Properties

Label 88.3.h
Level 8888
Weight 33
Character orbit 88.h
Rep. character χ88(65,)\chi_{88}(65,\cdot)
Character field Q\Q
Dimension 66
Newform subspaces 11
Sturm bound 3636
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 88=2311 88 = 2^{3} \cdot 11
Weight: k k == 3 3
Character orbit: [χ][\chi] == 88.h (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 11 11
Character field: Q\Q
Newform subspaces: 1 1
Sturm bound: 3636
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M3(88,[χ])M_{3}(88, [\chi]).

Total New Old
Modular forms 28 6 22
Cusp forms 20 6 14
Eisenstein series 8 0 8

Trace form

6q4q3+6q9+10q1152q23+22q25+32q2736q3164q3348q37+172q4560q47170q49+108q53+172q55+236q59292q67+92q69++182q99+O(q100) 6 q - 4 q^{3} + 6 q^{9} + 10 q^{11} - 52 q^{23} + 22 q^{25} + 32 q^{27} - 36 q^{31} - 64 q^{33} - 48 q^{37} + 172 q^{45} - 60 q^{47} - 170 q^{49} + 108 q^{53} + 172 q^{55} + 236 q^{59} - 292 q^{67} + 92 q^{69}+ \cdots + 182 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(88,[χ])S_{3}^{\mathrm{new}}(88, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
88.3.h.a 88.h 11.b 66 2.3982.398 6.0.1750426112.2 None 88.3.h.a 00 4-4 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(1β1)q3+β3q5β2q7+(1+)q9+q+(-1-\beta _{1})q^{3}+\beta _{3}q^{5}-\beta _{2}q^{7}+(1+\cdots)q^{9}+\cdots

Decomposition of S3old(88,[χ])S_{3}^{\mathrm{old}}(88, [\chi]) into lower level spaces

S3old(88,[χ]) S_{3}^{\mathrm{old}}(88, [\chi]) \simeq S3new(11,[χ])S_{3}^{\mathrm{new}}(11, [\chi])4^{\oplus 4}\oplusS3new(22,[χ])S_{3}^{\mathrm{new}}(22, [\chi])3^{\oplus 3}\oplusS3new(44,[χ])S_{3}^{\mathrm{new}}(44, [\chi])2^{\oplus 2}