Properties

Label 1584.3.j.k.1297.2
Level $1584$
Weight $3$
Character 1584.1297
Analytic conductor $43.161$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1584,3,Mod(1297,1584)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1584, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1584.1297"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1584.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,-52,0,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.1608738747\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.1750426112.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 21x^{4} + 4x^{3} + 228x^{2} + 368x + 548 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1297.2
Root \(-2.88824 + 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 1584.1297
Dual form 1584.3.j.k.1297.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.11838 q^{5} +12.7373i q^{7} +(10.0066 - 4.56811i) q^{11} -14.9148i q^{13} +1.42357i q^{17} -29.0756i q^{19} -11.8882 q^{23} +1.19781 q^{25} +16.3383i q^{29} +16.8088 q^{31} -65.1942i q^{35} +56.2507 q^{37} +16.8489i q^{41} -36.1186i q^{43} +21.8544 q^{47} -113.238 q^{49} +0.185315 q^{53} +(-51.2177 + 23.3813i) q^{55} +17.9264 q^{59} +77.0185i q^{61} +76.3394i q^{65} +10.9412 q^{67} +139.271 q^{71} +82.2022i q^{73} +(58.1853 + 127.457i) q^{77} +30.8506i q^{79} +74.1713i q^{83} -7.28637i q^{85} -9.98603 q^{89} +189.973 q^{91} +148.820i q^{95} +82.3831 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 10 q^{11} - 52 q^{23} + 22 q^{25} + 36 q^{31} - 48 q^{37} - 60 q^{47} - 170 q^{49} - 108 q^{53} - 172 q^{55} + 236 q^{59} + 292 q^{67} + 300 q^{71} + 240 q^{77} - 384 q^{89} + 48 q^{91} + 400 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1584\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(353\) \(991\) \(1189\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −5.11838 −1.02368 −0.511838 0.859082i \(-0.671035\pi\)
−0.511838 + 0.859082i \(0.671035\pi\)
\(6\) 0 0
\(7\) 12.7373i 1.81961i 0.415035 + 0.909806i \(0.363769\pi\)
−0.415035 + 0.909806i \(0.636231\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 10.0066 4.56811i 0.909692 0.415283i
\(12\) 0 0
\(13\) 14.9148i 1.14729i −0.819104 0.573645i \(-0.805529\pi\)
0.819104 0.573645i \(-0.194471\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.42357i 0.0837394i 0.999123 + 0.0418697i \(0.0133314\pi\)
−0.999123 + 0.0418697i \(0.986669\pi\)
\(18\) 0 0
\(19\) 29.0756i 1.53030i −0.643855 0.765148i \(-0.722666\pi\)
0.643855 0.765148i \(-0.277334\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −11.8882 −0.516880 −0.258440 0.966027i \(-0.583208\pi\)
−0.258440 + 0.966027i \(0.583208\pi\)
\(24\) 0 0
\(25\) 1.19781 0.0479123
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 16.3383i 0.563391i 0.959504 + 0.281695i \(0.0908967\pi\)
−0.959504 + 0.281695i \(0.909103\pi\)
\(30\) 0 0
\(31\) 16.8088 0.542220 0.271110 0.962548i \(-0.412609\pi\)
0.271110 + 0.962548i \(0.412609\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 65.1942i 1.86269i
\(36\) 0 0
\(37\) 56.2507 1.52029 0.760145 0.649754i \(-0.225128\pi\)
0.760145 + 0.649754i \(0.225128\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 16.8489i 0.410948i 0.978663 + 0.205474i \(0.0658736\pi\)
−0.978663 + 0.205474i \(0.934126\pi\)
\(42\) 0 0
\(43\) 36.1186i 0.839968i −0.907532 0.419984i \(-0.862036\pi\)
0.907532 0.419984i \(-0.137964\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 21.8544 0.464987 0.232493 0.972598i \(-0.425312\pi\)
0.232493 + 0.972598i \(0.425312\pi\)
\(48\) 0 0
\(49\) −113.238 −2.31098
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.185315 0.00349651 0.00174826 0.999998i \(-0.499444\pi\)
0.00174826 + 0.999998i \(0.499444\pi\)
\(54\) 0 0
\(55\) −51.2177 + 23.3813i −0.931230 + 0.425115i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 17.9264 0.303838 0.151919 0.988393i \(-0.451455\pi\)
0.151919 + 0.988393i \(0.451455\pi\)
\(60\) 0 0
\(61\) 77.0185i 1.26260i 0.775540 + 0.631299i \(0.217478\pi\)
−0.775540 + 0.631299i \(0.782522\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 76.3394i 1.17445i
\(66\) 0 0
\(67\) 10.9412 0.163302 0.0816508 0.996661i \(-0.473981\pi\)
