.95497 0.744183i −0.0702248 0.0267318i
\(776\) 0.471046 + 0.342235i 0.0169096 + 0.0122855i
\(777\) 0 0
\(778\) −3.16373 + 1.02796i −0.113425 + 0.0368541i
\(779\) −15.3414 + 11.1461i −0.549661 + 0.399352i
\(780\) 0 0
\(781\) −15.2165 9.77544i −0.544488 0.349793i
\(782\) 22.7315i 0.812876i
\(783\) 0 0
\(784\) −7.12510 21.9288i −0.254468 0.783172i
\(785\) 1.70249 9.25797i 0.0607643 0.330431i
\(786\) 0 0
\(787\) −17.9067 + 24.6465i −0.638306 + 0.878553i −0.998524 0.0543151i \(-0.982702\pi\)
0.360218 + 0.932868i \(0.382702\pi\)
\(788\) 51.3089 + 16.6713i 1.82780 + 0.593890i
\(789\) 0 0
\(790\) 3.29100 3.13180i 0.117089 0.111424i
\(791\) −4.84709 −0.172343
\(792\) 0 0
\(793\) 11.1809i 0.397044i
\(794\) 27.3555 19.8749i 0.970810 0.705334i
\(795\) 0 0
\(796\) 10.9859 33.8112i 0.389385 1.19840i
\(797\) −19.4235 + 26.7341i −0.688014 + 0.946970i −0.999995 0.00311796i \(-0.999008\pi\)
0.311981 + 0.950088i \(0.399008\pi\)
\(798\) 0 0
\(799\) 4.45870 13.7225i 0.157737 0.485466i
\(800\) 33.8054 22.0881i 1.19520 0.780931i
\(801\) 0 0
\(802\) 56.2421i 1.98598i
\(803\) 4.60494 + 1.20960i 0.162505 + 0.0426859i
\(804\) 0 0
\(805\) −5.01190 5.26668i −0.176646 0.185626i
\(806\) 1.18388 + 3.64361i 0.0417004 + 0.128341i
\(807\) 0 0
\(808\) −1.72251 + 2.37083i −0.0605977 + 0.0834056i
\(809\) −8.89072 6.45948i −0.312581 0.227103i 0.420422 0.907329i \(-0.361882\pi\)
−0.733003 + 0.680225i \(0.761882\pi\)
\(810\) 0 0
\(811\) 12.5951 + 38.7638i 0.442275 + 1.36118i 0.885445 + 0.464744i \(0.153854\pi\)
−0.443171 + 0.896437i \(0.646146\pi\)
\(812\) −5.84397 8.04353i −0.205083 0.282273i
\(813\) 0 0
\(814\) −15.4392 39.6355i −0.541142 1.38923i
\(815\) 36.7358 4.88858i 1.28680 0.171240i
\(816\) 0 0
\(817\) −7.05121 + 2.29108i −0.246691 + 0.0801547i
\(818\) 75.8941 + 24.6595i 2.65358 + 0.862199i
\(819\) 0 0
\(820\) 12.9010 23.8401i 0.450524 0.832534i
\(821\) −4.66851 + 14.3682i −0.162932 + 0.501454i −0.998878 0.0473584i \(-0.984920\pi\)
0.835946 + 0.548812i \(0.184920\pi\)
\(822\) 0 0
\(823\) −21.4138 29.4735i −0.746437 1.02738i −0.998222 0.0595989i \(-0.981018\pi\)
0.251786 0.967783i \(-0.418982\pi\)
\(824\) 1.87964 0.0654805
\(825\) 0 0
\(826\) 19.7901 0.688585
\(827\) −2.23560 3.07703i −0.0777393 0.106999i 0.768376 0.639998i \(-0.221065\pi\)
−0.846116 + 0.532999i \(0.821065\pi\)
\(828\) 0 0
\(829\) 8.43810 25.9698i 0.293067 0.901969i −0.690796 0.723049i \(-0.742740\pi\)
0.983864 0.178919i \(-0.0572601\pi\)
\(830\) −15.9270 + 29.4318i −0.552834 + 1.02159i
