Properties

Label 275.2.h.d.201.4
Level $275$
Weight $2$
Character 275.201
Analytic conductor $2.196$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(26,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 7x^{14} + 25x^{12} + 57x^{10} + 194x^{8} + 303x^{6} + 235x^{4} + 33x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.4
Root \(-0.625353 - 1.92464i\) of defining polynomial
Character \(\chi\) \(=\) 275.201
Dual form 275.2.h.d.26.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.63719 - 1.18949i) q^{2} +(-0.809808 - 2.49233i) q^{3} +(0.647481 - 1.99274i) q^{4} +(-4.29042 - 3.11717i) q^{6} +(0.298456 - 0.918552i) q^{7} +(-0.0595923 - 0.183406i) q^{8} +(-3.12889 + 2.27327i) q^{9} +(-3.31118 + 0.189896i) q^{11} -5.49092 q^{12} +(3.66088 - 2.65978i) q^{13} +(-0.603980 - 1.85886i) q^{14} +(3.07453 + 2.23378i) q^{16} +(2.69944 + 1.96126i) q^{17} +(-2.41856 + 7.44357i) q^{18} +(1.01283 + 3.11717i) q^{19} -2.53103 q^{21} +(-5.19517 + 4.24952i) q^{22} -3.36643 q^{23} +(-0.408851 + 0.297048i) q^{24} +(2.82978 - 8.70916i) q^{26} +(1.83923 + 1.33628i) q^{27} +(-1.63719 - 1.18949i) q^{28} +(1.51820 - 4.67254i) q^{29} +(0.338464 - 0.245909i) q^{31} +8.07636 q^{32} +(3.15471 + 8.09880i) q^{33} +6.75241 q^{34} +(2.50415 + 7.70697i) q^{36} +(1.95841 - 6.02737i) q^{37} +(5.36605 + 3.89867i) q^{38} +(-9.59368 - 6.97021i) q^{39} +(1.78786 + 5.50247i) q^{41} +(-4.14379 + 3.01064i) q^{42} -2.26205 q^{43} +(-1.76552 + 6.72129i) q^{44} +(-5.51149 + 4.00433i) q^{46} +(1.33626 + 4.11260i) q^{47} +(3.07754 - 9.47169i) q^{48} +(4.90846 + 3.56620i) q^{49} +(2.70208 - 8.31615i) q^{51} +(-2.92991 - 9.01735i) q^{52} +(2.15255 - 1.56392i) q^{53} +4.60066 q^{54} -0.186254 q^{56} +(6.94884 - 5.04863i) q^{57} +(-3.07235 - 9.45574i) q^{58} +(-3.12889 + 9.62972i) q^{59} +(1.99897 + 1.45233i) q^{61} +(0.261626 - 0.805201i) q^{62} +(1.15428 + 3.55252i) q^{63} +(7.07350 - 5.13920i) q^{64} +(14.7983 + 9.50680i) q^{66} -9.60059 q^{67} +(5.65612 - 4.10941i) q^{68} +(2.72616 + 8.39026i) q^{69} +(4.41166 + 3.20526i) q^{71} +(0.603390 + 0.438388i) q^{72} +(0.443607 - 1.36528i) q^{73} +(-3.96321 - 12.1975i) q^{74} +6.86752 q^{76} +(-0.813812 + 3.09817i) q^{77} -23.9977 q^{78} +(-0.812218 + 0.590111i) q^{79} +(-1.74436 + 5.36858i) q^{81} +(9.47221 + 6.88197i) q^{82} +(-5.98302 - 4.34692i) q^{83} +(-1.63880 + 5.04369i) q^{84} +(-3.70342 + 2.69069i) q^{86} -12.8750 q^{87} +(0.232149 + 0.595976i) q^{88} -12.1964 q^{89} +(-1.35054 - 4.15654i) q^{91} +(-2.17970 + 6.70842i) q^{92} +(-0.886978 - 0.644427i) q^{93} +(7.07962 + 5.14365i) q^{94} +(-6.54030 - 20.1290i) q^{96} +(2.44262 - 1.77467i) q^{97} +12.2781 q^{98} +(9.92863 - 8.12138i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 18 q^{6} - 2 q^{9} - 6 q^{11} + 12 q^{14} + 16 q^{16} - 6 q^{19} + 8 q^{21} - 6 q^{24} + 40 q^{26} - 2 q^{29} + 8 q^{31} + 16 q^{34} + 10 q^{36} - 30 q^{39} - 52 q^{41} - 4 q^{44} - 62 q^{46}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.63719 1.18949i 1.15767 0.841097i 0.168189 0.985755i \(-0.446208\pi\)
0.989482 + 0.144657i \(0.0462080\pi\)
\(3\) −0.809808 2.49233i −0.467543 1.43895i −0.855756 0.517380i \(-0.826907\pi\)
0.388213 0.921570i \(-0.373093\pi\)
\(4\) 0.647481 1.99274i 0.323741 0.996371i
\(5\) 0 0
\(6\) −4.29042 3.11717i −1.75156 1.27258i
\(7\) 0.298456 0.918552i 0.112806 0.347180i −0.878677 0.477416i \(-0.841573\pi\)
0.991483 + 0.130236i \(0.0415735\pi\)
\(8\) −0.0595923 0.183406i −0.0210691 0.0648439i
\(9\) −3.12889 + 2.27327i −1.04296 + 0.757756i
\(10\) 0 0
\(11\) −3.31118 + 0.189896i −0.998360 + 0.0572559i
\(12\) −5.49092 −1.58509
\(13\) 3.66088 2.65978i 1.01534 0.737691i 0.0500213 0.998748i \(-0.484071\pi\)
0.965323 + 0.261057i \(0.0840711\pi\)
\(14\) −0.603980 1.85886i −0.161420 0.496801i
\(15\) 0 0
\(16\) 3.07453 + 2.23378i 0.768633 + 0.558445i
\(17\) 2.69944 + 1.96126i 0.654710 + 0.475675i 0.864872 0.501992i \(-0.167399\pi\)
−0.210162 + 0.977667i \(0.567399\pi\)
\(18\) −2.41856 + 7.44357i −0.570060 + 1.75447i
\(19\) 1.01283 + 3.11717i 0.232359 + 0.715129i 0.997461 + 0.0712189i \(0.0226889\pi\)
−0.765101 + 0.643910i \(0.777311\pi\)
\(20\) 0 0
\(21\) −2.53103 −0.552316
\(22\) −5.19517 + 4.24952i −1.10761 + 0.906001i
\(23\) −3.36643 −0.701948 −0.350974 0.936385i \(-0.614149\pi\)
−0.350974 + 0.936385i \(0.614149\pi\)
\(24\) −0.408851 + 0.297048i −0.0834565 + 0.0606347i
\(25\) 0 0
\(26\) 2.82978 8.70916i 0.554965 1.70801i
\(27\) 1.83923 + 1.33628i 0.353959 + 0.257167i
\(28\) −1.63719 1.18949i −0.309401 0.224793i
\(29\) 1.51820 4.67254i 0.281923 0.867668i −0.705382 0.708828i \(-0.749224\pi\)
0.987304 0.158841i \(-0.0507756\pi\)
\(30\) 0 0
\(31\) 0.338464 0.245909i 0.0607900 0.0441665i −0.556975 0.830529i \(-0.688038\pi\)
0.617765 + 0.786363i \(0.288038\pi\)
\(32\) 8.07636 1.42771
\(33\) 3.15471 + 8.09880i 0.549164 + 1.40982i
\(34\) 6.75241 1.15803
\(35\) 0 0
\(36\) 2.50415 + 7.70697i 0.417358 + 1.28449i
\(37\) 1.95841 6.02737i 0.321961 0.990894i −0.650833 0.759221i \(-0.725580\pi\)
0.972794 0.231673i \(-0.0744199\pi\)
\(38\) 5.36605 + 3.89867i 0.870489 + 0.632447i
\(39\) −9.59368 6.97021i −1.53622 1.11613i
\(40\) 0 0
\(41\) 1.78786 + 5.50247i 0.279217 + 0.859341i 0.988073 + 0.153988i \(0.0492117\pi\)
−0.708856 + 0.705353i \(0.750788\pi\)
\(42\) −4.14379 + 3.01064i −0.639401 + 0.464552i
\(43\) −2.26205 −0.344960 −0.172480 0.985013i \(-0.555178\pi\)
−0.172480 + 0.985013i \(0.555178\pi\)
\(44\) −1.76552 + 6.72129i −0.266161 + 1.01327i
\(45\) 0 0
\(46\) −5.51149 + 4.00433i −0.812625 + 0.590407i
\(47\) 1.33626 + 4.11260i 0.194914 + 0.599884i 0.999978 + 0.00669531i \(0.00213120\pi\)
−0.805063 + 0.593189i \(0.797869\pi\)
\(48\) 3.07754 9.47169i 0.444205 1.36712i
\(49\) 4.90846 + 3.56620i 0.701208 + 0.509457i
\(50\) 0 0
\(51\) 2.70208 8.31615i 0.378367 1.16449i
\(52\) −2.92991 9.01735i −0.406306 1.25048i
\(53\) 2.15255 1.56392i 0.295676 0.214821i −0.430050 0.902805i \(-0.641504\pi\)
0.725726 + 0.687984i \(0.241504\pi\)
\(54\) 4.60066 0.626071
\(55\) 0 0
\(56\) −0.186254 −0.0248892
\(57\) 6.94884 5.04863i 0.920396 0.668707i
\(58\) −3.07235 9.45574i −0.403420 1.24160i
\(59\) −3.12889 + 9.62972i −0.407346 + 1.25368i 0.511574 + 0.859239i \(0.329063\pi\)
−0.918920 + 0.394444i \(0.870937\pi\)
\(60\) 0 0
\(61\) 1.99897 + 1.45233i 0.255941 + 0.185952i 0.708356 0.705856i \(-0.249437\pi\)
−0.452414 + 0.891808i \(0.649437\pi\)
\(62\) 0.261626 0.805201i 0.0332265 0.102261i
\(63\) 1.15428 + 3.55252i 0.145426 + 0.447575i
\(64\) 7.07350 5.13920i 0.884187 0.642400i
\(65\) 0 0
\(66\) 14.7983 + 9.50680i 1.82155 + 1.17021i
\(67\) −9.60059 −1.17290 −0.586449 0.809986i \(-0.699475\pi\)
−0.586449 + 0.809986i \(0.699475\pi\)
\(68\) 5.65612 4.10941i 0.685905 0.498339i
\(69\) 2.72616 + 8.39026i 0.328191 + 1.01007i
\(70\) 0 0
\(71\) 4.41166 + 3.20526i 0.523567 + 0.380394i 0.817946 0.575295i \(-0.195113\pi\)
−0.294379 + 0.955689i \(0.595113\pi\)