0.0816508 + 0.996661i \(0.473981\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 139.271 1.96156 0.980779 0.195123i \(-0.0625107\pi\)
0.980779 + 0.195123i \(0.0625107\pi\)
\(72\) 0 0
\(73\) 82.2022i 1.12606i 0.826437 + 0.563029i \(0.190364\pi\)
−0.826437 + 0.563029i \(0.809636\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 58.1853 + 127.457i 0.755653 + 1.65529i
\(78\) 0 0
\(79\) 30.8506i 0.390514i 0.980752 + 0.195257i \(0.0625541\pi\)
−0.980752 + 0.195257i \(0.937446\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 74.1713i 0.893631i 0.894626 + 0.446815i \(0.147442\pi\)
−0.894626 + 0.446815i \(0.852558\pi\)
\(84\) 0 0
\(85\) 7.28637i 0.0857220i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.98603 −0.112203 −0.0561013 0.998425i \(-0.517867\pi\)
−0.0561013 + 0.998425i \(0.517867\pi\)
\(90\) 0 0
\(91\) 189.973 2.08762
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 148.820i 1.56653i
\(96\) 0 0
\(97\) 82.3831 0.849311 0.424655 0.905355i \(-0.360395\pi\)
0.424655 + 0.905355i \(0.360395\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 128.202i 1.26932i −0.772791 0.634661i \(-0.781140\pi\)
0.772791 0.634661i \(-0.218860\pi\)
\(102\) 0 0
\(103\) 48.0662 0.466662 0.233331 0.972397i \(-0.425037\pi\)
0.233331 + 0.972397i \(0.425037\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 201.703i 1.88508i −0.334098 0.942538i \(-0.608432\pi\)
0.334098 0.942538i \(-0.391568\pi\)
\(108\) 0 0
\(109\) 164.512i 1.50929i 0.656134 + 0.754644i \(0.272191\pi\)
−0.656134 + 0.754644i \(0.727809\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −85.1713 −0.753728 −0.376864 0.926269i \(-0.622998\pi\)
−0.376864 + 0.926269i \(0.622998\pi\)
\(114\) 0 0
\(115\) 60.8485 0.529117
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −18.1324 −0.152373
\(120\) 0 0
\(121\) 79.2647 91.4227i 0.655080 0.755559i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 121.829 0.974629
\(126\) 0 0
\(127\) 62.1786i 0.489595i 0.969574 + 0.244797i \(0.0787215\pi\)
−0.969574 + 0.244797i \(0.921279\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 65.6205i 0.500920i 0.968127 + 0.250460i \(0.0805818\pi\)
−0.968127 + 0.250460i \(0.919418\pi\)
\(132\) 0 0
\(133\) 370.344 2.78454
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 123.279 0.899845 0.449922 0.893068i \(-0.351452\pi\)
0.449922 + 0.893068i \(0.351452\pi\)
\(138\) 0 0
\(139\) 76.6909i 0.551733i 0.961196 + 0.275866i \(0.0889647\pi\)
−0.961196 + 0.275866i \(0.911035\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −68.1323 149.246i −0.476450 1.04368i
\(144\) 0 0
\(145\) 83.6258i 0.576729i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 203.286i 1.36433i 0.731196 + 0.682167i \(0.238962\pi\)
−0.731196 + 0.682167i \(0.761038\pi\)
\(150\) 0 0
\(151\) 109.100i 0.722519i −0.932465 0.361259i \(-0.882347\pi\)
0.932465 0.361259i \(-0.117653\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −86.0339 −0.555057
\(156\) 0 0
\(157\) −72.5435 −0.462060 −0.231030 0.972947i \(-0.574210\pi\)
−0.231030 + 0.972947i \(0.574210\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 151.424i 0.940520i
\(162\) 0 0
\(163\) 144.357 0.885628 0.442814 0.896613i \(-0.353980\pi\)
0.442814 + 0.896613i \(0.353980\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 120.985i 0.724461i −0.932089 0.362231i \(-0.882015\pi\)
0.932089 0.362231i \(-0.117985\pi\)
\(168\) 0 0
\(169\) −53.4501 −0.316273
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 18.3329i 0.105970i −0.998595 0.0529852i \(-0.983126\pi\)
0.998595 0.0529852i \(-0.0168736\pi\)
\(174\) 0 0
\(175\) 15.2568i 0.0871817i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 257.827 1.44037 0.720186 0.693781i \(-0.244057\pi\)
0.720186 + 0.693781i \(0.244057\pi\)
\(180\) 0 0
\(181\) 83.1244 0.459251 0.229625 0.973279i \(-0.426250\pi\)
0.229625 + 0.973279i \(0.426250\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −287.913 −1.55628
\(186\) 0 0
\(187\) 6.50302 + 14.2451i 0.0347755 + 0.0761770i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 158.747 0.831137 0.415568 0.909562i \(-0.363583\pi\)
0.415568 + 0.909562i \(0.363583\pi\)
\(192\) 0 0
\(193\) 212.675i 1.10194i −0.834524 0.550971i \(-0.814257\pi\)
