Properties

Label 8649.2.a.bh.1.6
Level $8649$
Weight $2$
Character 8649.1
Self dual yes
Analytic conductor $69.063$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8649,2,Mod(1,8649)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8649, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8649.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8649 = 3^{2} \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8649.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-1,0,13,-3,0,-1,-9,0,6,5,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.0626127082\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 14x^{6} + 10x^{5} + 62x^{4} - 31x^{3} - 82x^{2} + 42x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 93)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.67120\) of defining polynomial
Character \(\chi\) \(=\) 8649.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.67120 q^{2} +0.792899 q^{4} -3.89560 q^{5} +4.51364 q^{7} -2.01730 q^{8} -6.51032 q^{10} -0.335097 q^{11} -1.74603 q^{13} +7.54317 q^{14} -4.95711 q^{16} +3.47039 q^{17} +0.211855 q^{19} -3.08882 q^{20} -0.560013 q^{22} -2.74271 q^{23} +10.1757 q^{25} -2.91796 q^{26} +3.57886 q^{28} +7.23800 q^{29} -4.24970 q^{32} +5.79970 q^{34} -17.5833 q^{35} -7.41580 q^{37} +0.354051 q^{38} +7.85861 q^{40} -6.51032 q^{41} +3.05753 q^{43} -0.265698 q^{44} -4.58361 q^{46} -3.33460 q^{47} +13.3729 q^{49} +17.0056 q^{50} -1.38442 q^{52} -12.1365 q^{53} +1.30540 q^{55} -9.10537 q^{56} +12.0961 q^{58} +1.37161 q^{59} +3.58978 q^{61} +2.81214 q^{64} +6.80184 q^{65} -1.37225 q^{67} +2.75167 q^{68} -29.3852 q^{70} +1.73742 q^{71} +13.0174 q^{73} -12.3933 q^{74} +0.167979 q^{76} -1.51250 q^{77} +8.50919 q^{79} +19.3109 q^{80} -10.8800 q^{82} +7.95742 q^{83} -13.5193 q^{85} +5.10973 q^{86} +0.675992 q^{88} +8.05400 q^{89} -7.88094 q^{91} -2.17469 q^{92} -5.57278 q^{94} -0.825302 q^{95} -3.44476 q^{97} +22.3488 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} + 13 q^{4} - 3 q^{5} - q^{7} - 9 q^{8} + 6 q^{10} + 5 q^{11} - 4 q^{13} - 3 q^{14} + 19 q^{16} - 2 q^{17} - 7 q^{19} - q^{20} + 9 q^{23} + 15 q^{25} + 8 q^{26} - 3 q^{28} + q^{29} - 54 q^{32}+ \cdots + 41 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.67120 1.18171 0.590857 0.806776i \(-0.298790\pi\)
0.590857 + 0.806776i \(0.298790\pi\)
\(3\) 0 0
\(4\) 0.792899 0.396449
\(5\) −3.89560 −1.74217 −0.871083 0.491136i \(-0.836582\pi\)
−0.871083 + 0.491136i \(0.836582\pi\)
\(6\) 0 0
\(7\) 4.51364 1.70599 0.852997 0.521916i \(-0.174783\pi\)
0.852997 + 0.521916i \(0.174783\pi\)
\(8\) −2.01730 −0.713225
\(9\) 0 0
\(10\) −6.51032 −2.05874