\(72\) 0.603390 + 0.438388i 0.0711102 + 0.0516646i
\(73\) 0.443607 1.36528i 0.0519203 0.159794i −0.921734 0.387822i \(-0.873228\pi\)
0.973655 + 0.228028i \(0.0732276\pi\)
\(74\) −3.96321 12.1975i −0.460713 1.41793i
\(75\) 0 0
\(76\) 6.86752 0.787758
\(77\) −0.813812 + 3.09817i −0.0927425 + 0.353069i
\(78\) −23.9977 −2.71721
\(79\) −0.812218 + 0.590111i −0.0913817 + 0.0663927i −0.632538 0.774529i \(-0.717987\pi\)
0.541156 + 0.840922i \(0.317987\pi\)
\(80\) 0 0
\(81\) −1.74436 + 5.36858i −0.193818 + 0.596509i
\(82\) 9.47221 + 6.88197i 1.04603 + 0.759986i
\(83\) −5.98302 4.34692i −0.656721 0.477136i 0.208833 0.977951i \(-0.433034\pi\)
−0.865554 + 0.500815i \(0.833034\pi\)
\(84\) −1.63880 + 5.04369i −0.178807 + 0.550312i
\(85\) 0 0
\(86\) −3.70342 + 2.69069i −0.399350 + 0.290145i
\(87\) −12.8750 −1.38034
\(88\) 0.232149 + 0.595976i 0.0247472 + 0.0635312i
\(89\) −12.1964 −1.29282 −0.646410 0.762991i \(-0.723730\pi\)
−0.646410 + 0.762991i \(0.723730\pi\)
\(90\) 0 0
\(91\) −1.35054 4.15654i −0.141575 0.435723i
\(92\) −2.17970 + 6.70842i −0.227249 + 0.699401i
\(93\) −0.886978 0.644427i −0.0919754 0.0668240i
\(94\) 7.07962 + 5.14365i 0.730207 + 0.530527i
\(95\) 0 0
\(96\) −6.54030 20.1290i −0.667517 2.05440i
\(97\) 2.44262 1.77467i 0.248010 0.180190i −0.456834 0.889552i \(-0.651017\pi\)
0.704844 + 0.709362i \(0.251017\pi\)
\(98\) 12.2781 1.24027
\(99\) 9.92863 8.12138i 0.997865 0.816229i
\(100\) 0 0
\(101\) −12.2940 + 8.93210i −1.22330 + 0.888777i −0.996369 0.0851342i \(-0.972868\pi\)
−0.226928 + 0.973912i \(0.572868\pi\)
\(102\) −5.46815 16.8292i −0.541428 1.66634i
\(103\) −3.01196 + 9.26987i −0.296778 + 0.913387i 0.685841 + 0.727751i \(0.259435\pi\)
−0.982619 + 0.185636i \(0.940565\pi\)
\(104\) −0.705981 0.512925i −0.0692272 0.0502965i
\(105\) 0 0
\(106\) 1.66387 5.12088i 0.161610 0.497384i
\(107\) 2.36144 + 7.26778i 0.228289 + 0.702602i 0.997941 + 0.0641384i \(0.0204299\pi\)
−0.769652 + 0.638464i \(0.779570\pi\)
\(108\) 3.85372 2.79989i 0.370825 0.269420i
\(109\) −9.85576 −0.944010 −0.472005 0.881596i \(-0.656470\pi\)
−0.472005 + 0.881596i \(0.656470\pi\)
\(110\) 0 0
\(111\) −16.6082 −1.57638
\(112\) 2.96945 2.15743i 0.280587 0.203858i
\(113\) 1.55084 + 4.77298i 0.145890 + 0.449004i 0.997124 0.0757819i \(-0.0241453\pi\)
−0.851234 + 0.524786i \(0.824145\pi\)
\(114\) 5.37130 16.5312i 0.503068 1.54829i
\(115\) 0 0
\(116\) −8.32816 6.05076i −0.773250 0.561799i
\(117\) −5.40807 + 16.6443i −0.499976 + 1.53877i
\(118\) 6.33188 + 19.4875i 0.582896 + 1.79397i
\(119\) 2.60718 1.89423i 0.239000 0.173644i
\(120\) 0 0
\(121\) 10.9279 1.25756i 0.993444 0.114324i
\(122\) 5.00023 0.452700
\(123\) 12.2662 8.91189i 1.10600 0.803558i
\(124\) −0.270884 0.833694i −0.0243261 0.0748679i
\(125\) 0 0
\(126\) 6.11547 + 4.44315i 0.544810 + 0.395827i
\(127\) −5.73626 4.16764i −0.509011 0.369818i 0.303438 0.952851i \(-0.401866\pi\)
−0.812448 + 0.583033i \(0.801866\pi\)
\(128\) 0.476198 1.46559i 0.0420903 0.129541i
\(129\) 1.83183 + 5.63779i 0.161284 + 0.496380i
\(130\) 0 0
\(131\) 7.21704 0.630556 0.315278 0.948999i \(-0.397902\pi\)
0.315278 + 0.948999i \(0.397902\pi\)
\(132\) 18.1814 1.04271i 1.58249 0.0907559i
\(133\) 3.16557 0.274490
\(134\) −15.7180 + 11.4198i −1.35783 + 0.986521i
\(135\) 0 0
\(136\) 0.198841 0.611970i 0.0170505 0.0524760i
\(137\) −6.86920 4.99076i −0.586875 0.426390i 0.254321 0.967120i \(-0.418148\pi\)
−0.841196 + 0.540730i \(0.818148\pi\)
\(138\) 14.4434 + 10.4937i 1.22950 + 0.893286i
\(139\) 2.39184 7.36133i 0.202873 0.624380i −0.796921 0.604084i \(-0.793539\pi\)
0.999794 0.0202958i \(-0.00646080\pi\)
\(140\) 0 0
\(141\) 9.16785 6.66083i 0.772072 0.560943i
\(142\) 11.0354 0.926067
\(143\) −11.6168 + 9.50222i −0.971442 + 0.794615i
\(144\) −14.6978 −1.22482
\(145\) 0 0
\(146\) −0.897720 2.76290i −0.0742958 0.228659i
\(147\) 4.91326 15.1215i 0.405239 1.24720i
\(148\) −10.7430 7.80522i −0.883067 0.641585i
\(149\) 13.6589 + 9.92376i 1.11898 + 0.812986i 0.984054 0.177870i \(-0.0569206\pi\)
0.134925 + 0.990856i \(0.456921\pi\)
\(150\) 0 0
\(151\) −3.79555 11.6815i −0.308877 0.950626i −0.978202 0.207656i \(-0.933416\pi\)
0.669325 0.742970i \(-0.266584\pi\)
\(152\) 0.511353 0.371519i 0.0414762 0.0301342i
\(153\) −12.9047 −1.04328
\(154\) 2.35288 + 6.04033i 0.189600 + 0.486744i
\(155\) 0 0
\(156\) −20.1016 + 14.6046i −1.60941 + 1.16931i
\(157\) 1.30087 + 4.00368i 0.103821 + 0.319528i 0.989452 0.144862i \(-0.0462737\pi\)
−0.885631 + 0.464390i \(0.846274\pi\)
\(158\) −0.627827 + 1.93225i −0.0499472 + 0.153722i
\(159\) −5.64096 4.09840i −0.447357 0.325024i
\(160\) 0 0
\(161\) −1.00473 + 3.09224i −0.0791837 + 0.243702i
\(162\) 3.53003 + 10.8643i 0.277345 + 0.853581i
\(163\) 13.4083 9.74169i 1.05022 0.763028i 0.0779643 0.996956i \(-0.475158\pi\)
0.972254 + 0.233928i \(0.0751580\pi\)
\(164\) 12.1226 0.946617
\(165\) 0 0
\(166\) −14.9660 −1.16159
\(167\) −7.41608 + 5.38810i −0.573874 + 0.416944i −0.836510 0.547951i \(-0.815408\pi\)
0.262637 + 0.964895i \(0.415408\pi\)
\(168\) 0.150830 + 0.464207i 0.0116368 + 0.0358144i
\(169\) 2.31036 7.11055i 0.177720 0.546965i
\(170\) 0 0
\(171\) −10.2552 7.45085i −0.784236 0.569781i
\(172\) −1.46464 + 4.50769i −0.111678 + 0.343708i
\(173\) −1.26996 3.90853i −0.0965531 0.297160i 0.891102 0.453803i \(-0.149933\pi\)
−0.987655 + 0.156643i \(0.949933\pi\)
\(174\) −21.0788 + 15.3147i −1.59798 + 1.16100i
\(175\) 0 0
\(176\) −10.6045 6.81261i −0.799346 0.513520i
\(177\) 26.5343 1.99444
\(178\) −19.9679 + 14.5075i −1.49666 + 1.08739i
\(179\) −5.03576 15.4985i −0.376390 1.15841i −0.942536 0.334105i \(-0.891566\pi\)
0.566145 0.824305i \(-0.308434\pi\)
\(180\) 0 0
\(181\) 4.48753 + 3.26038i 0.333555 + 0.242342i 0.741938 0.670469i \(-0.233907\pi\)
−0.408382 + 0.912811i \(0.633907\pi\)
\(182\) −7.15526 5.19860i −0.530383 0.385346i
\(183\) 2.00092 6.15820i 0.147912 0.455227i
\(184\) 0.200613 + 0.617424i 0.0147894 + 0.0455171i
\(185\) 0 0
\(186\) −2.21870 −0.162683
\(187\) −9.31078 5.98147i −0.680871 0.437408i
\(188\) 9.06056 0.660809
\(189\) 1.77637 1.29061i 0.129212 0.0938779i
\(190\) 0 0
\(191\) 6.74155 20.7484i 0.487802 1.50130i −0.340080 0.940396i \(-0.610454\pi\)
0.827882 0.560903i \(-0.189546\pi\)
\(192\) −18.5368 13.4678i −1.33778 0.971951i
\(193\) −18.1858 13.2128i −1.30904 0.951076i −1.00000 2.83481e-5i \(-0.999991\pi\)
−0.309044 0.951048i \(-0.600009\pi\)
\(194\) 1.88809 5.81094i 0.135557 0.417201i
\(195\) 0 0
\(196\) 10.2847 7.47224i 0.734619 0.533732i
\(197\) −25.7479 −1.83446 −0.917230 0.398358i \(-0.869580\pi\)
−0.917230 + 0.398358i \(0.869580\pi\)
\(198\) 6.59480 25.1063i 0.468672 1.78423i
\(199\) 16.9671 1.20277 0.601385 0.798960i \(-0.294616\pi\)
0.601385 + 0.798960i \(0.294616\pi\)
\(200\) 0 0
\(201\) 7.77463 + 23.9279i 0.548380 + 1.68774i
\(202\) −9.50298 + 29.2472i −0.668627 + 2.05782i
\(203\) −3.83886 2.78909i −0.269435 0.195756i
\(204\) −14.8224 10.7691i −1.03778 0.753988i