0.834524 0.550971i \(-0.185743\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 36.6530i 0.186056i 0.995664 + 0.0930279i \(0.0296546\pi\)
−0.995664 + 0.0930279i \(0.970345\pi\)
\(198\) 0 0
\(199\) 141.828 0.712703 0.356352 0.934352i \(-0.384021\pi\)
0.356352 + 0.934352i \(0.384021\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −208.106 −1.02515
\(204\) 0 0
\(205\) 86.2390i 0.420678i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −132.821 290.948i −0.635505 1.39210i
\(210\) 0 0
\(211\) 28.0451i 0.132915i 0.997789 + 0.0664576i \(0.0211697\pi\)
−0.997789 + 0.0664576i \(0.978830\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 184.869i 0.859855i
\(216\) 0 0
\(217\) 214.098i 0.986629i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 21.2322 0.0960733
\(222\) 0 0
\(223\) 93.6765 0.420074 0.210037 0.977693i \(-0.432642\pi\)
0.210037 + 0.977693i \(0.432642\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 325.742i 1.43499i 0.696565 + 0.717494i \(0.254711\pi\)
−0.696565 + 0.717494i \(0.745289\pi\)
\(228\) 0 0
\(229\) −31.5964 −0.137976 −0.0689878 0.997618i \(-0.521977\pi\)
−0.0689878 + 0.997618i \(0.521977\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 85.6680i 0.367674i −0.982957 0.183837i \(-0.941148\pi\)
0.982957 0.183837i \(-0.0588518\pi\)
\(234\) 0 0
\(235\) −111.859 −0.475996
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 264.111i 1.10507i 0.833491 + 0.552533i \(0.186339\pi\)
−0.833491 + 0.552533i \(0.813661\pi\)
\(240\) 0 0
\(241\) 209.659i 0.869955i 0.900441 + 0.434978i \(0.143244\pi\)
−0.900441 + 0.434978i \(0.856756\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 579.596 2.36570
\(246\) 0 0
\(247\) −433.656 −1.75569
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −406.438 −1.61928 −0.809638 0.586930i \(-0.800336\pi\)
−0.809638 + 0.586930i \(0.800336\pi\)
\(252\) 0 0
\(253\) −118.961 + 54.3068i −0.470202 + 0.214651i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 200.291 0.779343 0.389672 0.920954i \(-0.372589\pi\)
0.389672 + 0.920954i \(0.372589\pi\)
\(258\) 0 0
\(259\) 716.481i 2.76634i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 86.1641i 0.327620i −0.986492 0.163810i \(-0.947622\pi\)
0.986492 0.163810i \(-0.0523784\pi\)
\(264\) 0 0
\(265\) −0.948513 −0.00357929
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −312.768 −1.16270 −0.581352 0.813652i \(-0.697476\pi\)
−0.581352 + 0.813652i \(0.697476\pi\)
\(270\) 0 0
\(271\) 64.5578i 0.238221i 0.992881 + 0.119110i \(0.0380042\pi\)
−0.992881 + 0.119110i \(0.961996\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.9860 5.47171i 0.0435854 0.0198971i
\(276\) 0 0
\(277\) 145.687i 0.525945i −0.964803 0.262973i \(-0.915297\pi\)
0.964803 0.262973i \(-0.0847029\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 335.693i 1.19464i 0.802005 + 0.597318i \(0.203767\pi\)
−0.802005 + 0.597318i \(0.796233\pi\)
\(282\) 0 0
\(283\) 73.8343i 0.260899i 0.991455 + 0.130449i \(0.0416420\pi\)
−0.991455 + 0.130449i \(0.958358\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −214.609 −0.747766
\(288\) 0 0
\(289\) 286.973 0.992988
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 335.182i 1.14397i −0.820265 0.571983i \(-0.806174\pi\)
0.820265 0.571983i \(-0.193826\pi\)
\(294\) 0 0
\(295\) −91.7544 −0.311032
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 177.310i 0.593011i
\(300\) 0 0
\(301\) 460.053 1.52841
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 394.210i 1.29249i
\(306\) 0 0
\(307\) 289.197i 0.942011i −0.882130 0.471005i \(-0.843891\pi\)
0.882130 0.471005i \(-0.156109\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 86.6486 0.278613 0.139306 0.990249i \(-0.455513\pi\)
0.139306 + 0.990249i \(0.455513\pi\)
\(312\) 0 0
\(313\) −394.046 −1.25893 −0.629467 0.777027i \(-0.716727\pi\)
−0.629467 + 0.777027i \(0.716727\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 207.808 0.655546 0.327773 0.944756i \(-0.393702\pi\)
0.327773 + 0.944756i \(0.393702\pi\)
\(318\) 0 0
\(319\) 74.6353 + 163.491i 0.233967 + 0.512512i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 41.3911 0.128146
\(324\) 0 0
\(325\) 17.8650i 0.0549692i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 278.365i 0.846095i