\(831\) 0 0
\(832\) −37.6279 12.2261i −1.30451 0.423862i
\(833\) 19.2535 6.25584i 0.667094 0.216752i
\(834\) 0 0
\(835\) −20.3184 + 2.70386i −0.703148 + 0.0935710i
\(836\) 22.7396 1.30412i 0.786466 0.0451038i
\(837\) 0 0
\(838\) 17.5821 + 24.1998i 0.607365 + 0.835967i
\(839\) 8.75291 + 26.9387i 0.302184 + 0.930026i 0.980713 + 0.195453i \(0.0626177\pi\)
−0.678529 + 0.734573i \(0.737382\pi\)
\(840\) 0 0
\(841\) 3.93381 + 2.85808i 0.135649 + 0.0985546i
\(842\) 12.8195 17.6445i 0.441788 0.608070i
\(843\) 0 0
\(844\) 3.77247 + 11.6105i 0.129854 + 0.399649i
\(845\) 11.5248 + 12.1106i 0.396464 + 0.416619i
\(846\) 0 0
\(847\) −10.4132 2.10635i −0.357800 0.0723750i
\(848\) 10.1115i 0.347232i
\(849\) 0 0
\(850\) 18.4672 + 28.2637i 0.633419 + 0.969438i
\(851\) 6.59285 20.2907i 0.226000 0.695556i
\(852\) 0 0
\(853\) 4.90400 6.74977i 0.167910 0.231108i −0.716767 0.697313i \(-0.754379\pi\)
0.884677 + 0.466205i \(0.154379\pi\)
\(854\) 1.49235 4.59298i 0.0510671 0.157168i
\(855\) 0 0
\(856\) 1.19223 0.866207i 0.0407497 0.0296064i
\(857\) 8.59547i 0.293616i −0.989165 0.146808i \(-0.953100\pi\)
0.989165 0.146808i \(-0.0468999\pi\)
\(858\) 0 0
\(859\) −9.40807 −0.320999 −0.160500 0.987036i \(-0.551311\pi\)
−0.160500 + 0.987036i \(0.551311\pi\)
\(860\) 7.67747 7.30606i 0.261800 0.249135i
\(861\) 0 0
\(862\) 61.9571 + 20.1311i 2.11027 + 0.685667i
\(863\) 6.06951 8.35396i 0.206608 0.284372i −0.693120 0.720822i \(-0.743764\pi\)
0.899728 + 0.436450i \(0.143764\pi\)
\(864\) 0 0
\(865\) −1.66203 + 9.03795i −0.0565106 + 0.307300i
\(866\) 0.239279 + 0.736426i 0.00813104 + 0.0250248i
\(867\) 0 0
\(868\) 0.846638i 0.0287368i
\(869\) 2.57734 2.10820i 0.0874304 0.0715159i
\(870\) 0 0
\(871\) −35.1466 + 25.5355i −1.19090 + 0.865237i
\(872\) −1.80761 + 0.587328i −0.0612133 + 0.0198894i
\(873\) 0 0
\(874\) 18.0644 + 13.1246i 0.611038 + 0.443945i
\(875\) 10.5103 + 2.47676i 0.355315 + 0.0837298i
\(876\) 0 0
\(877\) 28.3445 9.20969i 0.957126 0.310989i 0.211518 0.977374i \(-0.432159\pi\)
0.745608 + 0.666385i \(0.232159\pi\)
\(878\) −31.5608 43.4398i −1.06513 1.46602i
\(879\) 0 0
\(880\) 24.6830 13.6046i 0.832065 0.458612i
\(881\) −30.1175 −1.01469 −0.507343 0.861744i \(-0.669372\pi\)
−0.507343 + 0.861744i \(0.669372\pi\)
\(882\) 0 0
\(883\) −47.8970 + 15.5627i −1.61186 + 0.523726i −0.970002 0.243096i \(-0.921837\pi\)
−0.641860 + 0.766822i \(0.721837\pi\)
\(884\) 9.77622 30.0881i 0.328810 1.01197i
\(885\) 0 0
