Properties

Label 88.3.h.a.65.2
Level $88$
Weight $3$
Character 88.65
Analytic conductor $2.398$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [88,3,Mod(65,88)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(88, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("88.65"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 88.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.39782632637\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.1750426112.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 21x^{4} + 4x^{3} + 228x^{2} + 368x + 548 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 65.2
Root \(4.50331 + 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 88.65
Dual form 88.3.h.a.65.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.88824 q^{3} +5.11838 q^{5} +12.7373i q^{7} +6.11838 q^{9} +(10.0066 + 4.56811i) q^{11} +14.9148i q^{13} -19.9015 q^{15} +1.42357i q^{17} -29.0756i q^{19} -49.5255i q^{21} -11.8882 q^{23} +1.19781 q^{25} +11.2044 q^{27} +16.3383i q^{29} -16.8088 q^{31} +(-38.9081 - 17.7619i) q^{33} +65.1942i q^{35} +56.2507 q^{37} -57.9921i q^{39} +16.8489i q^{41} -36.1186i q^{43} +31.3162 q^{45} +21.8544 q^{47} -113.238 q^{49} -5.53517i q^{51} -0.185315 q^{53} +(51.2177 + 23.3813i) q^{55} +113.053i q^{57} +17.9264 q^{59} -77.0185i q^{61} +77.9315i q^{63} +76.3394i q^{65} -10.9412 q^{67} +46.2243 q^{69} +139.271 q^{71} -82.2022i q^{73} -4.65735 q^{75} +(-58.1853 + 127.457i) q^{77} +30.8506i q^{79} -98.6308 q^{81} -74.1713i q^{83} +7.28637i q^{85} -63.5273i q^{87} +9.98603 q^{89} -189.973 q^{91} +65.3566 q^{93} -148.820i q^{95} +82.3831 q^{97} +(61.2243 + 27.9494i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 6 q^{9} + 10 q^{11} - 52 q^{23} + 22 q^{25} + 32 q^{27} - 36 q^{31} - 64 q^{33} - 48 q^{37} + 172 q^{45} - 60 q^{47} - 170 q^{49} + 108 q^{53} + 172 q^{55} + 236 q^{59} - 292 q^{67} + 92 q^{69}+ \cdots + 182 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/88\mathbb{Z}\right)^\times\).

\(n\) \(23\) \(45\) \(57\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.88824 −1.29608 −0.648039 0.761607i \(-0.724411\pi\)
−0.648039 + 0.761607i \(0.724411\pi\)
\(4\) 0 0
\(5\) 5.11838 1.02368 0.511838 0.859082i \(-0.328965\pi\)
0.511838 + 0.859082i \(0.328965\pi\)
\(6\) 0 0
\(7\) 12.7373i 1.81961i 0.415035 + 0.909806i \(0.363769\pi\)
−0.415035 + 0.909806i \(0.636231\pi\)
\(8\) 0 0
\(9\) 6.11838 0.679820
\(10\) 0 0
\(11\) 10.0066 + 4.56811i 0.909692 + 0.415283i
\(12\) 0 0
\(13\) 14.9148i 1.14729i 0.819104 + 0.573645i \(0.194471\pi\)
−0.819104 + 0.573645i \(0.805529\pi\)
\(14\) 0 0
\(15\) −19.9015 −1.32676
\(16\) 0 0
\(17\) 1.42357i 0.0837394i 0.999123 + 0.0418697i \(0.0133314\pi\)
−0.999123 + 0.0418697i \(0.986669\pi\)
\(18\) 0 0
\(19\) 29.0756i 1.53030i −0.643855 0.765148i \(-0.722666\pi\)
0.643855 0.765148i \(-0.277334\pi\)
\(20\) 0 0
\(21\) 49.5255i 2.35836i
\(22\) 0 0
\(23\) −11.8882 −0.516880 −0.258440 0.966027i \(-0.583208\pi\)
−0.258440 + 0.966027i \(0.583208\pi\)
\(24\) 0 0
\(25\) 1.19781 0.0479123
\(26\) 0 0
\(27\) 11.2044 0.414979
\(28\) 0 0
\(29\) 16.3383i 0.563391i 0.959504 + 0.281695i \(0.0908967\pi\)
−0.959504 + 0.281695i \(0.909103\pi\)
\(30\) 0 0
\(31\) −16.8088 −0.542220 −0.271110 0.962548i \(-0.587391\pi\)
−0.271110 + 0.962548i \(0.587391\pi\)
\(32\) 0 0
\(33\) −38.9081 17.7619i −1.17903 0.538239i
\(34\) 0 0
\(35\) 65.1942i 1.86269i
\(36\) 0 0
\(37\) 56.2507 1.52029 0.760145 0.649754i \(-0.225128\pi\)
0.760145 + 0.649754i \(0.225128\pi\)
\(38\) 0 0
\(39\) 57.9921i 1.48698i
\(40\) 0 0
\(41\) 16.8489i 0.410948i 0.978663 + 0.205474i \(0.0658736\pi\)
−0.978663 + 0.205474i \(0.934126\pi\)
\(42\) 0 0
\(43\) 36.1186i 0.839968i −0.907532 0.419984i \(-0.862036\pi\)
0.907532 0.419984i \(-0.137964\pi\)
\(44\) 0 0
\(45\) 31.3162 0.695915
\(46\) 0 0
\(47\) 21.8544 0.464987 0.232493 0.972598i \(-0.425312\pi\)
0.232493 + 0.972598i \(0.425312\pi\)
\(48\) 0 0
\(49\) −113.238 −2.31098
\(50\) 0 0
\(51\) 5.53517i 0.108533i
\(52\) 0 0
\(53\) −0.185315 −0.00349651 −0.00174826 0.999998i \(-0.500556\pi\)
−0.00174826 + 0.999998i \(0.500556\pi\)
\(54\) 0 0
\(55\) 51.2177 + 23.3813i 0.931230 + 0.425115i
\(56\) 0 0
\(57\) 113.053i 1.98338i
\(58\) 0 0
\(59\) 17.9264 0.303838 0.151919 0.988393i \(-0.451455\pi\)
0.151919 + 0.988393i \(0.451455\pi\)
\(60\) 0 0
\(61\) 77.0185i 1.26260i −0.775540 0.631299i \(-0.782522\pi\)
0.775540 0.631299i \(-0.217478\pi\)
\(62\) 0 0