\(330\) 0 0
\(331\) 487.682 1.47336 0.736680 0.676241i \(-0.236392\pi\)
0.736680 + 0.676241i \(0.236392\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −56.0012 −0.167168
\(336\) 0 0
\(337\) 388.113i 1.15167i −0.817566 0.575835i \(-0.804677\pi\)
0.817566 0.575835i \(-0.195323\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 168.199 76.7845i 0.493253 0.225175i
\(342\) 0 0
\(343\) 818.220i 2.38548i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 107.644i 0.310212i 0.987898 + 0.155106i \(0.0495719\pi\)
−0.987898 + 0.155106i \(0.950428\pi\)
\(348\) 0 0
\(349\) 304.548i 0.872629i 0.899794 + 0.436315i \(0.143717\pi\)
−0.899794 + 0.436315i \(0.856283\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −300.542 −0.851393 −0.425697 0.904866i \(-0.639971\pi\)
−0.425697 + 0.904866i \(0.639971\pi\)
\(354\) 0 0
\(355\) −712.840 −2.00800
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 254.389i 0.708605i 0.935131 + 0.354302i \(0.115282\pi\)
−0.935131 + 0.354302i \(0.884718\pi\)
\(360\) 0 0
\(361\) −484.391 −1.34180
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 420.742i 1.15272i
\(366\) 0 0
\(367\) 421.179 1.14763 0.573814 0.818986i \(-0.305463\pi\)
0.573814 + 0.818986i \(0.305463\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.36041i 0.00636229i
\(372\) 0 0
\(373\) 147.279i 0.394850i −0.980318 0.197425i \(-0.936742\pi\)
0.980318 0.197425i \(-0.0632578\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 243.682 0.646372
\(378\) 0 0
\(379\) −76.7735 −0.202569 −0.101284 0.994858i \(-0.532295\pi\)
−0.101284 + 0.994858i \(0.532295\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 434.879 1.13546 0.567728 0.823216i \(-0.307823\pi\)
0.567728 + 0.823216i \(0.307823\pi\)
\(384\) 0 0
\(385\) −297.815 652.373i −0.773544 1.69448i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −506.077 −1.30097 −0.650485 0.759519i \(-0.725434\pi\)
−0.650485 + 0.759519i \(0.725434\pi\)
\(390\) 0 0
\(391\) 16.9237i 0.0432832i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 157.905i 0.399760i
\(396\) 0 0
\(397\) −275.285 −0.693413 −0.346707 0.937974i \(-0.612700\pi\)
−0.346707 + 0.937974i \(0.612700\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 469.509 1.17085 0.585423 0.810728i \(-0.300929\pi\)
0.585423 + 0.810728i \(0.300929\pi\)
\(402\) 0 0
\(403\) 250.699i 0.622083i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 562.879 256.960i 1.38300 0.631350i
\(408\) 0 0
\(409\) 682.090i 1.66770i 0.551990 + 0.833851i \(0.313869\pi\)
−0.551990 + 0.833851i \(0.686131\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 228.334i 0.552867i
\(414\) 0 0
\(415\) 379.637i 0.914788i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 212.596 0.507388 0.253694 0.967284i \(-0.418354\pi\)
0.253694 + 0.967284i \(0.418354\pi\)
\(420\) 0 0
\(421\) 347.762 0.826037 0.413019 0.910723i \(-0.364474\pi\)
0.413019 + 0.910723i \(0.364474\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.70516i 0.00401214i
\(426\) 0 0
\(427\) −981.006 −2.29744
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 392.374i 0.910381i −0.890394 0.455191i \(-0.849571\pi\)
0.890394 0.455191i \(-0.150429\pi\)
\(432\) 0 0
\(433\) −554.325 −1.28020 −0.640099 0.768293i \(-0.721107\pi\)
−0.640099 + 0.768293i \(0.721107\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 345.658i 0.790979i
\(438\) 0 0
\(439\) 130.153i 0.296477i 0.988952 + 0.148239i \(0.0473603\pi\)
−0.988952 + 0.148239i \(0.952640\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 107.762 0.243254 0.121627 0.992576i \(-0.461189\pi\)
0.121627 + 0.992576i \(0.461189\pi\)
\(444\) 0 0
\(445\) 51.1123 0.114859
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 86.8082 0.193337 0.0966683 0.995317i \(-0.469181\pi\)
0.0966683 + 0.995317i \(0.469181\pi\)
\(450\) 0 0
\(451\) 76.9676 + 168.600i 0.170660 + 0.373837i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −972.356 −2.13705
\(456\) 0 0
\(457\) 358.902i 0.785344i −0.919679 0.392672i \(-0.871551\pi\)
0.919679 0.392672i \(-0.128449\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 463.660i 1.00577i 0.864353 + 0.502885i \(0.167728\pi\)
−0.864353 + 0.502885i \(0.832272\pi\)
