Properties

Label 88.3
Level 88
Weight 3
Dimension 248
Nonzero newspaces 6
Newform subspaces 9
Sturm bound 1440
Trace bound 2

Downloads

Learn more

Defining parameters

Level: N N = 88=2311 88 = 2^{3} \cdot 11
Weight: k k = 3 3
Nonzero newspaces: 6 6
Newform subspaces: 9 9
Sturm bound: 14401440
Trace bound: 22

Dimensions

The following table gives the dimensions of various subspaces of M3(Γ1(88))M_{3}(\Gamma_1(88)).

Total New Old
Modular forms 540 284 256
Cusp forms 420 248 172
Eisenstein series 120 36 84

Trace form

248q6q26q318q418q610q7+6q810q910q1024q114q1210q14+50q1542q16+16q1730q18+88q1910q20+18q22++1760q99+O(q100) 248 q - 6 q^{2} - 6 q^{3} - 18 q^{4} - 18 q^{6} - 10 q^{7} + 6 q^{8} - 10 q^{9} - 10 q^{10} - 24 q^{11} - 4 q^{12} - 10 q^{14} + 50 q^{15} - 42 q^{16} + 16 q^{17} - 30 q^{18} + 88 q^{19} - 10 q^{20} + 18 q^{22}+ \cdots + 1760 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(Γ1(88))S_{3}^{\mathrm{new}}(\Gamma_1(88))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
88.3.b χ88(21,)\chi_{88}(21, \cdot) 88.3.b.a 1 1
88.3.b.b 1
88.3.b.c 20
88.3.d χ88(23,)\chi_{88}(23, \cdot) None 0 1
88.3.f χ88(67,)\chi_{88}(67, \cdot) 88.3.f.a 20 1
88.3.h χ88(65,)\chi_{88}(65, \cdot) 88.3.h.a 6 1
88.3.j χ88(17,)\chi_{88}(17, \cdot) 88.3.j.a 24 4
88.3.l χ88(3,)\chi_{88}(3, \cdot) 88.3.l.a 8 4
88.3.l.b 80
88.3.n χ88(15,)\chi_{88}(15, \cdot) None 0 4
88.3.p χ88(13,)\chi_{88}(13, \cdot) 88.3.p.a 88 4

Decomposition of S3old(Γ1(88))S_{3}^{\mathrm{old}}(\Gamma_1(88)) into lower level spaces