\(63\) 77.9315i 1.23701i
\(64\) 0 0
\(65\) 76.3394i 1.17445i
\(66\) 0 0
\(67\) −10.9412 −0.163302 −0.0816508 0.996661i \(-0.526019\pi\)
−0.0816508 + 0.996661i \(0.526019\pi\)
\(68\) 0 0
\(69\) 46.2243 0.669917
\(70\) 0 0
\(71\) 139.271 1.96156 0.980779 0.195123i \(-0.0625107\pi\)
0.980779 + 0.195123i \(0.0625107\pi\)
\(72\) 0 0
\(73\) 82.2022i 1.12606i −0.826437 0.563029i \(-0.809636\pi\)
0.826437 0.563029i \(-0.190364\pi\)
\(74\) 0 0
\(75\) −4.65735 −0.0620980
\(76\) 0 0
\(77\) −58.1853 + 127.457i −0.755653 + 1.65529i
\(78\) 0 0
\(79\) 30.8506i 0.390514i 0.980752 + 0.195257i \(0.0625541\pi\)
−0.980752 + 0.195257i \(0.937446\pi\)
\(80\) 0 0
\(81\) −98.6308 −1.21766
\(82\) 0 0
\(83\) 74.1713i 0.893631i −0.894626 0.446815i \(-0.852558\pi\)
0.894626 0.446815i \(-0.147442\pi\)
\(84\) 0 0
\(85\) 7.28637i 0.0857220i
\(86\) 0 0
\(87\) 63.5273i 0.730199i
\(88\) 0 0
\(89\) 9.98603 0.112203 0.0561013 0.998425i \(-0.482133\pi\)
0.0561013 + 0.998425i \(0.482133\pi\)
\(90\) 0 0
\(91\) −189.973 −2.08762
\(92\) 0 0
\(93\) 65.3566 0.702759
\(94\) 0 0
\(95\) 148.820i 1.56653i
\(96\) 0 0
\(97\) 82.3831 0.849311 0.424655 0.905355i \(-0.360395\pi\)
0.424655 + 0.905355i \(0.360395\pi\)
\(98\) 0 0
\(99\) 61.2243 + 27.9494i 0.618427 + 0.282318i
\(100\) 0 0
\(101\) 128.202i 1.26932i −0.772791 0.634661i \(-0.781140\pi\)
0.772791 0.634661i \(-0.218860\pi\)
\(102\) 0 0
\(103\) −48.0662 −0.466662 −0.233331 0.972397i \(-0.574963\pi\)
−0.233331 + 0.972397i \(0.574963\pi\)
\(104\) 0 0
\(105\) 253.491i 2.41420i
\(106\) 0 0
\(107\) 201.703i 1.88508i 0.334098 + 0.942538i \(0.391568\pi\)
−0.334098 + 0.942538i \(0.608432\pi\)
\(108\) 0 0
\(109\) 164.512i 1.50929i −0.656134 0.754644i \(-0.727809\pi\)
0.656134 0.754644i \(-0.272191\pi\)
\(110\) 0 0
\(111\) −218.716 −1.97042
\(112\) 0 0
\(113\) 85.1713 0.753728 0.376864 0.926269i \(-0.377002\pi\)
0.376864 + 0.926269i \(0.377002\pi\)
\(114\) 0 0
\(115\) −60.8485 −0.529117
\(116\) 0 0
\(117\) 91.2542i 0.779950i
\(118\) 0 0
\(119\) −18.1324 −0.152373
\(120\) 0 0
\(121\) 79.2647 + 91.4227i 0.655080 + 0.755559i
\(122\) 0 0
\(123\) 65.5124i 0.532621i
\(124\) 0 0
\(125\) −121.829 −0.974629
\(126\) 0 0
\(127\) 62.1786i 0.489595i 0.969574 + 0.244797i \(0.0787215\pi\)
−0.969574 + 0.244797i \(0.921279\pi\)
\(128\) 0 0
\(129\) 140.438i 1.08866i
\(130\) 0 0
\(131\) 65.6205i 0.500920i −0.968127 0.250460i \(-0.919418\pi\)
0.968127 0.250460i \(-0.0805818\pi\)
\(132\) 0 0
\(133\) 370.344 2.78454
\(134\) 0 0
\(135\) 57.3485 0.424804
\(136\) 0 0
\(137\) −123.279 −0.899845 −0.449922 0.893068i \(-0.648548\pi\)
−0.449922 + 0.893068i \(0.648548\pi\)
\(138\) 0 0
\(139\) 76.6909i 0.551733i 0.961196 + 0.275866i \(0.0889647\pi\)
−0.961196 + 0.275866i \(0.911035\pi\)
\(140\) 0 0
\(141\) −84.9750 −0.602659
\(142\) 0 0
\(143\) −68.1323 + 149.246i −0.476450 + 1.04368i
\(144\) 0 0
\(145\) 83.6258i 0.576729i
\(146\) 0 0
\(147\) 440.297 2.99522
\(148\) 0 0
\(149\) 203.286i 1.36433i 0.731196 + 0.682167i \(0.238962\pi\)
−0.731196 + 0.682167i \(0.761038\pi\)
\(150\) 0 0
\(151\) 109.100i 0.722519i −0.932465 0.361259i \(-0.882347\pi\)
0.932465 0.361259i \(-0.117653\pi\)
\(152\) 0 0
\(153\) 8.70993i 0.0569277i
\(154\) 0 0
\(155\) −86.0339 −0.555057
\(156\) 0 0
\(157\) −72.5435 −0.462060 −0.231030 0.972947i \(-0.574210\pi\)
−0.231030 + 0.972947i \(0.574210\pi\)
\(158\) 0 0
\(159\) 0.720549 0.00453175
\(160\) 0 0
\(161\) 151.424i 0.940520i
\(162\) 0 0
\(163\) −144.357 −0.885628 −0.442814 0.896613i \(-0.646020\pi\)
−0.442814 + 0.896613i \(0.646020\pi\)
\(164\) 0 0
\(165\) −199.146 90.9121i −1.20695 0.550983i
\(166\) 0 0
\(167\) 120.985i 0.724461i 0.932089 + 0.362231i \(0.117985\pi\)
−0.932089 + 0.362231i \(0.882015\pi\)
\(168\) 0 0
\(169\) −53.4501 −0.316273
\(170\) 0 0
\(171\) 177.896i 1.04033i
\(172\) 0 0
\(173\) 18.3329i 0.105970i −0.998595 0.0529852i \(-0.983126\pi\)
0.998595 0.0529852i \(-0.0168736\pi\)
\(174\) 0 0
\(175\) 15.2568i 0.0871817i
\(176\) 0 0
\(177\) −69.7023 −0.393798
\(178\) 0 0
\(179\) 257.827 1.44037 0.720186 0.693781i \(-0.244057\pi\)
0.720186 + 0.693781i \(0.244057\pi\)
\(180\) 0 0
\(181\) 83.1244 0.459251 0.229625 0.973279i \(-0.426250\pi\)
0.229625 + 0.973279i \(0.426250\pi\)
\(182\) 0 0
\(183\) 299.466i 1.63643i
\(184\) 0 0
\(185\) 287.913 1.55628
\(186\) 0 0
\(187\) −6.50302 + 14.2451i −0.0347755 + 0.0761770i
\(188\) 0 0
\(189\) 142.714i 0.755100i
\(190\) 0 0
\(191\) 158.747 0.831137 0.415568 0.909562i \(-0.363583\pi\)