\(11\) −0.335097 −0.101035 −0.0505177 0.998723i \(-0.516087\pi\)
−0.0505177 + 0.998723i \(0.516087\pi\)
\(12\) 0 0
\(13\) −1.74603 −0.484261 −0.242131 0.970244i \(-0.577846\pi\)
−0.242131 + 0.970244i \(0.577846\pi\)
\(14\) 7.54317 2.01600
\(15\) 0 0
\(16\) −4.95711 −1.23928
\(17\) 3.47039 0.841693 0.420847 0.907132i \(-0.361733\pi\)
0.420847 + 0.907132i \(0.361733\pi\)
\(18\) 0 0
\(19\) 0.211855 0.0486028 0.0243014 0.999705i \(-0.492264\pi\)
0.0243014 + 0.999705i \(0.492264\pi\)
\(20\) −3.08882 −0.690681
\(21\) 0 0
\(22\) −0.560013 −0.119395
\(23\) −2.74271 −0.571895 −0.285947 0.958245i \(-0.592308\pi\)
−0.285947 + 0.958245i \(0.592308\pi\)
\(24\) 0 0
\(25\) 10.1757 2.03514
\(26\) −2.91796 −0.572259
\(27\) 0 0
\(28\) 3.57886 0.676340
\(29\) 7.23800 1.34406 0.672031 0.740523i \(-0.265422\pi\)
0.672031 + 0.740523i \(0.265422\pi\)
\(30\) 0 0
\(31\) 0 0
\(32\) −4.24970 −0.751247
\(33\) 0 0
\(34\) 5.79970 0.994641
\(35\) −17.5833 −2.97212
\(36\) 0 0
\(37\) −7.41580 −1.21915 −0.609575 0.792729i \(-0.708660\pi\)
−0.609575 + 0.792729i \(0.708660\pi\)
\(38\) 0.354051 0.0574347
\(39\) 0 0
\(40\) 7.85861 1.24256
\(41\) −6.51032 −1.01674 −0.508370 0.861139i \(-0.669752\pi\)
−0.508370 + 0.861139i \(0.669752\pi\)
\(42\) 0 0
\(43\) 3.05753 0.466269 0.233134 0.972445i \(-0.425102\pi\)
0.233134 + 0.972445i \(0.425102\pi\)
\(44\) −0.265698 −0.0400555
\(45\) 0 0
\(46\) −4.58361 −0.675816
\(47\) −3.33460 −0.486402 −0.243201 0.969976i \(-0.578197\pi\)
−0.243201 + 0.969976i \(0.578197\pi\)
\(48\) 0 0
\(49\) 13.3729 1.91042
\(50\) 17.0056 2.40496
\(51\) 0 0
\(52\) −1.38442 −0.191985
\(53\) −12.1365 −1.66708 −0.833541 0.552458i \(-0.813690\pi\)
−0.833541 + 0.552458i \(0.813690\pi\)
\(54\) 0 0
\(55\) 1.30540 0.176021
\(56\) −9.10537 −1.21676
\(57\) 0 0
\(58\) 12.0961 1.58830
\(59\) 1.37161 0.178568 0.0892842 0.996006i \(-0.471542\pi\)
0.0892842 + 0.996006i \(0.471542\pi\)
\(60\) 0 0
\(61\) 3.58978 0.459624 0.229812 0.973235i \(-0.426189\pi\)
0.229812 + 0.973235i \(0.426189\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 2.81214 0.351517
\(65\) 6.80184 0.843664
\(66\) 0 0
\(67\) −1.37225 −0.167647 −0.0838233 0.996481i \(-0.526713\pi\)
−0.0838233 + 0.996481i \(0.526713\pi\)
\(68\) 2.75167 0.333689
\(69\) 0 0
\(70\) −29.3852 −3.51220
\(71\) 1.73742 0.206194 0.103097 0.994671i \(-0.467125\pi\)
0.103097 + 0.994671i \(0.467125\pi\)
\(72\) 0 0
\(73\) 13.0174 1.52357 0.761784 0.647832i \(-0.224324\pi\)
0.761784 + 0.647832i \(0.224324\pi\)
\(74\) −12.3933 −1.44069
\(75\) 0 0
\(76\) 0.167979 0.0192686
\(77\) −1.51250 −0.172366
\(78\) 0 0
\(79\) 8.50919 0.957358 0.478679 0.877990i \(-0.341116\pi\)
0.478679 + 0.877990i \(0.341116\pi\)