\(205\) 0 0
\(206\) 6.09526 + 18.7593i 0.424677 + 1.30702i
\(207\) 10.5332 7.65279i 0.732106 0.531906i
\(208\) 17.1969 1.19239
\(209\) −3.94561 10.1292i −0.272924 0.700652i
\(210\) 0 0
\(211\) 4.71363 3.42465i 0.324500 0.235763i −0.413593 0.910462i \(-0.635726\pi\)
0.738093 + 0.674699i \(0.235726\pi\)
\(212\) −1.72275 5.30209i −0.118319 0.364149i
\(213\) 4.41597 13.5910i 0.302577 0.931238i
\(214\) 12.5111 + 9.08984i 0.855241 + 0.621369i
\(215\) 0 0
\(216\) 0.135478 0.416958i 0.00921810 0.0283704i
\(217\) −0.124863 0.384290i −0.00847628 0.0260873i
\(218\) −16.1358 + 11.7233i −1.09285 + 0.794005i
\(219\) −3.76197 −0.254211
\(220\) 0 0
\(221\) 15.0988 1.01566
\(222\) −27.1908 + 19.7553i −1.82493 + 1.32589i
\(223\) 5.87820 + 18.0913i 0.393634 + 1.21148i 0.930020 + 0.367508i \(0.119789\pi\)
−0.536387 + 0.843972i \(0.680211\pi\)
\(224\) 2.41043 7.41856i 0.161054 0.495673i
\(225\) 0 0
\(226\) 8.21644 + 5.96959i 0.546549 + 0.397091i
\(227\) 8.79646 27.0727i 0.583841 1.79688i −0.0200332 0.999799i \(-0.506377\pi\)
0.603874 0.797079i \(-0.293623\pi\)
\(228\) −5.56137 17.1161i −0.368311 1.13354i
\(229\) 20.5420 14.9247i 1.35746 0.986250i 0.358854 0.933394i \(-0.383168\pi\)
0.998602 0.0528558i \(-0.0168324\pi\)
\(230\) 0 0
\(231\) 8.38071 0.480634i 0.551410 0.0316234i
\(232\) −0.947446 −0.0622029
\(233\) −10.1268 + 7.35755i −0.663429 + 0.482009i −0.867819 0.496880i \(-0.834479\pi\)
0.204390 + 0.978890i \(0.434479\pi\)
\(234\) 10.9442 + 33.6828i 0.715446 + 2.20192i
\(235\) 0 0
\(236\) 17.1637 + 12.4701i 1.11726 + 0.811737i
\(237\) 2.12849 + 1.54644i 0.138261 + 0.100452i
\(238\) 2.01529 6.20244i 0.130632 0.402044i
\(239\) 6.30011 + 19.3897i 0.407520 + 1.25422i 0.918773 + 0.394787i \(0.129182\pi\)
−0.511252 + 0.859431i \(0.670818\pi\)
\(240\) 0 0
\(241\) −22.7935 −1.46826 −0.734129 0.679010i \(-0.762409\pi\)
−0.734129 + 0.679010i \(0.762409\pi\)
\(242\) 16.3952 15.0575i 1.05392 0.967932i
\(243\) 21.6131 1.38648
\(244\) 4.18842 3.04307i 0.268136 0.194812i
\(245\) 0 0
\(246\) 9.48148 29.1810i 0.604517 1.86051i
\(247\) 11.9989 + 8.71768i 0.763469 + 0.554693i
\(248\) −0.0652711 0.0474222i −0.00414472 0.00301132i
\(249\) −5.98887 + 18.4318i −0.379529 + 1.16807i
\(250\) 0 0
\(251\) −13.7151 + 9.96460i −0.865689 + 0.628960i −0.929427 0.369007i \(-0.879698\pi\)
0.0637374 + 0.997967i \(0.479698\pi\)
\(252\) 7.82663 0.493031
\(253\) 11.1469 0.639272i 0.700797 0.0401907i
\(254\) −14.3487 −0.900320
\(255\) 0 0
\(256\) 4.44000 + 13.6649i 0.277500 + 0.854057i
\(257\) 1.46346 4.50405i 0.0912879 0.280955i −0.894981 0.446105i \(-0.852811\pi\)
0.986268 + 0.165150i \(0.0528108\pi\)
\(258\) 9.70516 + 7.05121i 0.604217 + 0.438989i
\(259\) −4.95196 3.59781i −0.307700 0.223557i
\(260\) 0 0
\(261\) 5.87166 + 18.0711i 0.363447 + 1.11857i
\(262\) 11.8157 8.58461i 0.729976 0.530359i
\(263\) −18.1037 −1.11632 −0.558162 0.829732i \(-0.688493\pi\)
−0.558162 + 0.829732i \(0.688493\pi\)
\(264\) 1.29737 1.06122i 0.0798479 0.0653136i
\(265\) 0 0
\(266\) 5.18266 3.76542i 0.317769 0.230873i
\(267\) 9.87677 + 30.3976i 0.604449 + 1.86030i
\(268\) −6.21620 + 19.1315i −0.379715 + 1.16864i
\(269\) 1.85914 + 1.35074i 0.113354 + 0.0823562i 0.643018 0.765851i \(-0.277682\pi\)
−0.529664 + 0.848207i \(0.677682\pi\)
\(270\) 0 0
\(271\) 0.248971 0.766255i 0.0151239 0.0465467i −0.943210 0.332198i \(-0.892210\pi\)
0.958334 + 0.285651i \(0.0922098\pi\)
\(272\) 3.91850 + 12.0599i 0.237594 + 0.731239i
\(273\) −9.26579 + 6.73199i −0.560791 + 0.407439i
\(274\) −17.1827 −1.03804
\(275\) 0 0
\(276\) 18.4848 1.11265
\(277\) 9.57302 6.95521i 0.575187 0.417898i −0.261799 0.965122i \(-0.584316\pi\)
0.836986 + 0.547225i \(0.184316\pi\)
\(278\) −4.84033 14.8970i −0.290304 0.893462i
\(279\) −0.500000 + 1.53884i −0.0299342 + 0.0921280i
\(280\) 0 0
\(281\) −5.03960 3.66148i −0.300637 0.218426i 0.427231 0.904142i \(-0.359489\pi\)
−0.727869 + 0.685717i \(0.759489\pi\)
\(282\) 7.08655 21.8101i 0.421998 1.29878i
\(283\) −2.67165 8.22250i −0.158813 0.488777i 0.839714 0.543029i \(-0.182723\pi\)
−0.998527 + 0.0542519i \(0.982723\pi\)
\(284\) 9.24372 6.71596i 0.548514 0.398519i
\(285\) 0 0
\(286\) −7.71608 + 29.3750i −0.456261 + 1.73698i
\(287\) 5.58790 0.329843
\(288\) −25.2700 + 18.3597i −1.48905 + 1.08186i
\(289\) −1.81285 5.57937i −0.106638 0.328198i
\(290\) 0 0
\(291\) −6.40111 4.65068i −0.375240 0.272628i
\(292\) −2.43343 1.76799i −0.142406 0.103464i
\(293\) 1.79554 5.52610i 0.104896 0.322838i −0.884810 0.465953i \(-0.845712\pi\)
0.989706 + 0.143115i \(0.0457117\pi\)
\(294\) −9.94288 30.6010i −0.579880 1.78469i
\(295\) 0 0
\(296\) −1.22216 −0.0710369
\(297\) −6.34377 4.07540i −0.368103 0.236478i
\(298\) 34.1665 1.97921
\(299\) −12.3241 + 8.95396i −0.712719 + 0.517821i
\(300\) 0 0
\(301\) −0.675123 + 2.07781i −0.0389134 + 0.119763i
\(302\) −20.1091 14.6101i −1.15715 0.840717i
\(303\) 32.2176 + 23.4074i 1.85085 + 1.34472i
\(304\) −3.84909 + 11.8463i −0.220761 + 0.679432i
\(305\) 0 0
\(306\) −21.1275 + 15.3500i −1.20778 + 0.877503i
\(307\) 18.4721 1.05426 0.527130 0.849785i \(-0.323268\pi\)
0.527130 + 0.849785i \(0.323268\pi\)
\(308\) 5.64693 + 3.62773i 0.321764 + 0.206709i
\(309\) 25.5427 1.45307
\(310\) 0 0
\(311\) −3.50158 10.7768i −0.198557 0.611094i −0.999917 0.0129120i \(-0.995890\pi\)
0.801360 0.598182i \(-0.204110\pi\)
\(312\) −0.706672 + 2.17491i −0.0400074 + 0.123130i
\(313\) 4.13811 + 3.00651i 0.233900 + 0.169938i 0.698561 0.715550i \(-0.253824\pi\)
−0.464661 + 0.885488i \(0.653824\pi\)
\(314\) 6.89212 + 5.00742i 0.388945 + 0.282585i
\(315\) 0 0
\(316\) 0.650043 + 2.00063i 0.0365678 + 0.112544i
\(317\) −9.55715 + 6.94368i −0.536783 + 0.389996i −0.822889 0.568202i \(-0.807639\pi\)
0.286106 + 0.958198i \(0.407639\pi\)
\(318\) −14.1104 −0.791270
\(319\) −4.13974 + 15.7599i −0.231781 + 0.882387i
\(320\) 0 0
\(321\) 16.2014 11.7710i 0.904274 0.656994i
\(322\) 2.03325 + 6.25771i 0.113309 + 0.348729i
\(323\) −3.37951 + 10.4010i −0.188041 + 0.578730i
\(324\) 9.56877 + 6.95212i 0.531598 + 0.386229i
\(325\) 0 0
\(326\) 10.3643 31.8981i 0.574026 1.76667i
\(327\) 7.98127 + 24.5638i 0.441365 + 1.35838i
\(328\) 0.902645 0.655810i 0.0498402 0.0362110i
\(329\) 4.17645 0.230255
\(330\) 0 0
\(331\) 29.2692 1.60878 0.804391 0.594100i \(-0.202492\pi\)
0.804391 + 0.594100i \(0.202492\pi\)
\(332\) −12.5362 + 9.10807i −0.688012 + 0.499870i
\(333\) 7.57419 + 23.3110i 0.415063 + 1.27743i
\(334\) −5.73247 + 17.6427i −0.313667 + 0.965367i
\(335\) 0 0
\(336\) −7.78174 5.65376i −0.424529 0.308438i
\(337\) −8.23348 + 25.3400i −0.448506 + 1.38036i 0.430087 + 0.902788i \(0.358483\pi\)
−0.878593 + 0.477572i \(0.841517\pi\)
\(338\) −4.67543 14.3895i −0.254310 0.782685i
\(339\) 10.6400 7.73040i 0.577885 0.419858i
\(340\) 0 0
\(341\) −1.07402 + 0.878523i −0.0581615 + 0.0475747i
\(342\) −25.6525 −1.38713
\(343\) 10.2103 7.41820i 0.551303 0.400545i
\(344\) 0.134801 + 0.414875i 0.00726798 + 0.0223686i