\(462\) 0 0
\(463\) 21.6620 0.0467862 0.0233931 0.999726i \(-0.492553\pi\)
0.0233931 + 0.999726i \(0.492553\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 383.773 0.821784 0.410892 0.911684i \(-0.365217\pi\)
0.410892 + 0.911684i \(0.365217\pi\)
\(468\) 0 0
\(469\) 139.361i 0.297145i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −164.994 361.425i −0.348824 0.764112i
\(474\) 0 0
\(475\) 34.8269i 0.0733199i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 437.216i 0.912768i −0.889783 0.456384i \(-0.849144\pi\)
0.889783 0.456384i \(-0.150856\pi\)
\(480\) 0 0
\(481\) 838.966i 1.74421i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −421.668 −0.869419
\(486\) 0 0
\(487\) 158.744 0.325963 0.162981 0.986629i \(-0.447889\pi\)
0.162981 + 0.986629i \(0.447889\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 899.040i 1.83104i −0.402273 0.915520i \(-0.631780\pi\)
0.402273 0.915520i \(-0.368220\pi\)
\(492\) 0 0
\(493\) −23.2587 −0.0471780
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1773.93i 3.56927i
\(498\) 0 0
\(499\) 501.946 1.00590 0.502951 0.864315i \(-0.332247\pi\)
0.502951 + 0.864315i \(0.332247\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 245.501i 0.488074i 0.969766 + 0.244037i \(0.0784718\pi\)
−0.969766 + 0.244037i \(0.921528\pi\)
\(504\) 0 0
\(505\) 656.184i 1.29937i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.33172 0.0183334 0.00916672 0.999958i \(-0.497082\pi\)
0.00916672 + 0.999958i \(0.497082\pi\)
\(510\) 0 0
\(511\) −1047.03 −2.04899
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −246.021 −0.477710
\(516\) 0 0
\(517\) 218.688 99.8332i 0.422995 0.193101i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −862.330 −1.65514 −0.827572 0.561360i \(-0.810278\pi\)
−0.827572 + 0.561360i \(0.810278\pi\)
\(522\) 0 0
\(523\) 391.948i 0.749423i −0.927142 0.374711i \(-0.877742\pi\)
0.927142 0.374711i \(-0.122258\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 23.9285i 0.0454051i
\(528\) 0 0
\(529\) −387.670 −0.732835
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 251.297 0.471477
\(534\) 0 0
\(535\) 1032.39i 1.92971i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1133.13 + 517.285i −2.10228 + 0.959712i
\(540\) 0 0
\(541\) 238.052i 0.440023i 0.975497 + 0.220011i \(0.0706095\pi\)
−0.975497 + 0.220011i \(0.929391\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 842.037i 1.54502i
\(546\) 0 0
\(547\) 417.066i 0.762461i −0.924480 0.381230i \(-0.875500\pi\)
0.924480 0.381230i \(-0.124500\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 475.047 0.862154
\(552\) 0 0
\(553\) −392.953 −0.710584
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 151.232i 0.271513i −0.990742 0.135756i \(-0.956654\pi\)
0.990742 0.135756i \(-0.0433464\pi\)
\(558\) 0 0
\(559\) −538.700 −0.963686
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 875.506i 1.55507i −0.628838 0.777536i \(-0.716469\pi\)
0.628838 0.777536i \(-0.283531\pi\)
\(564\) 0 0
\(565\) 435.939 0.771573
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 706.404i 1.24148i −0.784015 0.620741i \(-0.786832\pi\)
0.784015 0.620741i \(-0.213168\pi\)
\(570\) 0 0
\(571\) 944.530i 1.65417i −0.562078 0.827084i \(-0.689998\pi\)
0.562078 0.827084i \(-0.310002\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −14.2398 −0.0247649
\(576\) 0 0
\(577\) −638.796 −1.10710 −0.553549 0.832816i \(-0.686727\pi\)
−0.553549 + 0.832816i \(0.686727\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −944.741 −1.62606
\(582\) 0 0
\(583\) 1.85438 0.846540i 0.00318075 0.00145204i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 499.575 0.851065 0.425532 0.904943i \(-0.360087\pi\)
0.425532 + 0.904943i \(0.360087\pi\)
\(588\) 0 0
\(589\) 488.726i 0.829756i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 71.9478i 0.121329i −0.998158 0.0606643i \(-0.980678\pi\)
0.998158 0.0606643i \(-0.0193219\pi\)
\(594\) 0 0
\(595\) 92.8085 0.155981
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −770.834 −1.28687 −0.643434 0.765502i \(-0.722491\pi\)
−0.643434 + 0.765502i \(0.722491\pi\)
\(600\) 0 0
\(601\) 545.840i 0.908219i −0.890946 0.454110i \(-0.849957\pi\)