0.415568 + 0.909562i \(0.363583\pi\)
\(192\) 0 0
\(193\) 212.675i 1.10194i 0.834524 + 0.550971i \(0.185743\pi\)
−0.834524 + 0.550971i \(0.814257\pi\)
\(194\) 0 0
\(195\) 296.826i 1.52218i
\(196\) 0 0
\(197\) 36.6530i 0.186056i 0.995664 + 0.0930279i \(0.0296546\pi\)
−0.995664 + 0.0930279i \(0.970345\pi\)
\(198\) 0 0
\(199\) −141.828 −0.712703 −0.356352 0.934352i \(-0.615979\pi\)
−0.356352 + 0.934352i \(0.615979\pi\)
\(200\) 0 0
\(201\) 42.5420 0.211652
\(202\) 0 0
\(203\) −208.106 −1.02515
\(204\) 0 0
\(205\) 86.2390i 0.420678i
\(206\) 0 0
\(207\) −72.7367 −0.351385
\(208\) 0 0
\(209\) 132.821 290.948i 0.635505 1.39210i
\(210\) 0 0
\(211\) 28.0451i 0.132915i 0.997789 + 0.0664576i \(0.0211697\pi\)
−0.997789 + 0.0664576i \(0.978830\pi\)
\(212\) 0 0
\(213\) −541.517 −2.54233
\(214\) 0 0
\(215\) 184.869i 0.859855i
\(216\) 0 0
\(217\) 214.098i 0.986629i
\(218\) 0 0
\(219\) 319.622i 1.45946i
\(220\) 0 0
\(221\) −21.2322 −0.0960733
\(222\) 0 0
\(223\) −93.6765 −0.420074 −0.210037 0.977693i \(-0.567358\pi\)
−0.210037 + 0.977693i \(0.567358\pi\)
\(224\) 0 0
\(225\) 7.32863 0.0325717
\(226\) 0 0
\(227\) 325.742i 1.43499i −0.696565 0.717494i \(-0.745289\pi\)
0.696565 0.717494i \(-0.254711\pi\)
\(228\) 0 0
\(229\) −31.5964 −0.137976 −0.0689878 0.997618i \(-0.521977\pi\)
−0.0689878 + 0.997618i \(0.521977\pi\)
\(230\) 0 0
\(231\) 226.238 495.583i 0.979386 2.14538i
\(232\) 0 0
\(233\) 85.6680i 0.367674i −0.982957 0.183837i \(-0.941148\pi\)
0.982957 0.183837i \(-0.0588518\pi\)
\(234\) 0 0
\(235\) 111.859 0.475996
\(236\) 0 0
\(237\) 119.955i 0.506137i
\(238\) 0 0
\(239\) 264.111i 1.10507i −0.833491 0.552533i \(-0.813661\pi\)
0.833491 0.552533i \(-0.186339\pi\)
\(240\) 0 0
\(241\) 209.659i 0.869955i −0.900441 0.434978i \(-0.856756\pi\)
0.900441 0.434978i \(-0.143244\pi\)
\(242\) 0 0
\(243\) 282.660 1.16321
\(244\) 0 0
\(245\) −579.596 −2.36570
\(246\) 0 0
\(247\) 433.656 1.75569
\(248\) 0 0
\(249\) 288.396i 1.15822i
\(250\) 0 0
\(251\) −406.438 −1.61928 −0.809638 0.586930i \(-0.800336\pi\)
−0.809638 + 0.586930i \(0.800336\pi\)
\(252\) 0 0
\(253\) −118.961 54.3068i −0.470202 0.214651i
\(254\) 0 0
\(255\) 28.3311i 0.111102i
\(256\) 0 0
\(257\) −200.291 −0.779343 −0.389672 0.920954i \(-0.627411\pi\)
−0.389672 + 0.920954i \(0.627411\pi\)
\(258\) 0 0
\(259\) 716.481i 2.76634i
\(260\) 0 0
\(261\) 99.9641i 0.383004i
\(262\) 0 0
\(263\) 86.1641i 0.327620i 0.986492 + 0.163810i \(0.0523784\pi\)
−0.986492 + 0.163810i \(0.947622\pi\)
\(264\) 0 0
\(265\) −0.948513 −0.00357929
\(266\) 0 0
\(267\) −38.8280 −0.145423
\(268\) 0 0
\(269\) 312.768 1.16270 0.581352 0.813652i \(-0.302524\pi\)
0.581352 + 0.813652i \(0.302524\pi\)
\(270\) 0 0
\(271\) 64.5578i 0.238221i 0.992881 + 0.119110i \(0.0380042\pi\)
−0.992881 + 0.119110i \(0.961996\pi\)
\(272\) 0 0
\(273\) 738.662 2.70572
\(274\) 0 0
\(275\) 11.9860 + 5.47171i 0.0435854 + 0.0198971i
\(276\) 0 0
\(277\) 145.687i 0.525945i 0.964803 + 0.262973i \(0.0847029\pi\)
−0.964803 + 0.262973i \(0.915297\pi\)
\(278\) 0 0
\(279\) −102.843 −0.368612
\(280\) 0 0
\(281\) 335.693i 1.19464i 0.802005 + 0.597318i \(0.203767\pi\)
−0.802005 + 0.597318i \(0.796233\pi\)
\(282\) 0 0
\(283\) 73.8343i 0.260899i 0.991455 + 0.130449i \(0.0416420\pi\)
−0.991455 + 0.130449i \(0.958358\pi\)
\(284\) 0 0
\(285\) 578.647i 2.03034i
\(286\) 0 0
\(287\) −214.609 −0.747766
\(288\) 0 0
\(289\) 286.973 0.992988
\(290\) 0 0
\(291\) −320.325 −1.10077
\(292\) 0 0
\(293\) 335.182i 1.14397i −0.820265 0.571983i \(-0.806174\pi\)
0.820265 0.571983i \(-0.193826\pi\)
\(294\) 0 0
\(295\) 91.7544 0.311032
\(296\) 0 0
\(297\) 112.118 + 51.1831i 0.377503 + 0.172334i
\(298\) 0 0
\(299\) 177.310i 0.593011i
\(300\) 0 0
\(301\) 460.053 1.52841
\(302\) 0 0
\(303\) 498.478i 1.64514i
\(304\) 0 0
\(305\) 394.210i 1.29249i
\(306\) 0 0
\(307\) 289.197i 0.942011i −0.882130 0.471005i \(-0.843891\pi\)
0.882130 0.471005i \(-0.156109\pi\)
\(308\) 0 0
\(309\) 186.893 0.604830
\(310\) 0 0
\(311\) 86.6486 0.278613 0.139306 0.990249i \(-0.455513\pi\)
0.139306 + 0.990249i \(0.455513\pi\)
\(312\) 0 0
\(313\) −394.046 −1.25893 −0.629467 0.777027i \(-0.716727\pi\)
−0.629467 + 0.777027i \(0.716727\pi\)
\(314\) 0 0
\(315\) 398.883i 1.26630i
\(316\) 0 0
\(317\) −207.808 −0.655546 −0.327773 0.944756i \(-0.606298\pi\)
−0.327773 + 0.944756i \(0.606298\pi\)
\(318\) 0 0
\(319\) −74.6353 + 163.491i −0.233967 + 0.512512i
\(320\) 0 0
\(321\) 784.270i 2.44321i
\(322\) 0 0
\(323\) 41.3911 0.128146