\(345\) 0 0
\(346\) −6.72833 4.88842i −0.361717 0.262803i
\(347\) −3.48790 2.53411i −0.187240 0.136038i 0.490216 0.871601i \(-0.336918\pi\)
−0.677457 + 0.735563i \(0.736918\pi\)
\(348\) −8.33631 + 25.6565i −0.446873 + 1.37533i
\(349\) −4.06960 12.5249i −0.217841 0.670444i −0.998940 0.0460373i \(-0.985341\pi\)
0.781099 0.624407i \(-0.214659\pi\)
\(350\) 0 0
\(351\) 10.2874 0.549100
\(352\) −26.7423 + 1.53367i −1.42537 + 0.0817449i
\(353\) 25.4904 1.35672 0.678358 0.734732i \(-0.262692\pi\)
0.678358 + 0.734732i \(0.262692\pi\)
\(354\) 43.4418 31.5623i 2.30890 1.67752i
\(355\) 0 0
\(356\) −7.89696 + 24.3044i −0.418538 + 1.28813i
\(357\) −6.83237 4.96400i −0.361607 0.262723i
\(358\) −26.6798 19.3840i −1.41007 1.02448i
\(359\) 8.11915 24.9882i 0.428512 1.31883i −0.471078 0.882091i \(-0.656135\pi\)
0.899591 0.436734i \(-0.143865\pi\)
\(360\) 0 0
\(361\) 6.68037 4.85358i 0.351599 0.255451i
\(362\) 11.2252 0.589981
\(363\) −11.9838 26.2175i −0.628984 1.37606i
\(364\) −9.15736 −0.479976
\(365\) 0 0
\(366\) −4.04923 12.4622i −0.211657 0.651412i
\(367\) 0.623823 1.91993i 0.0325633 0.100220i −0.933454 0.358698i \(-0.883221\pi\)
0.966017 + 0.258478i \(0.0832209\pi\)
\(368\) −10.3502 7.51985i −0.539541 0.391999i
\(369\) −18.1026 13.1523i −0.942384 0.684682i
\(370\) 0 0
\(371\) −0.794101 2.44399i −0.0412277 0.126886i
\(372\) −1.85848 + 1.35026i −0.0963577 + 0.0700080i
\(373\) −8.87153 −0.459351 −0.229675 0.973267i \(-0.573766\pi\)
−0.229675 + 0.973267i \(0.573766\pi\)
\(374\) −22.3585 + 1.28226i −1.15613 + 0.0663040i
\(375\) 0 0
\(376\) 0.674645 0.490159i 0.0347922 0.0252780i
\(377\) −6.86999 21.1437i −0.353823 1.08895i
\(378\) 1.37309 4.22595i 0.0706243 0.217359i
\(379\) −17.0412 12.3812i −0.875348 0.635978i 0.0566685 0.998393i \(-0.481952\pi\)
−0.932017 + 0.362415i \(0.881952\pi\)
\(380\) 0 0
\(381\) −5.74187 + 17.6717i −0.294165 + 0.905346i
\(382\) −13.6428 41.9881i −0.698025 2.14830i
\(383\) −21.0179 + 15.2704i −1.07396 + 0.780281i −0.976621 0.214970i \(-0.931035\pi\)
−0.0973436 + 0.995251i \(0.531035\pi\)
\(384\) −4.03836 −0.206082
\(385\) 0 0
\(386\) −45.4902 −2.31539
\(387\) 7.07771 5.14225i 0.359780 0.261396i
\(388\) −1.95490 6.01657i −0.0992451 0.305445i
\(389\) −0.507965 + 1.56335i −0.0257548 + 0.0792652i −0.963108 0.269116i \(-0.913269\pi\)
0.937353 + 0.348381i \(0.113269\pi\)
\(390\) 0 0
\(391\) −9.08746 6.60243i −0.459573 0.333899i
\(392\) 0.361558 1.11276i 0.0182614 0.0562029i
\(393\) −5.84442 17.9873i −0.294812 0.907338i
\(394\) −42.1543 + 30.6269i −2.12370 + 1.54296i
\(395\) 0 0
\(396\) −9.75521 25.0437i −0.490218 1.25849i
\(397\) 16.7088 0.838588 0.419294 0.907850i \(-0.362278\pi\)
0.419294 + 0.907850i \(0.362278\pi\)
\(398\) 27.7785 20.1823i 1.39241 1.01165i
\(399\) −2.56351 7.88966i −0.128336 0.394977i
\(400\) 0 0
\(401\) −22.4842 16.3357i −1.12281 0.815766i −0.138174 0.990408i \(-0.544123\pi\)
−0.984632 + 0.174641i \(0.944123\pi\)
\(402\) 41.1906 + 29.9267i 2.05440 + 1.49261i
\(403\) 0.585013 1.80048i 0.0291416 0.0896885i
\(404\) 9.83926 + 30.2821i 0.489521 + 1.50659i
\(405\) 0 0
\(406\) −9.60255 −0.476567
\(407\) −5.34009 + 20.3296i −0.264698 + 1.00770i
\(408\) −1.68626 −0.0834822
\(409\) −31.9019 + 23.1781i −1.57745 + 1.14608i −0.657902 + 0.753104i \(0.728556\pi\)
−0.919547 + 0.392980i \(0.871444\pi\)
\(410\) 0 0
\(411\) −6.87591 + 21.1619i −0.339164 + 1.04384i
\(412\) 16.5223 + 12.0041i 0.813994 + 0.591401i
\(413\) 7.91157 + 5.74809i 0.389303 + 0.282845i
\(414\) 8.14191 25.0582i 0.400153 1.23154i
\(415\) 0 0
\(416\) 29.5665 21.4814i 1.44962 1.05321i
\(417\) −20.2838 −0.993303
\(418\) −18.5083 11.8902i −0.905272 0.581569i
\(419\) 14.7812 0.722111 0.361055 0.932544i \(-0.382417\pi\)
0.361055 + 0.932544i \(0.382417\pi\)
\(420\) 0 0
\(421\) −3.33036 10.2498i −0.162312 0.499545i 0.836516 0.547942i \(-0.184589\pi\)
−0.998828 + 0.0483974i \(0.984589\pi\)
\(422\) 3.64354 11.2136i 0.177365 0.545872i
\(423\) −13.5301 9.83016i −0.657854 0.477959i
\(424\) −0.415108 0.301594i −0.0201594 0.0146467i
\(425\) 0 0
\(426\) −8.93653 27.5038i −0.432976 1.33256i
\(427\) 1.93065 1.40270i 0.0934306 0.0678813i
\(428\) 16.0118 0.773960
\(429\) 33.0900 + 21.2579i 1.59760 + 1.02634i
\(430\) 0 0
\(431\) −26.0435 + 18.9217i −1.25447 + 0.911428i −0.998473 0.0552489i \(-0.982405\pi\)
−0.256000 + 0.966677i \(0.582405\pi\)
\(432\) 2.66982 + 8.21685i 0.128452 + 0.395334i
\(433\) 0.118240 0.363904i 0.00568223 0.0174881i −0.948175 0.317748i \(-0.897073\pi\)
0.953857 + 0.300260i \(0.0970734\pi\)
\(434\) −0.661536 0.480634i −0.0317547 0.0230712i
\(435\) 0 0
\(436\) −6.38142 + 19.6400i −0.305615 + 0.940585i
\(437\) −3.40962 10.4937i −0.163104 0.501983i
\(438\) −6.15908 + 4.47484i −0.294292 + 0.213816i
\(439\) 26.5331 1.26635 0.633177 0.774007i \(-0.281751\pi\)
0.633177 + 0.774007i \(0.281751\pi\)
\(440\) 0 0
\(441\) −23.4649 −1.11738
\(442\) 24.7197 17.9599i 1.17580 0.854267i
\(443\) −4.48106 13.7913i −0.212901 0.655243i −0.999296 0.0375185i \(-0.988055\pi\)
0.786395 0.617725i \(-0.211945\pi\)
\(444\) −10.7535 + 33.0958i −0.510337 + 1.57066i
\(445\) 0 0
\(446\) 31.1432 + 22.6268i 1.47467 + 1.07141i
\(447\) 13.6722 42.0788i 0.646675 1.99026i
\(448\) −2.60950 8.03120i −0.123287 0.379439i
\(449\) −8.18240 + 5.94486i −0.386151 + 0.280555i −0.763876 0.645362i \(-0.776706\pi\)
0.377725 + 0.925918i \(0.376706\pi\)
\(450\) 0 0
\(451\) −6.96483 17.8802i −0.327961 0.841945i
\(452\) 10.5155 0.494606
\(453\) −26.0405 + 18.9195i −1.22349 + 0.888917i
\(454\) −17.8012 54.7866i −0.835454 2.57126i
\(455\) 0 0
\(456\) −1.34005 0.973602i −0.0627535 0.0455931i
\(457\) −31.6235 22.9758i −1.47928 1.07476i −0.977787 0.209602i \(-0.932783\pi\)
−0.501496 0.865160i \(-0.667217\pi\)
\(458\) 15.8785 48.8691i 0.741956 2.28351i
\(459\) 2.34410 + 7.21440i 0.109413 + 0.336739i
\(460\) 0 0
\(461\) 39.1322 1.82257 0.911285 0.411776i \(-0.135092\pi\)
0.911285 + 0.411776i \(0.135092\pi\)
\(462\) 13.1491 10.7557i 0.611753 0.500399i
\(463\) −12.9189 −0.600392 −0.300196 0.953878i \(-0.597052\pi\)
−0.300196 + 0.953878i \(0.597052\pi\)
\(464\) 15.1052 10.9745i 0.701240 0.509481i
\(465\) 0 0
\(466\) −7.82780 + 24.0915i −0.362616 + 1.11602i
\(467\) 9.10071 + 6.61206i 0.421131 + 0.305969i 0.778093 0.628150i \(-0.216187\pi\)
−0.356962 + 0.934119i \(0.616187\pi\)
\(468\) 29.6662 + 21.5538i 1.37132 + 0.996324i
\(469\) −2.86535 + 8.81864i −0.132310 + 0.407207i
\(470\) 0 0
\(471\) 8.92504 6.48442i 0.411244 0.298786i
\(472\) 1.95261 0.0898762
\(473\) 7.49007 0.429556i 0.344394 0.0197510i
\(474\) 5.32424 0.244550
\(475\) 0 0
\(476\) −2.08661 6.42192i −0.0956395 0.294348i
\(477\) −3.17988 + 9.78665i −0.145597 + 0.448100i
\(478\) 33.3784 + 24.2508i 1.52669 + 1.10921i
\(479\) −16.9621 12.3237i −0.775017 0.563083i 0.128462 0.991714i \(-0.458996\pi\)
−0.903479 + 0.428632i \(0.858996\pi\)
\(480\) 0 0
\(481\) −8.86200 27.2744i −0.404072 1.24361i