\(886\) −23.7410 17.2488i −0.797593 0.579485i
\(887\) 39.3789 + 12.7950i 1.32221 + 0.429613i 0.883255 0.468893i \(-0.155347\pi\)
0.438959 + 0.898507i \(0.355347\pi\)
\(888\) 0 0
\(889\) 5.54021 4.02520i 0.185813 0.135001i
\(890\) −54.7077 + 7.28019i −1.83381 + 0.244033i
\(891\) 0 0
\(892\) 39.8572i 1.33452i
\(893\) 8.33074 + 11.4663i 0.278777 + 0.383704i
\(894\) 0 0
\(895\) −35.8382 6.59043i −1.19794 0.220294i
\(896\) 1.20409 + 0.874825i 0.0402259 + 0.0292258i
\(897\) 0 0
\(898\) −19.4658 6.32481i −0.649581 0.211062i
\(899\) −0.635162 1.95483i −0.0211838 0.0651971i
\(900\) 0 0
\(901\) 8.87793 0.295767
\(902\) 20.9887 32.6711i 0.698848 1.08783i
\(903\) 0 0
\(904\) −0.782977 + 0.568866i −0.0260414 + 0.0189202i
\(905\) 11.1875 5.35536i 0.371885 0.178018i
\(906\) 0 0
\(907\) 2.72271 3.74749i 0.0904062 0.124433i −0.761418 0.648261i \(-0.775496\pi\)
0.851824 + 0.523828i \(0.175496\pi\)
\(908\) −35.0582 + 48.2534i −1.16345 + 1.60135i
\(909\) 0 0
\(910\) −8.53900 17.8382i −0.283065 0.591330i
\(911\) 5.64577 4.10189i 0.187053 0.135902i −0.490318 0.871544i \(-0.663119\pi\)
0.677371 + 0.735642i \(0.263119\pi\)
\(912\) 0 0
\(913\) −13.2573 + 20.6363i −0.438752 + 0.682963i
\(914\) −79.1032 −2.61650
\(915\) 0 0
\(916\) −16.4404 50.5984i −0.543207 1.67182i
\(917\) 6.62923 + 2.15397i 0.218916 + 0.0711303i
\(918\) 0 0
\(919\) −18.9477 13.7663i −0.625027 0.454109i 0.229647 0.973274i \(-0.426243\pi\)
−0.854674 + 0.519165i \(0.826243\pi\)
\(920\) −1.42771 0.262548i −0.0470702 0.00865594i
\(921\) 0 0
\(922\) −46.5474 64.0671i −1.53296 2.10994i
\(923\) 24.6758i 0.812215i
\(924\) 0 0
\(925\) 8.28691 + 30.5850i 0.272472 + 1.00563i
\(926\) 21.1507 15.3669i 0.695057 0.504988i
\(927\) 0 0
\(928\) 37.7371 + 12.2615i 1.23878 + 0.402504i
\(929\) 14.6355 + 10.6333i 0.480175 + 0.348868i 0.801394 0.598137i \(-0.204092\pi\)
−0.321218 + 0.947005i \(0.604092\pi\)
\(930\) 0 0
\(931\) −6.14504 + 18.9125i −0.201395 + 0.619831i
\(932\) −24.9440 + 8.10480i −0.817068 + 0.265481i
\(933\) 0 0
\(934\) −22.7646 −0.744881
\(935\) 11.9449 + 21.6717i 0.390639 + 0.708741i
\(936\) 0 0
\(937\) 6.47128 + 8.90696i 0.211408 + 0.290978i 0.901531 0.432714i \(-0.142444\pi\)
−0.690124 + 0.723691i \(0.742444\pi\)
\(938\) 17.8461 5.79856i 0.582697 0.189330i
\(939\) 0 0
\(940\) −17.8183 9.64236i −0.581170 0.314499i
\(941\) 27.3293 + 19.8559i 0.890908 + 0.647283i 0.936115 0.351695i \(-0.114395\pi\)
−0.0452063 + 0.998978i \(0.514395\pi\)
\(942\) 0 0
\(943\) 18.5237 6.01870i 0.603213 0.195996i