\(324\) 0 0
\(325\) 17.8650i 0.0549692i
\(326\) 0 0
\(327\) 639.663i 1.95616i
\(328\) 0 0
\(329\) 278.365i 0.846095i
\(330\) 0 0
\(331\) −487.682 −1.47336 −0.736680 0.676241i \(-0.763608\pi\)
−0.736680 + 0.676241i \(0.763608\pi\)
\(332\) 0 0
\(333\) 344.163 1.03352
\(334\) 0 0
\(335\) −56.0012 −0.167168
\(336\) 0 0
\(337\) 388.113i 1.15167i 0.817566 + 0.575835i \(0.195323\pi\)
−0.817566 + 0.575835i \(0.804677\pi\)
\(338\) 0 0
\(339\) −331.166 −0.976891
\(340\) 0 0
\(341\) −168.199 76.7845i −0.493253 0.225175i
\(342\) 0 0
\(343\) 818.220i 2.38548i
\(344\) 0 0
\(345\) 236.593 0.685778
\(346\) 0 0
\(347\) 107.644i 0.310212i −0.987898 0.155106i \(-0.950428\pi\)
0.987898 0.155106i \(-0.0495719\pi\)
\(348\) 0 0
\(349\) 304.548i 0.872629i −0.899794 0.436315i \(-0.856283\pi\)
0.899794 0.436315i \(-0.143717\pi\)
\(350\) 0 0
\(351\) 167.111i 0.476100i
\(352\) 0 0
\(353\) 300.542 0.851393 0.425697 0.904866i \(-0.360029\pi\)
0.425697 + 0.904866i \(0.360029\pi\)
\(354\) 0 0
\(355\) 712.840 2.00800
\(356\) 0 0
\(357\) 70.5030 0.197487
\(358\) 0 0
\(359\) 254.389i 0.708605i −0.935131 0.354302i \(-0.884718\pi\)
0.935131 0.354302i \(-0.115282\pi\)
\(360\) 0 0
\(361\) −484.391 −1.34180
\(362\) 0 0
\(363\) −308.200 355.473i −0.849035 0.979264i
\(364\) 0 0
\(365\) 420.742i 1.15272i
\(366\) 0 0
\(367\) −421.179 −1.14763 −0.573814 0.818986i \(-0.694537\pi\)
−0.573814 + 0.818986i \(0.694537\pi\)
\(368\) 0 0
\(369\) 103.088i 0.279371i
\(370\) 0 0
\(371\) 2.36041i 0.00636229i
\(372\) 0 0
\(373\) 147.279i 0.394850i 0.980318 + 0.197425i \(0.0632578\pi\)
−0.980318 + 0.197425i \(0.936742\pi\)
\(374\) 0 0
\(375\) 473.699 1.26320
\(376\) 0 0
\(377\) −243.682 −0.646372
\(378\) 0 0
\(379\) 76.7735 0.202569 0.101284 0.994858i \(-0.467705\pi\)
0.101284 + 0.994858i \(0.467705\pi\)
\(380\) 0 0
\(381\) 241.765i 0.634554i
\(382\) 0 0
\(383\) 434.879 1.13546 0.567728 0.823216i \(-0.307823\pi\)
0.567728 + 0.823216i \(0.307823\pi\)
\(384\) 0 0
\(385\) −297.815 + 652.373i −0.773544 + 1.69448i
\(386\) 0 0
\(387\) 220.987i 0.571027i
\(388\) 0 0
\(389\) 506.077 1.30097 0.650485 0.759519i \(-0.274566\pi\)
0.650485 + 0.759519i \(0.274566\pi\)
\(390\) 0 0
\(391\) 16.9237i 0.0432832i
\(392\) 0 0
\(393\) 255.148i 0.649232i
\(394\) 0 0
\(395\) 157.905i 0.399760i
\(396\) 0 0
\(397\) −275.285 −0.693413 −0.346707 0.937974i \(-0.612700\pi\)
−0.346707 + 0.937974i \(0.612700\pi\)
\(398\) 0 0
\(399\) −1439.99 −3.60899
\(400\) 0 0
\(401\) −469.509 −1.17085 −0.585423 0.810728i \(-0.699071\pi\)
−0.585423 + 0.810728i \(0.699071\pi\)
\(402\) 0 0
\(403\) 250.699i 0.622083i
\(404\) 0 0
\(405\) −504.830 −1.24649
\(406\) 0 0
\(407\) 562.879 + 256.960i 1.38300 + 0.631350i
\(408\) 0 0
\(409\) 682.090i 1.66770i −0.551990 0.833851i \(-0.686131\pi\)
0.551990 0.833851i \(-0.313869\pi\)
\(410\) 0 0
\(411\) 479.337 1.16627
\(412\) 0 0
\(413\) 228.334i 0.552867i
\(414\) 0 0
\(415\) 379.637i 0.914788i
\(416\) 0 0
\(417\) 298.192i 0.715089i
\(418\) 0 0
\(419\) 212.596 0.507388 0.253694 0.967284i \(-0.418354\pi\)
0.253694 + 0.967284i \(0.418354\pi\)
\(420\) 0 0
\(421\) 347.762 0.826037 0.413019 0.910723i \(-0.364474\pi\)
0.413019 + 0.910723i \(0.364474\pi\)
\(422\) 0 0
\(423\) 133.713 0.316107
\(424\) 0 0
\(425\) 1.70516i 0.00401214i
\(426\) 0 0
\(427\) 981.006 2.29744
\(428\) 0 0
\(429\) 264.914 580.305i 0.617516 1.35269i
\(430\) 0 0
\(431\) 392.374i 0.910381i 0.890394 + 0.455191i \(0.150429\pi\)
−0.890394 + 0.455191i \(0.849571\pi\)
\(432\) 0 0
\(433\) −554.325 −1.28020 −0.640099 0.768293i \(-0.721107\pi\)
−0.640099 + 0.768293i \(0.721107\pi\)
\(434\) 0 0
\(435\) 325.157i 0.747487i
\(436\) 0 0
\(437\) 345.658i 0.790979i
\(438\) 0 0
\(439\) 130.153i 0.296477i 0.988952 + 0.148239i \(0.0473603\pi\)
−0.988952 + 0.148239i \(0.952640\pi\)
\(440\) 0 0
\(441\) −692.834 −1.57105
\(442\) 0 0
\(443\) 107.762 0.243254 0.121627 0.992576i \(-0.461189\pi\)
0.121627 + 0.992576i \(0.461189\pi\)
\(444\) 0 0
\(445\) 51.1123 0.114859
\(446\) 0 0
\(447\) 790.424i 1.76829i
\(448\) 0 0
\(449\) −86.8082 −0.193337 −0.0966683 0.995317i \(-0.530819\pi\)
−0.0966683 + 0.995317i \(0.530819\pi\)
\(450\) 0 0
\(451\) −76.9676 + 168.600i −0.170660 + 0.373837i
\(452\) 0 0
\(453\) 424.208i 0.936441i
\(454\) 0 0
\(455\) −972.356 −2.13705
\(456\) 0 0
\(457\) 358.902i 0.785344i 0.919679 + 0.392672i \(0.128449\pi\)
−0.919679 + 0.392672i \(0.871551\pi\)
\(458\) 0 0
\(459\) 15.9503i 0.0347500i
\(460\) 0 0