\(482\) −37.3174 + 27.1126i −1.69976 + 1.23495i
\(483\) 8.52053 0.387697
\(484\) 4.56960 22.5907i 0.207709 1.02685i
\(485\) 0 0
\(486\) 35.3849 25.7086i 1.60509 1.16617i
\(487\) 6.97424 + 21.4645i 0.316033 + 0.972649i 0.975327 + 0.220764i \(0.0708551\pi\)
−0.659294 + 0.751885i \(0.729145\pi\)
\(488\) 0.147244 0.453171i 0.00666543 0.0205141i
\(489\) −35.1377 25.5290i −1.58898 1.15446i
\(490\) 0 0
\(491\) −6.20389 + 19.0936i −0.279977 + 0.861682i 0.707882 + 0.706331i \(0.249651\pi\)
−0.987859 + 0.155351i \(0.950349\pi\)
\(492\) −9.81699 30.2136i −0.442584 1.36213i
\(493\) 13.2623 9.63565i 0.597306 0.433968i
\(494\) 30.0141 1.35040
\(495\) 0 0
\(496\) 1.58993 0.0713898
\(497\) 4.26088 3.09571i 0.191127 0.138862i
\(498\) 12.1196 + 37.3002i 0.543091 + 1.67146i
\(499\) 1.43750 4.42417i 0.0643513 0.198053i −0.913711 0.406364i \(-0.866797\pi\)
0.978063 + 0.208311i \(0.0667966\pi\)
\(500\) 0 0
\(501\) 19.4346 + 14.1200i 0.868272 + 0.630836i
\(502\) −10.6015 + 32.6280i −0.473167 + 1.45626i
\(503\) 4.01636 + 12.3611i 0.179081 + 0.551154i 0.999796 0.0201833i \(-0.00642496\pi\)
−0.820716 + 0.571337i \(0.806425\pi\)
\(504\) 0.582768 0.423406i 0.0259585 0.0188600i
\(505\) 0 0
\(506\) 17.4892 14.3057i 0.777488 0.635966i
\(507\) −19.5928 −0.870147
\(508\) −12.0191 + 8.73242i −0.533263 + 0.387439i
\(509\) 9.12976 + 28.0985i 0.404669 + 1.24544i 0.921171 + 0.389158i \(0.127234\pi\)
−0.516501 + 0.856286i \(0.672766\pi\)
\(510\) 0 0
\(511\) −1.12169 0.814952i −0.0496205 0.0360514i
\(512\) 26.0168 + 18.9023i 1.14979 + 0.835373i
\(513\) −2.30258 + 7.08662i −0.101661 + 0.312882i
\(514\) −2.96157 9.11478i −0.130629 0.402036i
\(515\) 0 0
\(516\) 12.4207 0.546793
\(517\) −5.20558 13.3638i −0.228941 0.587740i
\(518\) −12.3869 −0.544248
\(519\) −8.71293 + 6.33032i −0.382455 + 0.277870i
\(520\) 0 0
\(521\) −9.71896 + 29.9119i −0.425796 + 1.31046i 0.476435 + 0.879210i \(0.341929\pi\)
−0.902230 + 0.431254i \(0.858071\pi\)
\(522\) 31.1085 + 22.6016i 1.36158 + 0.989247i
\(523\) −7.29750 5.30194i −0.319097 0.231838i 0.416693 0.909047i \(-0.363189\pi\)
−0.735790 + 0.677210i \(0.763189\pi\)
\(524\) 4.67290 14.3817i 0.204137 0.628268i
\(525\) 0 0
\(526\) −29.6393 + 21.5342i −1.29234 + 0.938937i
\(527\) 1.39595 0.0608088
\(528\) −8.39166 + 31.9469i −0.365200 + 1.39031i
\(529\) −11.6672 −0.507269
\(530\) 0 0
\(531\) −12.1010 37.2431i −0.525140 1.61621i
\(532\) 2.04965 6.30817i 0.0888636 0.273494i
\(533\) 21.1805 + 15.3885i 0.917430 + 0.666552i
\(534\) 52.3279 + 38.0184i 2.26445 + 1.64522i
\(535\) 0 0
\(536\) 0.572121 + 1.76081i 0.0247119 + 0.0760553i
\(537\) −34.5494 + 25.1016i −1.49092 + 1.08321i
\(538\) 4.65046 0.200496
\(539\) −16.9300 10.8763i −0.729227 0.468473i
\(540\) 0 0
\(541\) 6.91720 5.02564i 0.297394 0.216069i −0.429075 0.903269i \(-0.641160\pi\)
0.726468 + 0.687200i \(0.241160\pi\)
\(542\) −0.503839 1.55066i −0.0216417 0.0666064i
\(543\) 4.49192 13.8247i 0.192767 0.593275i
\(544\) 21.8016 + 15.8398i 0.934737 + 0.679126i
\(545\) 0 0
\(546\) −7.16226 + 22.0432i −0.306516 + 0.943360i
\(547\) −10.4849 32.2693i −0.448304 1.37974i −0.878820 0.477154i \(-0.841668\pi\)
0.430516 0.902583i \(-0.358332\pi\)
\(548\) −14.3930 + 10.4571i −0.614838 + 0.446706i
\(549\) −9.55608 −0.407844
\(550\) 0 0
\(551\) 16.1028 0.686002
\(552\) 1.37637 0.999990i 0.0585821 0.0425624i
\(553\) 0.299637 + 0.922187i 0.0127418 + 0.0392154i
\(554\) 7.39974 22.7740i 0.314385 0.967577i
\(555\) 0 0
\(556\) −13.1206 9.53265i −0.556436 0.404274i
\(557\) −7.08904 + 21.8178i −0.300372 + 0.924451i 0.680991 + 0.732291i \(0.261549\pi\)
−0.981364 + 0.192160i \(0.938451\pi\)
\(558\) 1.01184 + 3.11413i 0.0428347 + 0.131832i
\(559\) −8.28110 + 6.01657i −0.350253 + 0.254474i
\(560\) 0 0
\(561\) −7.36788 + 28.0494i −0.311072 + 1.18425i
\(562\) −12.6061 −0.531757
\(563\) −7.50980 + 5.45619i −0.316500 + 0.229951i −0.734681 0.678413i \(-0.762668\pi\)
0.418180 + 0.908364i \(0.362668\pi\)
\(564\) −7.33731 22.5819i −0.308957 0.950871i
\(565\) 0 0
\(566\) −14.1546 10.2839i −0.594962 0.432266i
\(567\) 4.41071 + 3.20457i 0.185232 + 0.134579i
\(568\) 0.324963 1.00013i 0.0136352 0.0419647i
\(569\) 9.55701 + 29.4135i 0.400651 + 1.23308i 0.924473 + 0.381248i \(0.124506\pi\)
−0.523822 + 0.851828i \(0.675494\pi\)
\(570\) 0 0
\(571\) −2.63736 −0.110370 −0.0551851 0.998476i \(-0.517575\pi\)
−0.0551851 + 0.998476i \(0.517575\pi\)
\(572\) 11.4138 + 29.3017i 0.477237 + 1.22517i
\(573\) −57.1712 −2.38836
\(574\) 9.14848 6.64676i 0.381850 0.277430i
\(575\) 0 0
\(576\) −10.4494 + 32.1599i −0.435391 + 1.34000i
\(577\) 29.6347 + 21.5309i 1.23371 + 0.896342i 0.997163 0.0752785i \(-0.0239846\pi\)
0.236546 + 0.971620i \(0.423985\pi\)
\(578\) −9.60459 6.97814i −0.399498 0.290252i
\(579\) −18.2036 + 56.0249i −0.756516 + 2.32832i
\(580\) 0 0
\(581\) −5.77854 + 4.19835i −0.239734 + 0.174177i
\(582\) −16.0118 −0.663710
\(583\) −6.83051 + 5.58719i −0.282891 + 0.231398i
\(584\) −0.276837 −0.0114556
\(585\) 0 0
\(586\) −3.63360 11.1831i −0.150103 0.461968i
\(587\) 4.24973 13.0793i 0.175405 0.539842i −0.824246 0.566231i \(-0.808401\pi\)
0.999652 + 0.0263892i \(0.00840092\pi\)
\(588\) −26.9519 19.5817i −1.11148 0.807536i
\(589\) 1.10935 + 0.805989i 0.0457099 + 0.0332102i
\(590\) 0 0
\(591\) 20.8508 + 64.1723i 0.857689 + 2.63970i
\(592\) 19.4850 14.1567i 0.800829 0.581837i
\(593\) 20.1550 0.827668 0.413834 0.910352i \(-0.364189\pi\)
0.413834 + 0.910352i \(0.364189\pi\)
\(594\) −15.2336 + 0.873649i −0.625044 + 0.0358463i
\(595\) 0 0
\(596\) 28.6194 20.7932i 1.17230 0.851722i
\(597\) −13.7401 42.2878i −0.562346 1.73072i
\(598\) −9.52624 + 29.3187i −0.389557 + 1.19893i
\(599\) −3.49753 2.54110i −0.142905 0.103827i 0.514036 0.857769i \(-0.328150\pi\)
−0.656941 + 0.753942i \(0.728150\pi\)
\(600\) 0 0
\(601\) 11.1214 34.2281i 0.453650 1.39619i −0.419063 0.907957i \(-0.637641\pi\)
0.872713 0.488234i \(-0.162359\pi\)
\(602\) 1.36623 + 4.20484i 0.0556836 + 0.171376i
\(603\) 30.0391 21.8247i 1.22329 0.888771i
\(604\) −25.7358 −1.04717
\(605\) 0 0
\(606\) 80.5893 3.27372
\(607\) −32.0774 + 23.3056i −1.30198 + 0.945945i −0.999973 0.00736018i \(-0.997657\pi\)
−0.302009 + 0.953305i \(0.597657\pi\)
\(608\) 8.17999 + 25.1754i 0.331742 + 1.02100i
\(609\) −3.84261 + 11.8263i −0.155710 + 0.479227i
\(610\) 0 0
\(611\) 15.8305 + 11.5015i 0.640434 + 0.465303i
\(612\) −8.35556 + 25.7158i −0.337753 + 1.03950i
\(613\) −1.17887 3.62818i −0.0476139 0.146541i 0.924423 0.381369i \(-0.124547\pi\)
−0.972037 + 0.234828i \(0.924547\pi\)
\(614\) 30.2424 21.9724i 1.22049 0.886735i
\(615\) 0 0
\(616\) 0.616721 0.0353690i 0.0248484 0.00142506i
\(617\) 28.4055 1.14356 0.571781 0.820407i \(-0.306253\pi\)
0.571781 + 0.820407i \(0.306253\pi\)
\(618\) 41.8184 30.3828i 1.68218 1.22218i
\(619\) 7.43830 + 22.8927i 0.298971 + 0.920137i 0.981859 + 0.189614i \(0.0607236\pi\)
−0.682888 + 0.730523i \(0.739276\pi\)
\(620\) 0 0