0.890946 0.454110i \(-0.150043\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −405.707 + 467.936i −0.670590 + 0.773448i
\(606\) 0 0
\(607\) 659.902i 1.08715i 0.839360 + 0.543576i \(0.182930\pi\)
−0.839360 + 0.543576i \(0.817070\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 325.953i 0.533474i
\(612\) 0 0
\(613\) 752.909i 1.22824i 0.789214 + 0.614118i \(0.210488\pi\)
−0.789214 + 0.614118i \(0.789512\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 49.7497 0.0806316 0.0403158 0.999187i \(-0.487164\pi\)
0.0403158 + 0.999187i \(0.487164\pi\)
\(618\) 0 0
\(619\) −501.926 −0.810866 −0.405433 0.914125i \(-0.632879\pi\)
−0.405433 + 0.914125i \(0.632879\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 127.195i 0.204165i
\(624\) 0 0
\(625\) −653.510 −1.04562
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 80.0768i 0.127308i
\(630\) 0 0
\(631\) 545.597 0.864655 0.432327 0.901717i \(-0.357693\pi\)
0.432327 + 0.901717i \(0.357693\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 318.253i 0.501187i
\(636\) 0 0
\(637\) 1688.92i 2.65137i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 450.576 0.702927 0.351463 0.936202i \(-0.385684\pi\)
0.351463 + 0.936202i \(0.385684\pi\)
\(642\) 0 0
\(643\) 864.073 1.34382 0.671908 0.740635i \(-0.265475\pi\)
0.671908 + 0.740635i \(0.265475\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1200.90 −1.85610 −0.928052 0.372450i \(-0.878518\pi\)
−0.928052 + 0.372450i \(0.878518\pi\)
\(648\) 0 0
\(649\) 179.383 81.8900i 0.276399 0.126179i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −272.815 −0.417787 −0.208894 0.977938i \(-0.566986\pi\)
−0.208894 + 0.977938i \(0.566986\pi\)
\(654\) 0 0
\(655\) 335.871i 0.512780i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 328.580i 0.498604i 0.968426 + 0.249302i \(0.0802011\pi\)
−0.968426 + 0.249302i \(0.919799\pi\)
\(660\) 0 0
\(661\) 123.900 0.187444 0.0937220 0.995598i \(-0.470124\pi\)
0.0937220 + 0.995598i \(0.470124\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1895.56 −2.85047
\(666\) 0 0
\(667\) 194.234i 0.291205i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 351.829 + 770.694i 0.524335 + 1.14858i
\(672\) 0 0
\(673\) 782.630i 1.16290i 0.813583 + 0.581449i \(0.197514\pi\)
−0.813583 + 0.581449i \(0.802486\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1209.30i 1.78626i −0.449803 0.893128i \(-0.648506\pi\)
0.449803 0.893128i \(-0.351494\pi\)
\(678\) 0 0
\(679\) 1049.34i 1.54541i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 113.737 0.166525 0.0832625 0.996528i \(-0.473466\pi\)
0.0832625 + 0.996528i \(0.473466\pi\)
\(684\) 0 0
\(685\) −630.987 −0.921149
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.76393i 0.00401151i
\(690\) 0 0
\(691\) 460.880 0.666975 0.333487 0.942755i \(-0.391775\pi\)
0.333487 + 0.942755i \(0.391775\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 392.533i 0.564795i
\(696\) 0 0
\(697\) −23.9855 −0.0344125
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1209.73i 1.72572i 0.505446 + 0.862858i \(0.331328\pi\)
−0.505446 + 0.862858i \(0.668672\pi\)
\(702\) 0 0
\(703\) 1635.52i 2.32649i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1632.94 2.30967
\(708\) 0 0
\(709\) 346.827 0.489178 0.244589 0.969627i \(-0.421347\pi\)
0.244589 + 0.969627i \(0.421347\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −199.827 −0.280262
\(714\) 0 0
\(715\) 348.727 + 763.899i 0.487730 + 1.06839i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1053.75 −1.46558 −0.732788 0.680457i \(-0.761781\pi\)
−0.732788 + 0.680457i \(0.761781\pi\)
\(720\) 0 0
\(721\) 612.232i 0.849143i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 19.5702i 0.0269933i
\(726\) 0 0
\(727\) −649.906 −0.893956 −0.446978 0.894545i \(-0.647500\pi\)
−0.446978 + 0.894545i \(0.647500\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 51.4173 0.0703383
\(732\) 0 0
\(733\) 1115.68i 1.52207i −0.648710 0.761036i \(-0.724691\pi\)
0.648710 0.761036i \(-0.275309\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 109.484 49.9806i 0.148554 0.0678163i
\(738\) 0 0
\(739\) 1274.73i 1.72494i −0.506106 0.862471i \(-0.668915\pi\)