\(80\) 19.3109 2.15903
\(81\) 0 0
\(82\) −10.8800 −1.20150
\(83\) 7.95742 0.873440 0.436720 0.899597i \(-0.356140\pi\)
0.436720 + 0.899597i \(0.356140\pi\)
\(84\) 0 0
\(85\) −13.5193 −1.46637
\(86\) 5.10973 0.550997
\(87\) 0 0
\(88\) 0.675992 0.0720610
\(89\) 8.05400 0.853722 0.426861 0.904317i \(-0.359619\pi\)
0.426861 + 0.904317i \(0.359619\pi\)
\(90\) 0 0
\(91\) −7.88094 −0.826147
\(92\) −2.17469 −0.226727
\(93\) 0 0
\(94\) −5.57278 −0.574788
\(95\) −0.825302 −0.0846742
\(96\) 0 0
\(97\) −3.44476 −0.349763 −0.174881 0.984589i \(-0.555954\pi\)
−0.174881 + 0.984589i \(0.555954\pi\)
\(98\) 22.3488 2.25757
\(99\) 0 0
\(100\) 8.06831 0.806831
\(101\) 0.632314 0.0629176 0.0314588 0.999505i \(-0.489985\pi\)
0.0314588 + 0.999505i \(0.489985\pi\)
\(102\) 0 0
\(103\) 1.08793 0.107197 0.0535985 0.998563i \(-0.482931\pi\)
0.0535985 + 0.998563i \(0.482931\pi\)
\(104\) 3.52227 0.345387
\(105\) 0 0
\(106\) −20.2825 −1.97001
\(107\) 7.97759 0.771223 0.385611 0.922661i \(-0.373991\pi\)
0.385611 + 0.922661i \(0.373991\pi\)
\(108\) 0 0
\(109\) 0.219454 0.0210198 0.0105099 0.999945i \(-0.496655\pi\)
0.0105099 + 0.999945i \(0.496655\pi\)
\(110\) 2.18159 0.208006
\(111\) 0 0
\(112\) −22.3746 −2.11420
\(113\) 11.9252 1.12183 0.560916 0.827873i \(-0.310449\pi\)
0.560916 + 0.827873i \(0.310449\pi\)
\(114\) 0 0
\(115\) 10.6845 0.996336
\(116\) 5.73900 0.532853
\(117\) 0 0
\(118\) 2.29223 0.211017
\(119\) 15.6641 1.43592
\(120\) 0 0
\(121\) −10.8877 −0.989792
\(122\) 5.99922 0.543144
\(123\) 0 0
\(124\) 0 0
\(125\) −20.1625 −1.80339
\(126\) 0 0
\(127\) 12.9672 1.15065 0.575324 0.817925i \(-0.304876\pi\)
0.575324 + 0.817925i \(0.304876\pi\)
\(128\) 13.1990 1.16664
\(129\) 0 0
\(130\) 11.3672 0.996970
\(131\) −13.2669 −1.15914 −0.579568 0.814924i \(-0.696779\pi\)
−0.579568 + 0.814924i \(0.696779\pi\)
\(132\) 0 0
\(133\) 0.956236 0.0829161
\(134\) −2.29330 −0.198111
\(135\) 0 0
\(136\) −7.00083 −0.600316
\(137\) 10.5121 0.898109 0.449054 0.893504i \(-0.351761\pi\)
0.449054 + 0.893504i \(0.351761\pi\)
\(138\) 0 0
\(139\) 23.4907 1.99245 0.996227 0.0867830i \(-0.0276587\pi\)
0.996227 + 0.0867830i \(0.0276587\pi\)
\(140\) −13.9418 −1.17830
\(141\) 0 0
\(142\) 2.90357 0.243662
\(143\) 0.585089 0.0489276
\(144\) 0 0
\(145\) −28.1963 −2.34158
\(146\) 21.7546 1.80042
\(147\) 0 0
\(148\) −5.87998 −0.483331
\(149\) 10.6943 0.876113 0.438056 0.898948i \(-0.355667\pi\)
0.438056 + 0.898948i \(0.355667\pi\)
\(150\) 0 0
\(151\) 2.81490 0.229073 0.114537 0.993419i \(-0.463462\pi\)
0.114537 + 0.993419i \(0.463462\pi\)
\(152\) −0.427376 −0.0346647
\(153\) 0 0
\(154\) −2.52769 −0.203687
\(155\) 0 0