\(621\) −6.19162 4.49848i −0.248461 0.180518i
\(622\) −18.5516 13.4786i −0.743853 0.540441i
\(623\) −3.64010 + 11.2031i −0.145837 + 0.448841i
\(624\) −13.9262 42.8603i −0.557492 1.71579i
\(625\) 0 0
\(626\) 10.3511 0.413714
\(627\) −22.0502 + 18.0365i −0.880599 + 0.720308i
\(628\) 8.82059 0.351980
\(629\) 17.1078 12.4296i 0.682135 0.495600i
\(630\) 0 0
\(631\) 5.90889 18.1857i 0.235229 0.723961i −0.761862 0.647740i \(-0.775714\pi\)
0.997091 0.0762213i \(-0.0242855\pi\)
\(632\) 0.156632 + 0.113800i 0.00623049 + 0.00452672i
\(633\) −12.3525 8.97463i −0.490969 0.356710i
\(634\) −7.38747 + 22.7363i −0.293394 + 0.902974i
\(635\) 0 0
\(636\) −11.8195 + 8.58735i −0.468673 + 0.340511i
\(637\) 27.4546 1.08779
\(638\) 11.9687 + 30.7263i 0.473847 + 1.21646i
\(639\) −21.0900 −0.834307
\(640\) 0 0
\(641\) 3.70172 + 11.3927i 0.146209 + 0.449985i 0.997165 0.0752526i \(-0.0239763\pi\)
−0.850955 + 0.525238i \(0.823976\pi\)
\(642\) 12.5233 38.5429i 0.494257 1.52117i
\(643\) −20.8248 15.1301i −0.821248 0.596672i 0.0958216 0.995399i \(-0.469452\pi\)
−0.917070 + 0.398727i \(0.869452\pi\)
\(644\) 5.51149 + 4.00433i 0.217183 + 0.157793i
\(645\) 0 0
\(646\) 6.83905 + 21.0484i 0.269079 + 0.828139i
\(647\) 7.52570 5.46774i 0.295866 0.214959i −0.429942 0.902856i \(-0.641466\pi\)
0.725808 + 0.687897i \(0.241466\pi\)
\(648\) 1.08858 0.0427636
\(649\) 8.53167 32.4800i 0.334897 1.27495i
\(650\) 0 0
\(651\) −0.856664 + 0.622403i −0.0335753 + 0.0243939i
\(652\) −10.7311 33.0268i −0.420261 1.29343i
\(653\) 11.5729 35.6177i 0.452882 1.39383i −0.420723 0.907189i \(-0.638223\pi\)
0.873604 0.486637i \(-0.161777\pi\)
\(654\) 42.2854 + 30.7221i 1.65349 + 1.20133i
\(655\) 0 0
\(656\) −6.79446 + 20.9112i −0.265279 + 0.816445i
\(657\) 1.71566 + 5.28025i 0.0669342 + 0.206002i
\(658\) 6.83766 4.96785i 0.266560 0.193667i
\(659\) −4.93753 −0.192339 −0.0961693 0.995365i \(-0.530659\pi\)
−0.0961693 + 0.995365i \(0.530659\pi\)
\(660\) 0 0
\(661\) −4.82155 −0.187537 −0.0937683 0.995594i \(-0.529891\pi\)
−0.0937683 + 0.995594i \(0.529891\pi\)
\(662\) 47.9194 34.8155i 1.86244 1.35314i
\(663\) −12.2272 37.6313i −0.474864 1.46148i
\(664\) −0.440710 + 1.35637i −0.0171029 + 0.0526372i
\(665\) 0 0
\(666\) 40.1286 + 29.1551i 1.55495 + 1.12974i
\(667\) −5.11091 + 15.7297i −0.197895 + 0.609058i
\(668\) 5.93532 + 18.2670i 0.229645 + 0.706773i
\(669\) 40.3292 29.3009i 1.55922 1.13284i
\(670\) 0 0
\(671\) −6.89474 4.42935i −0.266168 0.170993i
\(672\) −20.4415 −0.788548
\(673\) 26.6280 19.3464i 1.02644 0.745749i 0.0588431 0.998267i \(-0.481259\pi\)
0.967592 + 0.252518i \(0.0812588\pi\)
\(674\) 16.6619 + 51.2802i 0.641794 + 1.97524i
\(675\) 0 0
\(676\) −12.6736 9.20789i −0.487445 0.354150i
\(677\) 13.8686 + 10.0761i 0.533014 + 0.387258i 0.821484 0.570231i \(-0.193146\pi\)
−0.288470 + 0.957489i \(0.593146\pi\)
\(678\) 8.22448 25.3123i 0.315859 0.972114i
\(679\) −0.901110 2.77333i −0.0345814 0.106431i
\(680\) 0 0
\(681\) −74.5977 −2.85859
\(682\) −0.713386 + 2.71585i −0.0273170 + 0.103995i
\(683\) −19.3586 −0.740737 −0.370368 0.928885i \(-0.620769\pi\)
−0.370368 + 0.928885i \(0.620769\pi\)
\(684\) −21.4877 + 15.6117i −0.821602 + 0.596929i
\(685\) 0 0
\(686\) 7.89232 24.2901i 0.301330 0.927399i
\(687\) −53.8324 39.1115i −2.05383 1.49220i
\(688\) −6.95475 5.05292i −0.265148 0.192641i
\(689\) 3.72054 11.4506i 0.141741 0.436234i
\(690\) 0 0
\(691\) 7.39559 5.37321i 0.281342 0.204407i −0.438161 0.898897i \(-0.644370\pi\)
0.719502 + 0.694490i \(0.244370\pi\)
\(692\) −8.61097 −0.327340
\(693\) −4.49665 11.5438i −0.170814 0.438514i
\(694\) −8.72467 −0.331184
\(695\) 0 0
\(696\) 0.767250 + 2.36135i 0.0290825 + 0.0895068i
\(697\) −5.96554 + 18.3600i −0.225961 + 0.695436i
\(698\) −21.5610 15.6650i −0.816096 0.592929i
\(699\) 26.5383 + 19.2812i 1.00377 + 0.729281i
\(700\) 0 0
\(701\) −4.72594 14.5450i −0.178496 0.549355i 0.821279 0.570526i \(-0.193261\pi\)
−0.999776 + 0.0211707i \(0.993261\pi\)
\(702\) 16.8425 12.2368i 0.635678 0.461847i
\(703\) 20.7719 0.783428
\(704\) −22.4457 + 18.3601i −0.845956 + 0.691971i
\(705\) 0 0
\(706\) 41.7327 30.3206i 1.57063 1.14113i
\(707\) 4.53539 + 13.9585i 0.170571 + 0.524964i
\(708\) 17.1805 52.8760i 0.645681 1.98720i
\(709\) −34.7172 25.2235i −1.30383 0.947290i −0.303848 0.952721i \(-0.598271\pi\)
−0.999985 + 0.00543044i \(0.998271\pi\)
\(710\) 0 0
\(711\) 1.19986 3.69278i 0.0449982 0.138490i
\(712\) 0.726814 + 2.23690i 0.0272385 + 0.0838315i
\(713\) −1.13942 + 0.827834i −0.0426714 + 0.0310026i
\(714\) −17.0905 −0.639598
\(715\) 0 0
\(716\) −34.1450 −1.27606
\(717\) 43.2238 31.4039i 1.61422 1.17280i
\(718\) −16.4306 50.5682i −0.613184 1.88719i
\(719\) 1.48738 4.57768i 0.0554699 0.170719i −0.919483 0.393129i \(-0.871393\pi\)
0.974953 + 0.222411i \(0.0713925\pi\)
\(720\) 0 0
\(721\) 7.61592 + 5.53329i 0.283632 + 0.206071i
\(722\) 5.16378 15.8925i 0.192176 0.591457i
\(723\) 18.4584 + 56.8090i 0.686473 + 2.11275i
\(724\) 9.40269 6.83146i 0.349448 0.253889i
\(725\) 0 0
\(726\) −50.8053 28.6686i −1.88556 1.06399i
\(727\) −21.8922 −0.811937 −0.405969 0.913887i \(-0.633066\pi\)
−0.405969 + 0.913887i \(0.633066\pi\)
\(728\) −0.681853 + 0.495395i −0.0252712 + 0.0183606i
\(729\) −12.2694 37.7614i −0.454423 1.39857i
\(730\) 0 0
\(731\) −6.10627 4.43647i −0.225849 0.164089i
\(732\) −10.9762 7.97464i −0.405690 0.294751i
\(733\) −14.8419 + 45.6788i −0.548199 + 1.68718i 0.165060 + 0.986284i \(0.447218\pi\)
−0.713259 + 0.700901i \(0.752782\pi\)
\(734\) −1.26242 3.88533i −0.0465968 0.143410i
\(735\) 0 0
\(736\) −27.1885 −1.00218
\(737\) 31.7893 1.82312i 1.17097 0.0671554i
\(738\) −45.2820 −1.66685
\(739\) 27.5934 20.0478i 1.01504 0.737470i 0.0497805 0.998760i \(-0.484148\pi\)
0.965260 + 0.261290i \(0.0841478\pi\)
\(740\) 0 0
\(741\) 12.0106 36.9648i 0.441220 1.35794i
\(742\) −4.20720 3.05671i −0.154451 0.112215i
\(743\) 21.3906 + 15.5411i 0.784743 + 0.570149i 0.906399 0.422423i \(-0.138820\pi\)
−0.121656 + 0.992572i \(0.538820\pi\)
\(744\) −0.0653350 + 0.201080i −0.00239530 + 0.00737196i
\(745\) 0 0
\(746\) −14.5244 + 10.5526i −0.531777 + 0.386359i
\(747\) 28.6019 1.04649
\(748\) −17.9481 + 14.6811i −0.656247 + 0.536794i
\(749\) 7.38062 0.269682
\(750\) 0 0
\(751\) 14.1963 + 43.6918i 0.518032 + 1.59434i 0.777697 + 0.628639i \(0.216388\pi\)
−0.259666 + 0.965699i \(0.583612\pi\)
\(752\) −5.07825 + 15.6292i −0.185185 + 0.569939i
\(753\) 35.9417 + 26.1132i 1.30979 + 0.951617i
\(754\) −36.3977 26.4445i −1.32553 0.963052i
\(755\) 0 0
\(756\) −1.42168 4.37549i −0.0517061 0.159135i
\(757\) 24.9628 18.1365i 0.907288 0.659183i −0.0330398 0.999454i \(-0.510519\pi\)
0.940327 + 0.340271i \(0.110519\pi\)
\(758\) −42.6271 −1.54828
\(759\) −10.6201 27.2640i −0.385485 0.989620i
\(760\) 0 0
\(761\) 11.4860 8.34507i 0.416367 0.302508i −0.359807 0.933027i \(-0.617158\pi\)
0.776175 + 0.630518i \(0.217158\pi\)
\(762\) 11.6197 + 35.7618i 0.420938 + 1.29551i