0.506106 0.862471i \(-0.331085\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 347.381i 0.467538i −0.972292 0.233769i \(-0.924894\pi\)
0.972292 0.233769i \(-0.0751059\pi\)
\(744\) 0 0
\(745\) 1040.49i 1.39664i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2569.15 3.43011
\(750\) 0 0
\(751\) 863.715 1.15009 0.575043 0.818123i \(-0.304985\pi\)
0.575043 + 0.818123i \(0.304985\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 558.417i 0.739625i
\(756\) 0 0
\(757\) −6.91483 −0.00913452 −0.00456726 0.999990i \(-0.501454\pi\)
−0.00456726 + 0.999990i \(0.501454\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 734.052i 0.964589i 0.876009 + 0.482295i \(0.160197\pi\)
−0.876009 + 0.482295i \(0.839803\pi\)
\(762\) 0 0
\(763\) −2095.44 −2.74632
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 267.369i 0.348590i
\(768\) 0 0
\(769\) 1277.23i 1.66090i −0.557096 0.830448i \(-0.688085\pi\)
0.557096 0.830448i \(-0.311915\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1138.74 1.47315 0.736573 0.676359i \(-0.236443\pi\)
0.736573 + 0.676359i \(0.236443\pi\)
\(774\) 0 0
\(775\) 20.1337 0.0259790
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 489.891 0.628872
\(780\) 0 0
\(781\) 1393.63 636.204i 1.78441 0.814601i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 371.305 0.473000
\(786\) 0 0
\(787\) 715.623i 0.909305i −0.890669 0.454653i \(-0.849763\pi\)
0.890669 0.454653i \(-0.150237\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1084.85i 1.37149i
\(792\) 0 0
\(793\) 1148.71 1.44857
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1348.15 1.69153 0.845767 0.533553i \(-0.179143\pi\)
0.845767 + 0.533553i \(0.179143\pi\)
\(798\) 0 0
\(799\) 31.1112i 0.0389377i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 375.509 + 822.566i 0.467632 + 1.02437i
\(804\) 0 0
\(805\) 775.044i 0.962788i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 779.307i 0.963297i −0.876365 0.481648i \(-0.840038\pi\)
0.876365 0.481648i \(-0.159962\pi\)
\(810\) 0 0
\(811\) 407.625i 0.502620i 0.967907 + 0.251310i \(0.0808613\pi\)
−0.967907 + 0.251310i \(0.919139\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −738.876 −0.906596
\(816\) 0 0
\(817\) −1050.17 −1.28540
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 144.497i 0.176001i −0.996120 0.0880007i \(-0.971952\pi\)
0.996120 0.0880007i \(-0.0280478\pi\)
\(822\) 0 0
\(823\) 1257.65 1.52813 0.764063 0.645142i \(-0.223202\pi\)
0.764063 + 0.645142i \(0.223202\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1058.91i 1.28043i 0.768198 + 0.640213i \(0.221154\pi\)
−0.768198 + 0.640213i \(0.778846\pi\)
\(828\) 0 0
\(829\) 237.316 0.286267 0.143134 0.989703i \(-0.454282\pi\)
0.143134 + 0.989703i \(0.454282\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 161.202i 0.193520i
\(834\) 0 0
\(835\) 619.247i 0.741613i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 920.950 1.09768 0.548838 0.835929i \(-0.315070\pi\)
0.548838 + 0.835929i \(0.315070\pi\)
\(840\) 0 0
\(841\) 574.059 0.682591
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 273.578 0.323761
\(846\) 0 0
\(847\) 1164.48 + 1009.62i 1.37482 + 1.19199i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −668.722 −0.785807
\(852\) 0 0
\(853\) 751.983i 0.881574i −0.897612 0.440787i \(-0.854699\pi\)
0.897612 0.440787i \(-0.145301\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1447.30i 1.68880i −0.535715 0.844399i \(-0.679958\pi\)
0.535715 0.844399i \(-0.320042\pi\)
\(858\) 0 0
\(859\) −1153.12 −1.34240 −0.671198 0.741278i \(-0.734220\pi\)
−0.671198 + 0.741278i \(0.734220\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1231.34 1.42681 0.713405 0.700752i \(-0.247152\pi\)
0.713405 + 0.700752i \(0.247152\pi\)
\(864\) 0 0
\(865\) 93.8347i 0.108479i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 140.929 + 308.710i 0.162174 + 0.355248i
\(870\) 0 0
\(871\) 163.185i 0.187354i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1551.77i 1.77345i
\(876\) 0 0
\(877\) 148.205i 0.168991i −0.996424 0.0844953i \(-0.973072\pi\)
0.996424 0.0844953i \(-0.0269278\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1371.29 −1.55652 −0.778260 0.627942i \(-0.783898\pi\)
−0.778260 + 0.627942i \(0.783898\pi\)
\(882\) 0 0