\(461\) 463.660i 1.00577i 0.864353 + 0.502885i \(0.167728\pi\)
−0.864353 + 0.502885i \(0.832272\pi\)
\(462\) 0 0
\(463\) −21.6620 −0.0467862 −0.0233931 0.999726i \(-0.507447\pi\)
−0.0233931 + 0.999726i \(0.507447\pi\)
\(464\) 0 0
\(465\) 334.520 0.719398
\(466\) 0 0
\(467\) 383.773 0.821784 0.410892 0.911684i \(-0.365217\pi\)
0.410892 + 0.911684i \(0.365217\pi\)
\(468\) 0 0
\(469\) 139.361i 0.297145i
\(470\) 0 0
\(471\) 282.066 0.598866
\(472\) 0 0
\(473\) 164.994 361.425i 0.348824 0.764112i
\(474\) 0 0
\(475\) 34.8269i 0.0733199i
\(476\) 0 0
\(477\) −1.13383 −0.00237700
\(478\) 0 0
\(479\) 437.216i 0.912768i 0.889783 + 0.456384i \(0.150856\pi\)
−0.889783 + 0.456384i \(0.849144\pi\)
\(480\) 0 0
\(481\) 838.966i 1.74421i
\(482\) 0 0
\(483\) 588.771i 1.21899i
\(484\) 0 0
\(485\) 421.668 0.869419
\(486\) 0 0
\(487\) −158.744 −0.325963 −0.162981 0.986629i \(-0.552111\pi\)
−0.162981 + 0.986629i \(0.552111\pi\)
\(488\) 0 0
\(489\) 561.296 1.14784
\(490\) 0 0
\(491\) 899.040i 1.83104i 0.402273 + 0.915520i \(0.368220\pi\)
−0.402273 + 0.915520i \(0.631780\pi\)
\(492\) 0 0
\(493\) −23.2587 −0.0471780
\(494\) 0 0
\(495\) 313.369 + 143.056i 0.633069 + 0.289002i
\(496\) 0 0
\(497\) 1773.93i 3.56927i
\(498\) 0 0
\(499\) −501.946 −1.00590 −0.502951 0.864315i \(-0.667753\pi\)
−0.502951 + 0.864315i \(0.667753\pi\)
\(500\) 0 0
\(501\) 470.418i 0.938959i
\(502\) 0 0
\(503\) 245.501i 0.488074i −0.969766 0.244037i \(-0.921528\pi\)
0.969766 0.244037i \(-0.0784718\pi\)
\(504\) 0 0
\(505\) 656.184i 1.29937i
\(506\) 0 0
\(507\) 207.827 0.409914
\(508\) 0 0
\(509\) −9.33172 −0.0183334 −0.00916672 0.999958i \(-0.502918\pi\)
−0.00916672 + 0.999958i \(0.502918\pi\)
\(510\) 0 0
\(511\) 1047.03 2.04899
\(512\) 0 0
\(513\) 325.775i 0.635040i
\(514\) 0 0
\(515\) −246.021 −0.477710
\(516\) 0 0
\(517\) 218.688 + 99.8332i 0.422995 + 0.193101i
\(518\) 0 0
\(519\) 71.2826i 0.137346i
\(520\) 0 0
\(521\) 862.330 1.65514 0.827572 0.561360i \(-0.189722\pi\)
0.827572 + 0.561360i \(0.189722\pi\)
\(522\) 0 0
\(523\) 391.948i 0.749423i −0.927142 0.374711i \(-0.877742\pi\)
0.927142 0.374711i \(-0.122258\pi\)
\(524\) 0 0
\(525\) 59.3220i 0.112994i
\(526\) 0 0
\(527\) 23.9285i 0.0454051i
\(528\) 0 0
\(529\) −387.670 −0.732835
\(530\) 0 0
\(531\) 109.681 0.206555
\(532\) 0 0
\(533\) −251.297 −0.471477
\(534\) 0 0
\(535\) 1032.39i 1.92971i
\(536\) 0 0
\(537\) −1002.49 −1.86683
\(538\) 0 0
\(539\) −1133.13 517.285i −2.10228 0.959712i
\(540\) 0 0
\(541\) 238.052i 0.440023i −0.975497 0.220011i \(-0.929391\pi\)
0.975497 0.220011i \(-0.0706095\pi\)
\(542\) 0 0
\(543\) −323.207 −0.595225
\(544\) 0 0
\(545\) 842.037i 1.54502i
\(546\) 0 0
\(547\) 417.066i 0.762461i −0.924480 0.381230i \(-0.875500\pi\)
0.924480 0.381230i \(-0.124500\pi\)
\(548\) 0 0
\(549\) 471.228i 0.858339i
\(550\) 0 0
\(551\) 475.047 0.862154
\(552\) 0 0
\(553\) −392.953 −0.710584
\(554\) 0 0
\(555\) −1119.47 −2.01707
\(556\) 0 0
\(557\) 151.232i 0.271513i −0.990742 0.135756i \(-0.956654\pi\)
0.990742 0.135756i \(-0.0433464\pi\)
\(558\) 0 0
\(559\) 538.700 0.963686
\(560\) 0 0
\(561\) 25.2853 55.3883i 0.0450718 0.0987314i
\(562\) 0 0
\(563\) 875.506i 1.55507i 0.628838 + 0.777536i \(0.283531\pi\)
−0.628838 + 0.777536i \(0.716469\pi\)
\(564\) 0 0
\(565\) 435.939 0.771573
\(566\) 0 0
\(567\) 1256.29i 2.21568i
\(568\) 0 0
\(569\) 706.404i 1.24148i −0.784015 0.620741i \(-0.786832\pi\)
0.784015 0.620741i \(-0.213168\pi\)
\(570\) 0 0
\(571\) 944.530i 1.65417i −0.562078 0.827084i \(-0.689998\pi\)
0.562078 0.827084i \(-0.310002\pi\)
\(572\) 0 0
\(573\) −617.246 −1.07722
\(574\) 0 0
\(575\) −14.2398 −0.0247649
\(576\) 0 0
\(577\) −638.796 −1.10710 −0.553549 0.832816i \(-0.686727\pi\)
−0.553549 + 0.832816i \(0.686727\pi\)
\(578\) 0 0
\(579\) 826.930i 1.42820i
\(580\) 0 0
\(581\) 944.741 1.62606
\(582\) 0 0
\(583\) −1.85438 0.846540i −0.00318075 0.00145204i
\(584\) 0 0
\(585\) 467.073i 0.798416i
\(586\) 0 0
\(587\) 499.575 0.851065 0.425532 0.904943i \(-0.360087\pi\)
0.425532 + 0.904943i \(0.360087\pi\)
\(588\) 0 0
\(589\) 488.726i 0.829756i
\(590\) 0 0
\(591\) 142.515i 0.241143i
\(592\) 0 0
\(593\) 71.9478i 0.121329i −0.998158 0.0606643i \(-0.980678\pi\)
0.998158 0.0606643i \(-0.0193219\pi\)
\(594\) 0 0
\(595\) −92.8085 −0.155981
\(596\) 0 0
\(597\) 551.460 0.923719
\(598\) 0 0
\(599\) −770.834 −1.28687 −0.643434 0.765502i \(-0.722491\pi\)
−0.643434 + 0.765502i \(0.722491\pi\)
\(600\) 0 0
\(601\) 545.840i 0.908219i 0.890946 + 0.454110i \(0.150043\pi\)