\(156\) 0 0
\(157\) 14.6205 1.16684 0.583420 0.812171i \(-0.301714\pi\)
0.583420 + 0.812171i \(0.301714\pi\)
\(158\) 14.2205 1.13132
\(159\) 0 0
\(160\) 16.5551 1.30880
\(161\) −12.3796 −0.975649
\(162\) 0 0
\(163\) −17.2452 −1.35075 −0.675374 0.737476i \(-0.736018\pi\)
−0.675374 + 0.737476i \(0.736018\pi\)
\(164\) −5.16202 −0.403086
\(165\) 0 0
\(166\) 13.2984 1.03216
\(167\) 0.408108 0.0315804 0.0157902 0.999875i \(-0.494974\pi\)
0.0157902 + 0.999875i \(0.494974\pi\)
\(168\) 0 0
\(169\) −9.95138 −0.765491
\(170\) −22.5933 −1.73283
\(171\) 0 0
\(172\) 2.42431 0.184852
\(173\) −3.74370 −0.284628 −0.142314 0.989822i \(-0.545454\pi\)
−0.142314 + 0.989822i \(0.545454\pi\)
\(174\) 0 0
\(175\) 45.9295 3.47194
\(176\) 1.66111 0.125211
\(177\) 0 0
\(178\) 13.4598 1.00886
\(179\) −1.83178 −0.136913 −0.0684567 0.997654i \(-0.521808\pi\)
−0.0684567 + 0.997654i \(0.521808\pi\)
\(180\) 0 0
\(181\) −11.5508 −0.858565 −0.429283 0.903170i \(-0.641234\pi\)
−0.429283 + 0.903170i \(0.641234\pi\)
\(182\) −13.1706 −0.976270
\(183\) 0 0
\(184\) 5.53288 0.407889
\(185\) 28.8890 2.12396
\(186\) 0 0
\(187\) −1.16292 −0.0850409
\(188\) −2.64400 −0.192834
\(189\) 0 0
\(190\) −1.37924 −0.100061
\(191\) 8.89041 0.643287 0.321644 0.946861i \(-0.395765\pi\)
0.321644 + 0.946861i \(0.395765\pi\)
\(192\) 0 0
\(193\) −11.3286 −0.815449 −0.407725 0.913105i \(-0.633678\pi\)
−0.407725 + 0.913105i \(0.633678\pi\)
\(194\) −5.75688 −0.413320
\(195\) 0 0
\(196\) 10.6034 0.757383
\(197\) 13.9315 0.992579 0.496289 0.868157i \(-0.334696\pi\)
0.496289 + 0.868157i \(0.334696\pi\)
\(198\) 0 0
\(199\) 0.446722 0.0316673 0.0158336 0.999875i \(-0.494960\pi\)
0.0158336 + 0.999875i \(0.494960\pi\)
\(200\) −20.5275 −1.45151
\(201\) 0 0
\(202\) 1.05672 0.0743506
\(203\) 32.6697 2.29296
\(204\) 0 0
\(205\) 25.3616 1.77133
\(206\) 1.81815 0.126676
\(207\) 0 0
\(208\) 8.65526 0.600134
\(209\) −0.0709919 −0.00491061
\(210\) 0 0
\(211\) 20.4011 1.40447 0.702234 0.711946i \(-0.252186\pi\)
0.702234 + 0.711946i \(0.252186\pi\)
\(212\) −9.62304 −0.660913
\(213\) 0 0
\(214\) 13.3321 0.911365
\(215\) −11.9109 −0.812318
\(216\) 0 0
\(217\) 0 0
\(218\) 0.366750 0.0248394
\(219\) 0 0
\(220\) 1.03505 0.0697833
\(221\) −6.05940 −0.407599
\(222\) 0 0
\(223\) 20.4372 1.36857 0.684287 0.729213i \(-0.260114\pi\)
0.684287 + 0.729213i \(0.260114\pi\)
\(224\) −19.1816 −1.28162
\(225\) 0 0
\(226\) 19.9294 1.32568
\(227\) 12.1282 0.804976 0.402488 0.915425i \(-0.368146\pi\)
0.402488 + 0.915425i \(0.368146\pi\)
\(228\) 0 0
\(229\) 23.5742 1.55783 0.778915 0.627130i \(-0.215770\pi\)
0.778915 + 0.627130i \(0.215770\pi\)
\(230\) 17.8559 1.17738
\(231\) 0 0