\(944\) −31.1305 + 22.6177i −1.01321 + 0.736142i
\(945\) 0 0
\(946\) 11.7517 9.61264i 0.382082 0.312534i
\(947\) 46.9853i 1.52682i −0.645915 0.763409i \(-0.723524\pi\)
0.645915 0.763409i \(-0.276476\pi\)
\(948\) 0 0
\(949\) 2.00736 + 6.17803i 0.0651618 + 0.200547i
\(950\) −33.1233 1.64311i −1.07466 0.0533096i
\(951\) 0 0
\(952\) −0.365292 + 0.502781i −0.0118392 + 0.0162952i
\(953\) −40.4110 13.1303i −1.30904 0.425333i −0.430323 0.902675i \(-0.641600\pi\)
−0.878718 + 0.477341i \(0.841600\pi\)
\(954\) 0 0
\(955\) 33.6290 + 35.3385i 1.08821 + 1.14353i
\(956\) −42.7180 −1.38160
\(957\) 0 0
\(958\) 42.4291i 1.37082i
\(959\) −6.63443 + 4.82019i −0.214237 + 0.155652i
\(960\) 0 0
\(961\) −9.52544 + 29.3163i −0.307272 + 0.945687i
\(962\) 34.1123 46.9515i 1.09982 1.51378i
\(963\) 0 0
\(964\) 14.7584 45.4216i 0.475335 1.46293i
\(965\) −21.7027 45.3376i −0.698636 1.45947i
\(966\) 0 0
\(967\) 54.1642i 1.74180i −0.491458 0.870901i \(-0.663536\pi\)
0.491458 0.870901i \(-0.336464\pi\)
\(968\) −1.92930 + 0.881863i −0.0620101 + 0.0283442i
\(969\) 0 0
\(970\) −9.41838 9.89717i −0.302406 0.317779i
\(971\) −1.61878 4.98209i −0.0519491 0.159883i 0.921716 0.387865i \(-0.126787\pi\)
−0.973665 + 0.227982i \(0.926787\pi\)
\(972\) 0 0
\(973\) 4.39406 6.04791i 0.140867 0.193887i
\(974\) 36.9500 + 26.8457i 1.18395 + 0.860193i
\(975\) 0 0
\(976\) 2.90169 + 8.93049i 0.0928809 + 0.285858i
\(977\) 4.57381 + 6.29530i 0.146329 + 0.201405i 0.875890 0.482512i \(-0.160275\pi\)
−0.729561 + 0.683916i \(0.760275\pi\)
\(978\) 0 0
\(979\) −40.3846 + 2.31606i −1.29070 + 0.0740216i
\(980\) −3.74973 28.1777i −0.119781 0.900104i
\(981\) 0 0
\(982\) 38.6394 12.5547i 1.23303 0.400637i
\(983\) −48.9924 15.9186i −1.56261 0.507724i −0.605109 0.796143i \(-0.706871\pi\)
−0.957504 + 0.288419i \(0.906871\pi\)
\(984\) 0 0
\(985\) −50.6354 27.4012i −1.61338 0.873075i
\(986\) −10.2515 + 31.5509i −0.326474 + 1.00478i
\(987\) 0 0
\(988\) 18.2661 + 25.1411i 0.581122 + 0.799846i
\(989\) 7.61503 0.242144
\(990\) 0 0
\(991\) −22.3382 −0.709596 −0.354798 0.934943i \(-0.615450\pi\)
−0.354798 + 0.934943i \(0.615450\pi\)
\(992\) 1.98605 + 2.73356i 0.0630571 + 0.0867906i
\(993\) 0 0
\(994\) −3.29357 + 10.1366i −0.104466 + 0.321512i
\(995\) −18.0566 + 33.3673i −0.572434 + 1.05781i
\(996\) 0 0
\(997\) −0.175514 0.0570278i −0.00555857 0.00180609i 0.306236 0.951955i \(-0.400930\pi\)
−0.311795 + 0.950149i \(0.600930\pi\)