\(763\) −2.94151 + 9.05303i −0.106490 + 0.327742i
\(764\) −36.9811 26.8684i −1.33793 0.972063i
\(765\) 0 0
\(766\) −16.2464 + 50.0012i −0.587005 + 1.80662i
\(767\) 14.1585 + 43.5754i 0.511234 + 1.57342i
\(768\) 30.4620 22.1319i 1.09920 0.798617i
\(769\) −30.0208 −1.08258 −0.541290 0.840836i \(-0.682064\pi\)
−0.541290 + 0.840836i \(0.682064\pi\)
\(770\) 0 0
\(771\) −12.4107 −0.446961
\(772\) −38.1046 + 27.6846i −1.37142 + 0.996392i
\(773\) −9.40320 28.9401i −0.338209 1.04090i −0.965119 0.261810i \(-0.915681\pi\)
0.626910 0.779092i \(-0.284319\pi\)
\(774\) 5.47091 16.8377i 0.196648 0.605220i
\(775\) 0 0
\(776\) −0.471046 0.342235i −0.0169096 0.0122855i
\(777\) −4.95680 + 15.2555i −0.177824 + 0.547287i
\(778\) 1.02796 + 3.16373i 0.0368541 + 0.113425i
\(779\) −15.3414 + 11.1461i −0.549661 + 0.399352i
\(780\) 0 0
\(781\) −15.2165 9.77544i −0.544488 0.349793i
\(782\) −22.7315 −0.812876
\(783\) 9.03612 6.56512i 0.322925 0.234618i
\(784\) 7.12510 + 21.9288i 0.254468 + 0.783172i
\(785\) 0 0
\(786\) −30.9642 22.4968i −1.10445 0.802433i
\(787\) −24.6465 17.9067i −0.878553 0.638306i 0.0543151 0.998524i \(-0.482702\pi\)
−0.932868 + 0.360218i \(0.882702\pi\)
\(788\) −16.6713 + 51.3089i −0.593890 + 1.82780i
\(789\) 14.6605 + 45.1205i 0.521929 + 1.60633i
\(790\) 0 0
\(791\) 4.84709 0.172343
\(792\) −2.08118 1.33700i −0.0739516 0.0475083i
\(793\) 11.1809 0.397044
\(794\) 27.3555 19.8749i 0.970810 0.705334i
\(795\) 0 0
\(796\) 10.9859 33.8112i 0.389385 1.19840i
\(797\) 26.7341 + 19.4235i 0.946970 + 0.688014i 0.950088 0.311981i \(-0.100992\pi\)
−0.00311796 + 0.999995i \(0.500992\pi\)
\(798\) −13.5816 9.86764i −0.480785 0.349311i
\(799\) −4.45870 + 13.7225i −0.157737 + 0.485466i
\(800\) 0 0
\(801\) 38.1613 27.7258i 1.34836 0.979642i
\(802\) −56.2421 −1.98598
\(803\) −1.20960 + 4.60494i −0.0426859 + 0.162505i
\(804\) 52.7160 1.85915
\(805\) 0 0
\(806\) −1.18388 3.64361i −0.0417004 0.128341i
\(807\) 1.86095 5.72743i 0.0655087 0.201615i
\(808\) 2.37083 + 1.72251i 0.0834056 + 0.0605977i
\(809\) −8.89072 6.45948i −0.312581 0.227103i 0.420422 0.907329i \(-0.361882\pi\)
−0.733003 + 0.680225i \(0.761882\pi\)
\(810\) 0 0
\(811\) 12.5951 + 38.7638i 0.442275 + 1.36118i 0.885445 + 0.464744i \(0.153854\pi\)
−0.443171 + 0.896437i \(0.646146\pi\)
\(812\) −8.04353 + 5.84397i −0.282273 + 0.205083i
\(813\) −2.11138 −0.0740494
\(814\) 15.4392 + 39.6355i 0.541142 + 1.38923i
\(815\) 0 0
\(816\) 26.8841 19.5324i 0.941130 0.683771i
\(817\) −2.29108 7.05121i −0.0801547 0.246691i
\(818\) −24.6595 + 75.8941i −0.862199 + 2.65358i
\(819\) 13.6746 + 9.93519i 0.477830 + 0.347164i
\(820\) 0 0
\(821\) 4.66851 14.3682i 0.162932 0.501454i −0.835946 0.548812i \(-0.815080\pi\)
0.998878 + 0.0473584i \(0.0150803\pi\)
\(822\) 13.9147 + 42.8250i 0.485330 + 1.49369i
\(823\) −29.4735 + 21.4138i −1.02738 + 0.746437i −0.967783 0.251786i \(-0.918982\pi\)
−0.0595989 + 0.998222i \(0.518982\pi\)
\(824\) 1.87964 0.0654805
\(825\) 0 0
\(826\) 19.7901 0.688585
\(827\) −3.07703 + 2.23560i −0.106999 + 0.0777393i −0.639998 0.768376i \(-0.721065\pi\)
0.532999 + 0.846116i \(0.321065\pi\)
\(828\) −8.43002 25.9449i −0.292963 0.901649i
\(829\) −8.43810 + 25.9698i −0.293067 + 0.901969i 0.690796 + 0.723049i \(0.257260\pi\)
−0.983864 + 0.178919i \(0.942740\pi\)
\(830\) 0 0
\(831\) −25.0870 18.2268i −0.870259 0.632280i
\(832\) 12.2261 37.6279i 0.423862 1.30451i
\(833\) 6.25584 + 19.2535i 0.216752 + 0.667094i
\(834\) −33.2085 + 24.1274i −1.14992 + 0.835464i
\(835\) 0 0
\(836\) −22.7396 + 1.30412i −0.786466 + 0.0451038i
\(837\) 0.951115 0.0328754
\(838\) 24.1998 17.5821i 0.835967 0.607365i
\(839\) 8.75291 + 26.9387i 0.302184 + 0.930026i 0.980713 + 0.195453i \(0.0626177\pi\)
−0.678529 + 0.734573i \(0.737382\pi\)
\(840\) 0 0
\(841\) 3.93381 + 2.85808i 0.135649 + 0.0985546i
\(842\) −17.6445 12.8195i −0.608070 0.441788i
\(843\) −5.04453 + 15.5255i −0.173743 + 0.534725i
\(844\) −3.77247 11.6105i −0.129854 0.399649i
\(845\) 0 0
\(846\) −33.8442 −1.16359
\(847\) 2.10635 10.4132i 0.0723750 0.357800i
\(848\) 10.1115 0.347232
\(849\) −18.3297 + 13.3173i −0.629073 + 0.457048i
\(850\) 0 0
\(851\) −6.59285 + 20.2907i −0.226000 + 0.695556i
\(852\) −24.2240 17.5998i −0.829902 0.602959i
\(853\) −6.74977 4.90400i −0.231108 0.167910i 0.466205 0.884677i \(-0.345621\pi\)
−0.697313 + 0.716767i \(0.745621\pi\)
\(854\) 1.49235 4.59298i 0.0510671 0.157168i
\(855\) 0 0
\(856\) 1.19223 0.866207i 0.0407497 0.0296064i
\(857\) −8.59547 −0.293616 −0.146808 0.989165i \(-0.546900\pi\)
−0.146808 + 0.989165i \(0.546900\pi\)
\(858\) 79.4609 4.55708i 2.71275 0.155576i
\(859\) 9.40807 0.320999 0.160500 0.987036i \(-0.448689\pi\)
0.160500 + 0.987036i \(0.448689\pi\)
\(860\) 0 0
\(861\) −4.52513 13.9269i −0.154216 0.474628i
\(862\) −20.1311 + 61.9571i −0.685667 + 2.11027i
\(863\) 8.35396 + 6.06951i 0.284372 + 0.206608i 0.720822 0.693120i \(-0.243764\pi\)
−0.436450 + 0.899728i \(0.643764\pi\)
\(864\) 14.8543 + 10.7922i 0.505352 + 0.367160i
\(865\) 0 0
\(866\) −0.239279 0.736426i −0.00813104 0.0250248i
\(867\) −12.4376 + 9.03644i −0.422403 + 0.306893i
\(868\) −0.846638 −0.0287368
\(869\) 2.57734 2.10820i 0.0874304 0.0715159i
\(870\) 0 0
\(871\) −35.1466 + 25.5355i −1.19090 + 0.865237i
\(872\) 0.587328 + 1.80761i 0.0198894 + 0.0612133i
\(873\) −3.60838 + 11.1055i −0.122125 + 0.375863i
\(874\) −18.0644 13.1246i −0.611038 0.443945i
\(875\) 0 0
\(876\) −2.43581 + 7.49665i −0.0822984 + 0.253288i
\(877\) 9.20969 + 28.3445i 0.310989 + 0.957126i 0.977374 + 0.211518i \(0.0678407\pi\)
−0.666385 + 0.745608i \(0.732159\pi\)
\(878\) 43.4398 31.5608i 1.46602 1.06513i
\(879\) −15.2269 −0.513591
\(880\) 0 0
\(881\) 30.1175 1.01469 0.507343 0.861744i \(-0.330628\pi\)
0.507343 + 0.861744i \(0.330628\pi\)
\(882\) −38.4167 + 27.9113i −1.29356 + 0.939824i
\(883\) 15.5627 + 47.8970i 0.523726 + 1.61186i 0.766822 + 0.641860i \(0.221837\pi\)
−0.243096 + 0.970002i \(0.578163\pi\)
\(884\) 9.77622 30.0881i 0.328810 1.01197i
\(885\) 0 0
\(886\) −23.7410 17.2488i −0.797593 0.579485i
\(887\) 12.7950 39.3789i 0.429613 1.32221i −0.468893 0.883255i \(-0.655347\pi\)
0.898507 0.438959i \(-0.144653\pi\)
\(888\) 0.989719 + 3.04604i 0.0332128 + 0.102218i
\(889\) −5.54021 + 4.02520i −0.185813 + 0.135001i
\(890\) 0 0
\(891\) 4.75642 18.1076i 0.159346 0.606628i
\(892\) 39.8572 1.33452
\(893\) −11.4663 + 8.33074i −0.383704 + 0.278777i
\(894\) −27.6683 85.1542i −0.925366 2.84798i
\(895\) 0 0
\(896\) −1.20409 0.874825i −0.0402259 0.0292258i
\(897\) 32.2964 + 23.4647i 1.07835 + 0.783464i
\(898\) −6.32481 + 19.4658i −0.211062 + 0.649581i
\(899\) −0.635162 1.95483i −0.0211838 0.0651971i
\(900\) 0 0
\(901\) 8.87793 0.295767
\(902\) −32.6711 20.9887i −1.08783 0.698848i
\(903\) 5.72532 0.190527
\(904\) 0.782977 0.568866i 0.0260414 0.0189202i
\(905\) 0 0
\(906\) −20.1287 + 61.9499i −0.668733 + 2.05815i
\(907\) 3.74749 + 2.72271i 0.124433 + 0.0904062i 0.648261 0.761418i \(-0.275496\pi\)