\(232\) −14.6012 −0.958618
\(233\) −7.68952 −0.503757 −0.251879 0.967759i \(-0.581048\pi\)
−0.251879 + 0.967759i \(0.581048\pi\)
\(234\) 0 0
\(235\) 12.9903 0.847393
\(236\) 1.08755 0.0707934
\(237\) 0 0
\(238\) 26.1777 1.69685
\(239\) 22.3543 1.44598 0.722990 0.690859i \(-0.242767\pi\)
0.722990 + 0.690859i \(0.242767\pi\)
\(240\) 0 0
\(241\) 8.78690 0.566014 0.283007 0.959118i \(-0.408668\pi\)
0.283007 + 0.959118i \(0.408668\pi\)
\(242\) −18.1955 −1.16965
\(243\) 0 0
\(244\) 2.84633 0.182218
\(245\) −52.0955 −3.32826
\(246\) 0 0
\(247\) −0.369905 −0.0235365
\(248\) 0 0
\(249\) 0 0
\(250\) −33.6955 −2.13109
\(251\) −9.27250 −0.585275 −0.292637 0.956223i \(-0.594533\pi\)
−0.292637 + 0.956223i \(0.594533\pi\)
\(252\) 0 0
\(253\) 0.919074 0.0577817
\(254\) 21.6707 1.35974
\(255\) 0 0
\(256\) 16.4339 1.02712
\(257\) 2.03509 0.126946 0.0634729 0.997984i \(-0.479782\pi\)
0.0634729 + 0.997984i \(0.479782\pi\)
\(258\) 0 0
\(259\) −33.4722 −2.07986
\(260\) 5.39317 0.334470
\(261\) 0 0
\(262\) −22.1716 −1.36977
\(263\) 29.6069 1.82564 0.912819 0.408364i \(-0.133900\pi\)
0.912819 + 0.408364i \(0.133900\pi\)
\(264\) 0 0
\(265\) 47.2791 2.90433
\(266\) 1.59806 0.0979832
\(267\) 0 0
\(268\) −1.08805 −0.0664634
\(269\) 20.6451 1.25875 0.629376 0.777101i \(-0.283311\pi\)
0.629376 + 0.777101i \(0.283311\pi\)
\(270\) 0 0
\(271\) 6.46297 0.392598 0.196299 0.980544i \(-0.437108\pi\)
0.196299 + 0.980544i \(0.437108\pi\)
\(272\) −17.2031 −1.04309
\(273\) 0 0
\(274\) 17.5678 1.06131
\(275\) −3.40985 −0.205622
\(276\) 0 0
\(277\) 9.45301 0.567976 0.283988 0.958828i \(-0.408342\pi\)
0.283988 + 0.958828i \(0.408342\pi\)
\(278\) 39.2576 2.35451
\(279\) 0 0
\(280\) 35.4709 2.11979
\(281\) 2.27165 0.135515 0.0677575 0.997702i \(-0.478416\pi\)
0.0677575 + 0.997702i \(0.478416\pi\)
\(282\) 0 0
\(283\) −27.1242 −1.61237 −0.806183 0.591667i \(-0.798470\pi\)
−0.806183 + 0.591667i \(0.798470\pi\)
\(284\) 1.37760 0.0817454
\(285\) 0 0
\(286\) 0.977799 0.0578184
\(287\) −29.3852 −1.73455
\(288\) 0 0
\(289\) −4.95640 −0.291553
\(290\) −47.1216 −2.76708
\(291\) 0 0
\(292\) 10.3215 0.604017
\(293\) −9.17316 −0.535902 −0.267951 0.963433i \(-0.586347\pi\)
−0.267951 + 0.963433i \(0.586347\pi\)
\(294\) 0 0
\(295\) −5.34325 −0.311096
\(296\) 14.9599 0.869527
\(297\) 0 0
\(298\) 17.8723 1.03532
\(299\) 4.78885 0.276947
\(300\) 0 0
\(301\) 13.8006 0.795452
\(302\) 4.70425 0.270699
\(303\) 0 0
\(304\) −1.05019 −0.0602324
\(305\) −13.9843 −0.800741
\(306\) 0 0
\(307\) −9.06925 −0.517609 −0.258805 0.965930i \(-0.583329\pi\)
−0.258805 + 0.965930i \(0.583329\pi\)
\(308\) −1.19926 −0.0683344
\(309\) 0 0
\(310\) 0 0