−0.890946 + 0.454110i \(0.849957\pi\)
\(602\) 0 0
\(603\) −66.9424 −0.111016
\(604\) 0 0
\(605\) 405.707 + 467.936i 0.670590 + 0.773448i
\(606\) 0 0
\(607\) 659.902i 1.08715i 0.839360 + 0.543576i \(0.182930\pi\)
−0.839360 + 0.543576i \(0.817070\pi\)
\(608\) 0 0
\(609\) 809.165 1.32868
\(610\) 0 0
\(611\) 325.953i 0.533474i
\(612\) 0 0
\(613\) 752.909i 1.22824i −0.789214 0.614118i \(-0.789512\pi\)
0.789214 0.614118i \(-0.210488\pi\)
\(614\) 0 0
\(615\) 335.317i 0.545232i
\(616\) 0 0
\(617\) −49.7497 −0.0806316 −0.0403158 0.999187i \(-0.512836\pi\)
−0.0403158 + 0.999187i \(0.512836\pi\)
\(618\) 0 0
\(619\) 501.926 0.810866 0.405433 0.914125i \(-0.367121\pi\)
0.405433 + 0.914125i \(0.367121\pi\)
\(620\) 0 0
\(621\) −133.201 −0.214494
\(622\) 0 0
\(623\) 127.195i 0.204165i
\(624\) 0 0
\(625\) −653.510 −1.04562
\(626\) 0 0
\(627\) −516.438 + 1131.28i −0.823665 + 1.80427i
\(628\) 0 0
\(629\) 80.0768i 0.127308i
\(630\) 0 0
\(631\) −545.597 −0.864655 −0.432327 0.901717i \(-0.642307\pi\)
−0.432327 + 0.901717i \(0.642307\pi\)
\(632\) 0 0
\(633\) 109.046i 0.172268i
\(634\) 0 0
\(635\) 318.253i 0.501187i
\(636\) 0 0
\(637\) 1688.92i 2.65137i
\(638\) 0 0
\(639\) 852.110 1.33351
\(640\) 0 0
\(641\) −450.576 −0.702927 −0.351463 0.936202i \(-0.614316\pi\)
−0.351463 + 0.936202i \(0.614316\pi\)
\(642\) 0 0
\(643\) −864.073 −1.34382 −0.671908 0.740635i \(-0.734525\pi\)
−0.671908 + 0.740635i \(0.734525\pi\)
\(644\) 0 0
\(645\) 718.813i 1.11444i
\(646\) 0 0
\(647\) −1200.90 −1.85610 −0.928052 0.372450i \(-0.878518\pi\)
−0.928052 + 0.372450i \(0.878518\pi\)
\(648\) 0 0
\(649\) 179.383 + 81.8900i 0.276399 + 0.126179i
\(650\) 0 0
\(651\) 832.465i 1.27875i
\(652\) 0 0
\(653\) 272.815 0.417787 0.208894 0.977938i \(-0.433014\pi\)
0.208894 + 0.977938i \(0.433014\pi\)
\(654\) 0 0
\(655\) 335.871i 0.512780i
\(656\) 0 0
\(657\) 502.944i 0.765516i
\(658\) 0 0
\(659\) 328.580i 0.498604i −0.968426 0.249302i \(-0.919799\pi\)
0.968426 0.249302i \(-0.0802011\pi\)
\(660\) 0 0
\(661\) 123.900 0.187444 0.0937220 0.995598i \(-0.470124\pi\)
0.0937220 + 0.995598i \(0.470124\pi\)
\(662\) 0 0
\(663\) 82.5558 0.124519
\(664\) 0 0
\(665\) 1895.56 2.85047
\(666\) 0 0
\(667\) 194.234i 0.291205i
\(668\) 0 0
\(669\) 364.236 0.544449
\(670\) 0 0
\(671\) 351.829 770.694i 0.524335 1.14858i
\(672\) 0 0
\(673\) 782.630i 1.16290i −0.813583 0.581449i \(-0.802486\pi\)
0.813583 0.581449i \(-0.197514\pi\)
\(674\) 0 0
\(675\) 13.4207 0.0198826
\(676\) 0 0
\(677\) 1209.30i 1.78626i −0.449803 0.893128i \(-0.648506\pi\)
0.449803 0.893128i \(-0.351494\pi\)
\(678\) 0 0
\(679\) 1049.34i 1.54541i
\(680\) 0 0
\(681\) 1266.56i 1.85986i
\(682\) 0 0
\(683\) 113.737 0.166525 0.0832625 0.996528i \(-0.473466\pi\)
0.0832625 + 0.996528i \(0.473466\pi\)
\(684\) 0 0
\(685\) −630.987 −0.921149
\(686\) 0 0
\(687\) 122.854 0.178827
\(688\) 0 0
\(689\) 2.76393i 0.00401151i
\(690\) 0 0
\(691\) −460.880 −0.666975 −0.333487 0.942755i \(-0.608225\pi\)
−0.333487 + 0.942755i \(0.608225\pi\)
\(692\) 0 0
\(693\) −356.000 + 779.830i −0.513708 + 1.12530i
\(694\) 0 0
\(695\) 392.533i 0.564795i
\(696\) 0 0
\(697\) −23.9855 −0.0344125
\(698\) 0 0
\(699\) 333.097i 0.476534i
\(700\) 0 0
\(701\) 1209.73i 1.72572i 0.505446 + 0.862858i \(0.331328\pi\)
−0.505446 + 0.862858i \(0.668672\pi\)
\(702\) 0 0
\(703\) 1635.52i 2.32649i
\(704\) 0 0
\(705\) −434.934 −0.616928
\(706\) 0 0
\(707\) 1632.94 2.30967
\(708\) 0 0
\(709\) 346.827 0.489178 0.244589 0.969627i \(-0.421347\pi\)
0.244589 + 0.969627i \(0.421347\pi\)
\(710\) 0 0
\(711\) 188.756i 0.265479i
\(712\) 0 0
\(713\) 199.827 0.280262
\(714\) 0 0
\(715\) −348.727 + 763.899i −0.487730 + 1.06839i
\(716\) 0 0
\(717\) 1026.92i 1.43225i
\(718\) 0 0
\(719\) −1053.75 −1.46558 −0.732788 0.680457i \(-0.761781\pi\)
−0.732788 + 0.680457i \(0.761781\pi\)
\(720\) 0 0
\(721\) 612.232i 0.849143i
\(722\) 0 0
\(723\) 815.205i 1.12753i
\(724\) 0 0
\(725\) 19.5702i 0.0269933i
\(726\) 0 0
\(727\) 649.906 0.893956 0.446978 0.894545i \(-0.352500\pi\)
0.446978 + 0.894545i \(0.352500\pi\)
\(728\) 0 0
\(729\) −211.372 −0.289948
\(730\) 0 0
\(731\) 51.4173 0.0703383
\(732\) 0 0
\(733\) 1115.68i 1.52207i 0.648710 + 0.761036i \(0.275309\pi\)
−0.648710 + 0.761036i \(0.724691\pi\)
\(734\) 0 0
\(735\) 2253.61 3.06613
\(736\) 0 0
\(737\) −109.484 49.9806i −0.148554 0.0678163i
\(738\) 0 0
\(739\) 1274.73i 1.72494i −0.506106 0.862471i \(-0.668915\pi\)
0.506106 0.862471i \(-0.331085\pi\)