\(998\) −8.95311 + 2.90904i −0.283406 + 0.0920841i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.ba.a.289.4 16
3.2 odd 2 55.2.j.a.14.1 yes 16
5.4 even 2 inner 495.2.ba.a.289.1 16
11.4 even 5 inner 495.2.ba.a.334.1 16
12.11 even 2 880.2.cd.c.289.1 16
15.2 even 4 275.2.h.d.201.4 16
15.8 even 4 275.2.h.d.201.1 16
15.14 odd 2 55.2.j.a.14.4 yes 16
33.2 even 10 605.2.b.f.364.1 8
33.5 odd 10 605.2.j.h.9.4 16
33.8 even 10 605.2.j.g.269.4 16
33.14 odd 10 605.2.j.h.269.1 16
33.17 even 10 605.2.j.g.9.1 16
33.20 odd 10 605.2.b.g.364.8 8
33.26 odd 10 55.2.j.a.4.4 yes 16
33.29 even 10 605.2.j.d.444.1 16
33.32 even 2 605.2.j.d.124.4 16
55.4 even 10 inner 495.2.ba.a.334.4 16
60.59 even 2 880.2.cd.c.289.4 16
132.59 even 10 880.2.cd.c.609.4 16
165.2 odd 20 3025.2.a.bk.1.8 8
165.14 odd 10 605.2.j.h.269.4 16
165.29 even 10 605.2.j.d.444.4 16
165.53 even 20 3025.2.a.bl.1.8 8
165.59 odd 10 55.2.j.a.4.1 16
165.68 odd 20 3025.2.a.bk.1.1 8
165.74 even 10 605.2.j.g.269.1 16
165.92 even 20 275.2.h.d.26.4 16
165.104 odd 10 605.2.j.h.9.1 16
165.119 odd 10 605.2.b.g.364.1 8
165.134 even 10 605.2.b.f.364.8 8
165.149 even 10 605.2.j.g.9.4 16
165.152 even 20 3025.2.a.bl.1.1 8
165.158 even 20 275.2.h.d.26.1 16
165.164 even 2 605.2.j.d.124.1 16
660.59 even 10 880.2.cd.c.609.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.j.a.4.1 16 165.59 odd 10
55.2.j.a.4.4 yes 16 33.26 odd 10
55.2.j.a.14.1 yes 16 3.2 odd 2
55.2.j.a.14.4 yes 16 15.14 odd 2
275.2.h.d.26.1 16 165.158 even 20
275.2.h.d.26.4 16 165.92 even 20
275.2.h.d.201.1 16 15.8 even 4
275.2.h.d.201.4 16 15.2 even 4
495.2.ba.a.289.1 16 5.4 even 2 inner
495.2.ba.a.289.4 16 1.1 even 1 trivial
495.2.ba.a.334.1 16 11.4 even 5 inner
495.2.ba.a.334.4 16 55.4 even 10 inner
605.2.b.f.364.1 8 33.2 even 10
605.2.b.f.364.8 8 165.134 even 10
605.2.b.g.364.1 8 165.119 odd 10
605.2.b.g.364.8 8 33.20 odd 10
605.2.j.d.124.1 16 165.164 even 2
605.2.j.d.124.4 16 33.32 even 2
605.2.j.d.444.1 16 33.29 even 10
605.2.j.d.444.4 16 165.29 even 10
605.2.j.g.9.1 16 33.17 even 10
605.2.j.g.9.4 16 165.149 even 10
605.2.j.g.269.1 16 165.74 even 10
605.2.j.g.269.4 16 33.8 even 10
605.2.j.h.9.1 16 165.104 odd 10
605.2.j.h.9.4 16 33.5 odd 10
605.2.j.h.269.1 16 33.14 odd 10
605.2.j.h.269.4 16 165.14 odd 10
880.2.cd.c.289.1 16 12.11 even 2
880.2.cd.c.289.4 16 60.59 even 2
880.2.cd.c.609.1 16 660.59 even 10
880.2.cd.c.609.4 16 132.59 even 10
3025.2.a.bk.1.1 8 165.68 odd 20
3025.2.a.bk.1.8 8 165.2 odd 20
3025.2.a.bl.1.1 8 165.152 even 20
3025.2.a.bl.1.8 8 165.53 even 20