\(311\) 11.8965 0.674587 0.337293 0.941400i \(-0.390489\pi\)
0.337293 + 0.941400i \(0.390489\pi\)
\(312\) 0 0
\(313\) −15.6841 −0.886516 −0.443258 0.896394i \(-0.646177\pi\)
−0.443258 + 0.896394i \(0.646177\pi\)
\(314\) 24.4337 1.37887
\(315\) 0 0
\(316\) 6.74692 0.379544
\(317\) 15.0304 0.844194 0.422097 0.906551i \(-0.361294\pi\)
0.422097 + 0.906551i \(0.361294\pi\)
\(318\) 0 0
\(319\) −2.42543 −0.135798
\(320\) −10.9550 −0.612401
\(321\) 0 0
\(322\) −20.6887 −1.15294
\(323\) 0.735219 0.0409087
\(324\) 0 0
\(325\) −17.7671 −0.985541
\(326\) −28.8201 −1.59620
\(327\) 0 0
\(328\) 13.1333 0.725164
\(329\) −15.0512 −0.829799
\(330\) 0 0
\(331\) 13.5963 0.747318 0.373659 0.927566i \(-0.378103\pi\)
0.373659 + 0.927566i \(0.378103\pi\)
\(332\) 6.30943 0.346275
\(333\) 0 0
\(334\) 0.682029 0.0373190
\(335\) 5.34573 0.292068
\(336\) 0 0
\(337\) −10.3562 −0.564136 −0.282068 0.959394i \(-0.591020\pi\)
−0.282068 + 0.959394i \(0.591020\pi\)
\(338\) −16.6307 −0.904592
\(339\) 0 0
\(340\) −10.7194 −0.581341
\(341\) 0 0
\(342\) 0 0
\(343\) 28.7650 1.55316
\(344\) −6.16796 −0.332554
\(345\) 0 0
\(346\) −6.25645 −0.336349
\(347\) 2.52600 0.135603 0.0678013 0.997699i \(-0.478402\pi\)
0.0678013 + 0.997699i \(0.478402\pi\)
\(348\) 0 0
\(349\) 34.8988 1.86809 0.934046 0.357153i \(-0.116252\pi\)
0.934046 + 0.357153i \(0.116252\pi\)
\(350\) 76.7572 4.10284
\(351\) 0 0
\(352\) 1.42406 0.0759027
\(353\) −9.14039 −0.486494 −0.243247 0.969964i \(-0.578213\pi\)
−0.243247 + 0.969964i \(0.578213\pi\)
\(354\) 0 0
\(355\) −6.76830 −0.359224
\(356\) 6.38601 0.338458
\(357\) 0 0
\(358\) −3.06126 −0.161793
\(359\) 4.71581 0.248891 0.124445 0.992226i \(-0.460285\pi\)
0.124445 + 0.992226i \(0.460285\pi\)
\(360\) 0 0
\(361\) −18.9551 −0.997638
\(362\) −19.3037 −1.01458
\(363\) 0 0
\(364\) −6.24879 −0.327526
\(365\) −50.7105 −2.65431
\(366\) 0 0
\(367\) −24.4353 −1.27551 −0.637756 0.770238i \(-0.720137\pi\)
−0.637756 + 0.770238i \(0.720137\pi\)
\(368\) 13.5959 0.708736
\(369\) 0 0
\(370\) 48.2792 2.50992
\(371\) −54.7799 −2.84403
\(372\) 0 0
\(373\) −3.54248 −0.183422 −0.0917112 0.995786i \(-0.529234\pi\)
−0.0917112 + 0.995786i \(0.529234\pi\)
\(374\) −1.94346 −0.100494
\(375\) 0 0
\(376\) 6.72691 0.346914
\(377\) −12.6378 −0.650877
\(378\) 0 0
\(379\) 24.1617 1.24111 0.620553 0.784165i \(-0.286908\pi\)
0.620553 + 0.784165i \(0.286908\pi\)
\(380\) −0.654381 −0.0335690
\(381\) 0 0
\(382\) 14.8576 0.760182
\(383\) −1.18780 −0.0606935 −0.0303468 0.999539i \(-0.509661\pi\)
−0.0303468 + 0.999539i \(0.509661\pi\)
\(384\) 0 0
\(385\) 5.89212 0.300290
\(386\) −18.9323 −0.963628
\(387\) 0 0
\(388\) −2.73135 −0.138663