\(883\) 183.895 0.208262 0.104131 0.994564i \(-0.466794\pi\)
0.104131 + 0.994564i \(0.466794\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1524.66i 1.71890i 0.511222 + 0.859448i \(0.329193\pi\)
−0.511222 + 0.859448i \(0.670807\pi\)
\(888\) 0 0
\(889\) −791.986 −0.890872
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 635.429i 0.711567i
\(894\) 0 0
\(895\) −1319.65 −1.47447
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 274.628i 0.305482i
\(900\) 0 0
\(901\) 0.263809i 0.000292796i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −425.462 −0.470124
\(906\) 0 0
\(907\) 1274.87 1.40559 0.702797 0.711390i \(-0.251934\pi\)
0.702797 + 0.711390i \(0.251934\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 659.601 0.724041 0.362020 0.932170i \(-0.382087\pi\)
0.362020 + 0.932170i \(0.382087\pi\)
\(912\) 0 0
\(913\) 338.823 + 742.204i 0.371110 + 0.812929i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −835.827 −0.911479
\(918\) 0 0
\(919\) 1094.37i 1.19082i 0.803420 + 0.595412i \(0.203011\pi\)
−0.803420 + 0.595412i \(0.796989\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2077.19i 2.25047i
\(924\) 0 0
\(925\) 67.3775 0.0728405
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 693.167 0.746143 0.373072 0.927803i \(-0.378305\pi\)
0.373072 + 0.927803i \(0.378305\pi\)
\(930\) 0 0
\(931\) 3292.47i 3.53649i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −33.2849 72.9119i −0.0355989 0.0779806i
\(936\) 0 0
\(937\) 394.132i 0.420632i −0.977633 0.210316i \(-0.932551\pi\)
0.977633 0.210316i \(-0.0674493\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 387.265i 0.411547i −0.978600 0.205773i \(-0.934029\pi\)
0.978600 0.205773i \(-0.0659710\pi\)
\(942\) 0 0
\(943\) 200.303i 0.212411i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 41.2644 0.0435738 0.0217869 0.999763i \(-0.493064\pi\)
0.0217869 + 0.999763i \(0.493064\pi\)
\(948\) 0 0
\(949\) 1226.03 1.29191
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1082.94i 1.13635i 0.822909 + 0.568173i \(0.192350\pi\)
−0.822909 + 0.568173i \(0.807650\pi\)
\(954\) 0 0
\(955\) −812.528 −0.850814
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1570.24i 1.63737i
\(960\) 0 0
\(961\) −678.464 −0.705998
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1088.55i 1.12803i
\(966\) 0 0
\(967\) 1004.94i 1.03924i −0.854399 0.519618i \(-0.826074\pi\)
0.854399 0.519618i \(-0.173926\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −123.788 −0.127485 −0.0637425 0.997966i \(-0.520304\pi\)
−0.0637425 + 0.997966i \(0.520304\pi\)
\(972\) 0 0
\(973\) −976.833 −1.00394
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1471.46 −1.50610 −0.753051 0.657962i \(-0.771419\pi\)
−0.753051 + 0.657962i \(0.771419\pi\)
\(978\) 0 0
\(979\) −99.9264 + 45.6173i −0.102070 + 0.0465958i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −524.027 −0.533089 −0.266545 0.963823i \(-0.585882\pi\)
−0.266545 + 0.963823i \(0.585882\pi\)
\(984\) 0 0
\(985\) 187.604i 0.190461i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 429.387i 0.434162i
\(990\) 0 0
\(991\) 392.423 0.395986 0.197993 0.980203i \(-0.436558\pi\)
0.197993 + 0.980203i \(0.436558\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −725.929 −0.729577
\(996\) 0 0
\(997\) 1166.17i 1.16967i −0.811151 0.584837i \(-0.801158\pi\)
0.811151 0.584837i \(-0.198842\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1584.3.j.k.1297.2 6
3.2 odd 2 176.3.h.d.65.6 6
4.3 odd 2 792.3.j.a.505.1 6
11.10 odd 2 inner 1584.3.j.k.1297.1 6
12.11 even 2 88.3.h.a.65.1 6
24.5 odd 2 704.3.h.g.65.2 6
24.11 even 2 704.3.h.h.65.5 6
33.32 even 2 176.3.h.d.65.5 6
44.43 even 2 792.3.j.a.505.2 6
132.131 odd 2 88.3.h.a.65.2 yes 6
264.131 odd 2 704.3.h.h.65.6 6
264.197 even 2 704.3.h.g.65.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.3.h.a.65.1 6 12.11 even 2
88.3.h.a.65.2 yes 6 132.131 odd 2
176.3.h.d.65.5 6 33.32 even 2
176.3.h.d.65.6 6 3.2 odd 2
704.3.h.g.65.1 6 264.197 even 2
704.3.h.g.65.2 6 24.5 odd 2
704.3.h.h.65.5 6 24.11 even 2
704.3.h.h.65.6 6 264.131 odd 2
792.3.j.a.505.1 6 4.3 odd 2
792.3.j.a.505.2 6 44.43 even 2
1584.3.j.k.1297.1 6 11.10 odd 2 inner
1584.3.j.k.1297.2 6 1.1 even 1 trivial