\(740\) 0 0
\(741\) −1686.16 −2.27551
\(742\) 0 0
\(743\) 347.381i 0.467538i 0.972292 + 0.233769i \(0.0751059\pi\)
−0.972292 + 0.233769i \(0.924894\pi\)
\(744\) 0 0
\(745\) 1040.49i 1.39664i
\(746\) 0 0
\(747\) 453.808i 0.607508i
\(748\) 0 0
\(749\) −2569.15 −3.43011
\(750\) 0 0
\(751\) −863.715 −1.15009 −0.575043 0.818123i \(-0.695015\pi\)
−0.575043 + 0.818123i \(0.695015\pi\)
\(752\) 0 0
\(753\) 1580.33 2.09871
\(754\) 0 0
\(755\) 558.417i 0.739625i
\(756\) 0 0
\(757\) −6.91483 −0.00913452 −0.00456726 0.999990i \(-0.501454\pi\)
−0.00456726 + 0.999990i \(0.501454\pi\)
\(758\) 0 0
\(759\) 462.548 + 211.158i 0.609418 + 0.278205i
\(760\) 0 0
\(761\) 734.052i 0.964589i 0.876009 + 0.482295i \(0.160197\pi\)
−0.876009 + 0.482295i \(0.839803\pi\)
\(762\) 0 0
\(763\) 2095.44 2.74632
\(764\) 0 0
\(765\) 44.5807i 0.0582755i
\(766\) 0 0
\(767\) 267.369i 0.348590i
\(768\) 0 0
\(769\) 1277.23i 1.66090i 0.557096 + 0.830448i \(0.311915\pi\)
−0.557096 + 0.830448i \(0.688085\pi\)
\(770\) 0 0
\(771\) 778.779 1.01009
\(772\) 0 0
\(773\) −1138.74 −1.47315 −0.736573 0.676359i \(-0.763557\pi\)
−0.736573 + 0.676359i \(0.763557\pi\)
\(774\) 0 0
\(775\) −20.1337 −0.0259790
\(776\) 0 0
\(777\) 2785.85i 3.58539i
\(778\) 0 0
\(779\) 489.891 0.628872
\(780\) 0 0
\(781\) 1393.63 + 636.204i 1.78441 + 0.814601i
\(782\) 0 0
\(783\) 183.062i 0.233795i
\(784\) 0 0
\(785\) −371.305 −0.473000
\(786\) 0 0
\(787\) 715.623i 0.909305i −0.890669 0.454653i \(-0.849763\pi\)
0.890669 0.454653i \(-0.150237\pi\)
\(788\) 0 0
\(789\) 335.026i 0.424622i
\(790\) 0 0
\(791\) 1084.85i 1.37149i
\(792\) 0 0
\(793\) 1148.71 1.44857
\(794\) 0 0
\(795\) 3.68804 0.00463905
\(796\) 0 0
\(797\) −1348.15 −1.69153 −0.845767 0.533553i \(-0.820857\pi\)
−0.845767 + 0.533553i \(0.820857\pi\)
\(798\) 0 0
\(799\) 31.1112i 0.0389377i
\(800\) 0 0
\(801\) 61.0983 0.0762776
\(802\) 0 0
\(803\) 375.509 822.566i 0.467632 1.02437i
\(804\) 0 0
\(805\) 775.044i 0.962788i
\(806\) 0 0
\(807\) −1216.11 −1.50696
\(808\) 0 0
\(809\) 779.307i 0.963297i −0.876365 0.481648i \(-0.840038\pi\)
0.876365 0.481648i \(-0.159962\pi\)
\(810\) 0 0
\(811\) 407.625i 0.502620i 0.967907 + 0.251310i \(0.0808613\pi\)
−0.967907 + 0.251310i \(0.919139\pi\)
\(812\) 0 0
\(813\) 251.016i 0.308753i
\(814\) 0 0
\(815\) −738.876 −0.906596
\(816\) 0 0
\(817\) −1050.17 −1.28540
\(818\) 0 0
\(819\) −1162.33 −1.41921
\(820\) 0 0
\(821\) 144.497i 0.176001i −0.996120 0.0880007i \(-0.971952\pi\)
0.996120 0.0880007i \(-0.0280478\pi\)
\(822\) 0 0
\(823\) −1257.65 −1.52813 −0.764063 0.645142i \(-0.776798\pi\)
−0.764063 + 0.645142i \(0.776798\pi\)
\(824\) 0 0
\(825\) −46.6043 21.2753i −0.0564901 0.0257883i
\(826\) 0 0
\(827\) 1058.91i 1.28043i −0.768198 0.640213i \(-0.778846\pi\)
0.768198 0.640213i \(-0.221154\pi\)
\(828\) 0 0
\(829\) 237.316 0.286267 0.143134 0.989703i \(-0.454282\pi\)
0.143134 + 0.989703i \(0.454282\pi\)
\(830\) 0 0
\(831\) 566.465i 0.681666i
\(832\) 0 0
\(833\) 161.202i 0.193520i
\(834\) 0 0
\(835\) 619.247i 0.741613i
\(836\) 0 0
\(837\) −188.333 −0.225010
\(838\) 0 0
\(839\) 920.950 1.09768 0.548838 0.835929i \(-0.315070\pi\)
0.548838 + 0.835929i \(0.315070\pi\)
\(840\) 0 0
\(841\) 574.059 0.682591
\(842\) 0 0
\(843\) 1305.25i 1.54834i
\(844\) 0 0
\(845\) −273.578 −0.323761
\(846\) 0 0
\(847\) −1164.48 + 1009.62i −1.37482 + 1.19199i
\(848\) 0 0
\(849\) 287.085i 0.338145i
\(850\) 0 0
\(851\) −668.722 −0.785807
\(852\) 0 0
\(853\) 751.983i 0.881574i 0.897612 + 0.440787i \(0.145301\pi\)
−0.897612 + 0.440787i \(0.854699\pi\)
\(854\) 0 0
\(855\) 910.537i 1.06496i
\(856\) 0 0
\(857\) 1447.30i 1.68880i −0.535715 0.844399i \(-0.679958\pi\)
0.535715 0.844399i \(-0.320042\pi\)
\(858\) 0 0
\(859\) 1153.12 1.34240 0.671198 0.741278i \(-0.265780\pi\)
0.671198 + 0.741278i \(0.265780\pi\)
\(860\) 0 0
\(861\) 834.450 0.969164
\(862\) 0 0
\(863\) 1231.34 1.42681 0.713405 0.700752i \(-0.247152\pi\)
0.713405 + 0.700752i \(0.247152\pi\)
\(864\) 0 0
\(865\) 93.8347i 0.108479i
\(866\) 0 0
\(867\) −1115.82 −1.28699
\(868\) 0 0
\(869\) −140.929 + 308.710i −0.162174 + 0.355248i
\(870\) 0 0
\(871\) 163.185i 0.187354i
\(872\) 0 0
\(873\) 504.051 0.577378
\(874\) 0 0
\(875\) 1551.77i 1.77345i
\(876\) 0 0
\(877\) 148.205i 0.168991i 0.996424 + 0.0844953i \(0.0269278\pi\)
−0.996424 + 0.0844953i \(0.973072\pi\)
\(878\) 0 0
\(879\) 1303.27i 1.48267i
\(880\) 0 0
\(881\) 1371.29 1.55652 0.778260 0.627942i \(-0.216102\pi\)