−0.523828 + 0.851824i \(0.675496\pi\)
\(908\) −48.2534 35.0582i −1.60135 1.16345i
\(909\) 18.1614 55.8951i 0.602376 1.85392i
\(910\) 0 0
\(911\) −5.64577 + 4.10189i −0.187053 + 0.135902i −0.677371 0.735642i \(-0.736881\pi\)
0.490318 + 0.871544i \(0.336881\pi\)
\(912\) 32.6419 1.08088
\(913\) 20.6363 + 13.2573i 0.682963 + 0.438752i
\(914\) −79.1032 −2.61650
\(915\) 0 0
\(916\) −16.4404 50.5984i −0.543207 1.67182i
\(917\) 2.15397 6.62923i 0.0711303 0.218916i
\(918\) 12.4192 + 9.02308i 0.409895 + 0.297806i
\(919\) 18.9477 + 13.7663i 0.625027 + 0.454109i 0.854674 0.519165i \(-0.173757\pi\)
−0.229647 + 0.973274i \(0.573757\pi\)
\(920\) 0 0
\(921\) −14.9589 46.0387i −0.492912 1.51703i
\(922\) 64.0671 46.5474i 2.10994 1.53296i
\(923\) 24.6758 0.812215
\(924\) 4.46857 17.0118i 0.147005 0.559647i
\(925\) 0 0
\(926\) −21.1507 + 15.3669i −0.695057 + 0.504988i
\(927\) −11.6488 35.8514i −0.382597 1.17751i
\(928\) 12.2615 37.7371i 0.402504 1.23878i
\(929\) 14.6355 + 10.6333i 0.480175 + 0.348868i 0.801394 0.598137i \(-0.204092\pi\)
−0.321218 + 0.947005i \(0.604092\pi\)
\(930\) 0 0
\(931\) −6.14504 + 18.9125i −0.201395 + 0.619831i
\(932\) 8.10480 + 24.9440i 0.265481 + 0.817068i
\(933\) −24.0237 + 17.4542i −0.786500 + 0.571426i
\(934\) 22.7646 0.744881
\(935\) 0 0
\(936\) 3.37495 0.110314
\(937\) −8.90696 + 6.47128i −0.290978 + 0.211408i −0.723691 0.690124i \(-0.757556\pi\)
0.432714 + 0.901531i \(0.357556\pi\)
\(938\) 5.79856 + 17.8461i 0.189330 + 0.582697i
\(939\) 4.14216 12.7483i 0.135174 0.416023i
\(940\) 0 0
\(941\) −27.3293 19.8559i −0.890908 0.647283i 0.0452063 0.998978i \(-0.485605\pi\)
−0.936115 + 0.351695i \(0.885605\pi\)
\(942\) 6.89886 21.2325i 0.224777 0.691793i
\(943\) −6.01870 18.5237i −0.195996 0.603213i
\(944\) −31.1305 + 22.6177i −1.01321 + 0.736142i
\(945\) 0 0
\(946\) 11.7517 9.61264i 0.382082 0.312534i
\(947\) −46.9853 −1.52682 −0.763409 0.645915i \(-0.776476\pi\)
−0.763409 + 0.645915i \(0.776476\pi\)
\(948\) 4.45982 3.24025i 0.144848 0.105238i
\(949\) −2.00736 6.17803i −0.0651618 0.200547i
\(950\) 0 0
\(951\) 25.0454 + 18.1966i 0.812154 + 0.590064i
\(952\) −0.502781 0.365292i −0.0162952 0.0118392i
\(953\) 13.1303 40.4110i 0.425333 1.30904i −0.477341 0.878718i \(-0.658400\pi\)
0.902675 0.430323i \(-0.141600\pi\)
\(954\) 6.43506 + 19.8051i 0.208343 + 0.641213i
\(955\) 0 0
\(956\) 42.7180 1.38160
\(957\) 42.6314 2.44491i 1.37808 0.0790328i
\(958\) −42.4291 −1.37082
\(959\) −6.63443 + 4.82019i −0.214237 + 0.155652i
\(960\) 0 0
\(961\) −9.52544 + 29.3163i −0.307272 + 0.945687i
\(962\) −46.9515 34.1123i −1.51378 1.09982i
\(963\) −23.9103 17.3719i −0.770499 0.559800i
\(964\) −14.7584 + 45.4216i −0.475335 + 1.46293i
\(965\) 0 0
\(966\) 13.9498 10.1351i 0.448826 0.326091i
\(967\) 54.1642 1.74180 0.870901 0.491458i \(-0.163536\pi\)
0.870901 + 0.491458i \(0.163536\pi\)
\(968\) −0.881863 1.92930i −0.0283442 0.0620101i
\(969\) 28.6596 0.920680
\(970\) 0 0
\(971\) 1.61878 + 4.98209i 0.0519491 + 0.159883i 0.973665 0.227982i \(-0.0732127\pi\)
−0.921716 + 0.387865i \(0.873213\pi\)
\(972\) 13.9941 43.0694i 0.448861 1.38145i
\(973\) −6.04791 4.39406i −0.193887 0.140867i
\(974\) 36.9500 + 26.8457i 1.18395 + 0.860193i
\(975\) 0 0
\(976\) 2.90169 + 8.93049i 0.0928809 + 0.285858i
\(977\) 6.29530 4.57381i 0.201405 0.146329i −0.482512 0.875890i \(-0.660275\pi\)
0.683916 + 0.729561i \(0.260275\pi\)
\(978\) −87.8938 −2.81053
\(979\) 40.3846 2.31606i 1.29070 0.0740216i
\(980\) 0 0
\(981\) 30.8376 22.4048i 0.984567 0.715330i
\(982\) 12.5547 + 38.6394i 0.400637 + 1.23303i
\(983\) 15.9186 48.9924i 0.507724 1.56261i −0.288419 0.957504i \(-0.593129\pi\)
0.796143 0.605109i \(-0.206871\pi\)
\(984\) −2.36547 1.71861i −0.0754083 0.0547873i
\(985\) 0 0
\(986\) 10.2515 31.5509i 0.326474 1.00478i
\(987\) −3.38213 10.4091i −0.107654 0.331326i
\(988\) 25.1411 18.2661i 0.799846 0.581122i
\(989\) 7.61503 0.242144
\(990\) 0 0
\(991\) −22.3382 −0.709596 −0.354798 0.934943i \(-0.615450\pi\)
−0.354798 + 0.934943i \(0.615450\pi\)
\(992\) 2.73356 1.98605i 0.0867906 0.0630571i
\(993\) −23.7025 72.9487i −0.752175 2.31496i
\(994\) 3.29357 10.1366i 0.104466 0.321512i
\(995\) 0 0
\(996\) 32.8522 + 23.8686i 1.04096 + 0.756304i
\(997\) 0.0570278 0.175514i 0.00180609 0.00555857i −0.950149 0.311795i \(-0.899070\pi\)
0.951955 + 0.306236i \(0.0990698\pi\)
\(998\) −2.90904 8.95311i −0.0920841 0.283406i
\(999\) 11.6562 8.46873i 0.368786 0.267939i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.h.d.201.4 16
5.2 odd 4 55.2.j.a.14.4 yes 16
5.3 odd 4 55.2.j.a.14.1 yes 16
5.4 even 2 inner 275.2.h.d.201.1 16
11.2 odd 10 3025.2.a.bk.1.8 8
11.4 even 5 inner 275.2.h.d.26.4 16
11.9 even 5 3025.2.a.bl.1.1 8
15.2 even 4 495.2.ba.a.289.1 16
15.8 even 4 495.2.ba.a.289.4 16
20.3 even 4 880.2.cd.c.289.1 16
20.7 even 4 880.2.cd.c.289.4 16
55.2 even 20 605.2.b.f.364.8 8
55.3 odd 20 605.2.j.h.269.1 16
55.4 even 10 inner 275.2.h.d.26.1 16
55.7 even 20 605.2.j.d.444.4 16
55.8 even 20 605.2.j.g.269.4 16
55.9 even 10 3025.2.a.bl.1.8 8
55.13 even 20 605.2.b.f.364.1 8
55.17 even 20 605.2.j.g.9.4 16
55.18 even 20 605.2.j.d.444.1 16
55.24 odd 10 3025.2.a.bk.1.1 8
55.27 odd 20 605.2.j.h.9.1 16
55.28 even 20 605.2.j.g.9.1 16
55.32 even 4 605.2.j.d.124.1 16
55.37 odd 20 55.2.j.a.4.1 16
55.38 odd 20 605.2.j.h.9.4 16
55.42 odd 20 605.2.b.g.364.1 8
55.43 even 4 605.2.j.d.124.4 16
55.47 odd 20 605.2.j.h.269.4 16
55.48 odd 20 55.2.j.a.4.4 yes 16
55.52 even 20 605.2.j.g.269.1 16
55.53 odd 20 605.2.b.g.364.8 8
165.92 even 20 495.2.ba.a.334.4 16
165.158 even 20 495.2.ba.a.334.1 16
220.103 even 20 880.2.cd.c.609.4 16
220.147 even 20 880.2.cd.c.609.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.j.a.4.1 16 55.37 odd 20
55.2.j.a.4.4 yes 16 55.48 odd 20
55.2.j.a.14.1 yes 16 5.3 odd 4
55.2.j.a.14.4 yes 16 5.2 odd 4
275.2.h.d.26.1 16 55.4 even 10 inner
275.2.h.d.26.4 16 11.4 even 5 inner
275.2.h.d.201.1 16 5.4 even 2 inner
275.2.h.d.201.4 16 1.1 even 1 trivial
495.2.ba.a.289.1 16 15.2 even 4
495.2.ba.a.289.4 16 15.8 even 4
495.2.ba.a.334.1 16 165.158 even 20
495.2.ba.a.334.4 16 165.92 even 20
605.2.b.f.364.1 8 55.13 even 20
605.2.b.f.364.8 8 55.2 even 20
605.2.b.g.364.1 8 55.42 odd 20
605.2.b.g.364.8 8 55.53 odd 20
605.2.j.d.124.1 16 55.32 even 4
605.2.j.d.124.4 16 55.43 even 4
605.2.j.d.444.1 16 55.18 even 20
605.2.j.d.444.4 16 55.7 even 20
605.2.j.g.9.1 16 55.28 even 20
605.2.j.g.9.4 16 55.17 even 20
605.2.j.g.269.1 16 55.52 even 20
605.2.j.g.269.4 16 55.8 even 20
605.2.j.h.9.1 16 55.27 odd 20
605.2.j.h.9.4 16 55.38 odd 20
605.2.j.h.269.1 16 55.3 odd 20
605.2.j.h.269.4 16 55.47 odd 20
880.2.cd.c.289.1 16 20.3 even 4
880.2.cd.c.289.4 16 20.7 even 4
880.2.cd.c.609.1 16 220.147 even 20
880.2.cd.c.609.4 16 220.103 even 20
3025.2.a.bk.1.1 8 55.24 odd 10
3025.2.a.bk.1.8 8 11.2 odd 10
3025.2.a.bl.1.1 8 11.9 even 5
3025.2.a.bl.1.8 8 55.9 even 10