0.778260 + 0.627942i \(0.216102\pi\)
\(882\) 0 0
\(883\) −183.895 −0.208262 −0.104131 0.994564i \(-0.533206\pi\)
−0.104131 + 0.994564i \(0.533206\pi\)
\(884\) 0 0
\(885\) −356.763 −0.403122
\(886\) 0 0
\(887\) 1524.66i 1.71890i −0.511222 0.859448i \(-0.670807\pi\)
0.511222 0.859448i \(-0.329193\pi\)
\(888\) 0 0
\(889\) −791.986 −0.890872
\(890\) 0 0
\(891\) −986.961 450.557i −1.10770 0.505675i
\(892\) 0 0
\(893\) 635.429i 0.711567i
\(894\) 0 0
\(895\) 1319.65 1.47447
\(896\) 0 0
\(897\) 689.424i 0.768589i
\(898\) 0 0
\(899\) 274.628i 0.305482i
\(900\) 0 0
\(901\) 0.263809i 0.000292796i
\(902\) 0 0
\(903\) −1788.79 −1.98095
\(904\) 0 0
\(905\) 425.462 0.470124
\(906\) 0 0
\(907\) −1274.87 −1.40559 −0.702797 0.711390i \(-0.748066\pi\)
−0.702797 + 0.711390i \(0.748066\pi\)
\(908\) 0 0
\(909\) 784.386i 0.862910i
\(910\) 0 0
\(911\) 659.601 0.724041 0.362020 0.932170i \(-0.382087\pi\)
0.362020 + 0.932170i \(0.382087\pi\)
\(912\) 0 0
\(913\) 338.823 742.204i 0.371110 0.812929i
\(914\) 0 0
\(915\) 1532.78i 1.67517i
\(916\) 0 0
\(917\) 835.827 0.911479
\(918\) 0 0
\(919\) 1094.37i 1.19082i 0.803420 + 0.595412i \(0.203011\pi\)
−0.803420 + 0.595412i \(0.796989\pi\)
\(920\) 0 0
\(921\) 1124.47i 1.22092i
\(922\) 0 0
\(923\) 2077.19i 2.25047i
\(924\) 0 0
\(925\) 67.3775 0.0728405
\(926\) 0 0
\(927\) −294.087 −0.317246
\(928\) 0 0
\(929\) −693.167 −0.746143 −0.373072 0.927803i \(-0.621695\pi\)
−0.373072 + 0.927803i \(0.621695\pi\)
\(930\) 0 0
\(931\) 3292.47i 3.53649i
\(932\) 0 0
\(933\) −336.910 −0.361104
\(934\) 0 0
\(935\) −33.2849 + 72.9119i −0.0355989 + 0.0779806i
\(936\) 0 0
\(937\) 394.132i 0.420632i 0.977633 + 0.210316i \(0.0674493\pi\)
−0.977633 + 0.210316i \(0.932551\pi\)
\(938\) 0 0
\(939\) 1532.15 1.63168
\(940\) 0 0
\(941\) 387.265i 0.411547i −0.978600 0.205773i \(-0.934029\pi\)
0.978600 0.205773i \(-0.0659710\pi\)
\(942\) 0 0
\(943\) 200.303i 0.212411i
\(944\) 0 0
\(945\) 730.463i 0.772977i
\(946\) 0 0
\(947\) 41.2644 0.0435738 0.0217869 0.999763i \(-0.493064\pi\)
0.0217869 + 0.999763i \(0.493064\pi\)
\(948\) 0 0
\(949\) 1226.03 1.29191
\(950\) 0 0
\(951\) 808.007 0.849639
\(952\) 0 0
\(953\) 1082.94i 1.13635i 0.822909 + 0.568173i \(0.192350\pi\)
−0.822909 + 0.568173i \(0.807650\pi\)
\(954\) 0 0
\(955\) 812.528 0.850814
\(956\) 0 0
\(957\) 290.200 635.693i 0.303239 0.664256i
\(958\) 0 0
\(959\) 1570.24i 1.63737i
\(960\) 0 0
\(961\) −678.464 −0.705998
\(962\) 0 0
\(963\) 1234.10i 1.28151i
\(964\) 0 0
\(965\) 1088.55i 1.12803i
\(966\) 0 0
\(967\) 1004.94i 1.03924i −0.854399 0.519618i \(-0.826074\pi\)
0.854399 0.519618i \(-0.173926\pi\)
\(968\) 0 0
\(969\) −160.938 −0.166087
\(970\) 0 0
\(971\) −123.788 −0.127485 −0.0637425 0.997966i \(-0.520304\pi\)
−0.0637425 + 0.997966i \(0.520304\pi\)
\(972\) 0 0
\(973\) −976.833 −1.00394
\(974\) 0 0
\(975\) 69.4633i 0.0712444i
\(976\) 0 0
\(977\) 1471.46 1.50610 0.753051 0.657962i \(-0.228581\pi\)
0.753051 + 0.657962i \(0.228581\pi\)
\(978\) 0 0
\(979\) 99.9264 + 45.6173i 0.102070 + 0.0465958i
\(980\) 0 0
\(981\) 1006.55i 1.02604i
\(982\) 0 0
\(983\) −524.027 −0.533089 −0.266545 0.963823i \(-0.585882\pi\)
−0.266545 + 0.963823i \(0.585882\pi\)
\(984\) 0 0
\(985\) 187.604i 0.190461i
\(986\) 0 0
\(987\) 1082.35i 1.09661i
\(988\) 0 0
\(989\) 429.387i 0.434162i
\(990\) 0 0
\(991\) −392.423 −0.395986 −0.197993 0.980203i \(-0.563442\pi\)
−0.197993 + 0.980203i \(0.563442\pi\)
\(992\) 0 0
\(993\) 1896.22 1.90959
\(994\) 0 0
\(995\) −725.929 −0.729577
\(996\) 0 0
\(997\) 1166.17i 1.16967i 0.811151 + 0.584837i \(0.198842\pi\)
−0.811151 + 0.584837i \(0.801158\pi\)
\(998\) 0 0
\(999\) 630.257 0.630888
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 88.3.h.a.65.2 yes 6
3.2 odd 2 792.3.j.a.505.2 6
4.3 odd 2 176.3.h.d.65.5 6
8.3 odd 2 704.3.h.g.65.1 6
8.5 even 2 704.3.h.h.65.6 6
11.10 odd 2 inner 88.3.h.a.65.1 6
12.11 even 2 1584.3.j.k.1297.1 6
33.32 even 2 792.3.j.a.505.1 6
44.43 even 2 176.3.h.d.65.6 6
88.21 odd 2 704.3.h.h.65.5 6
88.43 even 2 704.3.h.g.65.2 6
132.131 odd 2 1584.3.j.k.1297.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.3.h.a.65.1 6 11.10 odd 2 inner
88.3.h.a.65.2 yes 6 1.1 even 1 trivial
176.3.h.d.65.5 6 4.3 odd 2
176.3.h.d.65.6 6 44.43 even 2
704.3.h.g.65.1 6 8.3 odd 2
704.3.h.g.65.2 6 88.43 even 2
704.3.h.h.65.5 6 88.21 odd 2
704.3.h.h.65.6 6 8.5 even 2
792.3.j.a.505.1 6 33.32 even 2
792.3.j.a.505.2 6 3.2 odd 2
1584.3.j.k.1297.1 6 12.11 even 2
1584.3.j.k.1297.2 6 132.131 odd 2