\(389\) −18.2656 −0.926102 −0.463051 0.886332i \(-0.653245\pi\)
−0.463051 + 0.886332i \(0.653245\pi\)
\(390\) 0 0
\(391\) −9.51827 −0.481360
\(392\) −26.9772 −1.36256
\(393\) 0 0
\(394\) 23.2823 1.17294
\(395\) −33.1484 −1.66788
\(396\) 0 0
\(397\) −2.65218 −0.133109 −0.0665546 0.997783i \(-0.521201\pi\)
−0.0665546 + 0.997783i \(0.521201\pi\)
\(398\) 0.746560 0.0374217
\(399\) 0 0
\(400\) −50.4421 −2.52211
\(401\) 16.6033 0.829131 0.414566 0.910019i \(-0.363934\pi\)
0.414566 + 0.910019i \(0.363934\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.501361 0.0249436
\(405\) 0 0
\(406\) 54.5975 2.70963
\(407\) 2.48501 0.123177
\(408\) 0 0
\(409\) 25.6723 1.26942 0.634708 0.772752i \(-0.281120\pi\)
0.634708 + 0.772752i \(0.281120\pi\)
\(410\) 42.3842 2.09321
\(411\) 0 0
\(412\) 0.862619 0.0424982
\(413\) 6.19095 0.304637
\(414\) 0 0
\(415\) −30.9989 −1.52168
\(416\) 7.42010 0.363800
\(417\) 0 0
\(418\) −0.118641 −0.00580294
\(419\) −31.1576 −1.52215 −0.761075 0.648664i \(-0.775328\pi\)
−0.761075 + 0.648664i \(0.775328\pi\)
\(420\) 0 0
\(421\) −30.5518 −1.48900 −0.744502 0.667620i \(-0.767313\pi\)
−0.744502 + 0.667620i \(0.767313\pi\)
\(422\) 34.0942 1.65968
\(423\) 0 0
\(424\) 24.4831 1.18900
\(425\) 35.3137 1.71297
\(426\) 0 0
\(427\) 16.2029 0.784115
\(428\) 6.32542 0.305751
\(429\) 0 0
\(430\) −19.9055 −0.959928
\(431\) 36.6717 1.76641 0.883206 0.468986i \(-0.155380\pi\)
0.883206 + 0.468986i \(0.155380\pi\)
\(432\) 0 0
\(433\) −13.7562 −0.661083 −0.330541 0.943791i \(-0.607231\pi\)
−0.330541 + 0.943791i \(0.607231\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.174004 0.00833330
\(437\) −0.581057 −0.0277957
\(438\) 0 0
\(439\) −5.74749 −0.274313 −0.137156 0.990549i \(-0.543796\pi\)
−0.137156 + 0.990549i \(0.543796\pi\)
\(440\) −2.63340 −0.125542
\(441\) 0 0
\(442\) −10.1265 −0.481666
\(443\) −32.0745 −1.52390 −0.761952 0.647633i \(-0.775759\pi\)
−0.761952 + 0.647633i \(0.775759\pi\)
\(444\) 0 0
\(445\) −31.3752 −1.48733
\(446\) 34.1545 1.61726
\(447\) 0 0
\(448\) 12.6930 0.599686
\(449\) 22.5738 1.06532 0.532662 0.846328i \(-0.321192\pi\)
0.532662 + 0.846328i \(0.321192\pi\)
\(450\) 0 0
\(451\) 2.18159 0.102727
\(452\) 9.45550 0.444749
\(453\) 0 0
\(454\) 20.2686 0.951252
\(455\) 30.7010 1.43929
\(456\) 0 0
\(457\) 8.28399 0.387509 0.193754 0.981050i \(-0.437934\pi\)
0.193754 + 0.981050i \(0.437934\pi\)
\(458\) 39.3972 1.84091
\(459\) 0 0
\(460\) 8.47173 0.394997
\(461\) 15.7988 0.735822 0.367911 0.929861i \(-0.380073\pi\)
0.367911 + 0.929861i \(0.380073\pi\)
\(462\) 0 0
\(463\) −14.2339 −0.661506 −0.330753 0.943717i \(-0.607303\pi\)
−0.330753 + 0.943717i \(0.607303\pi\)
\(464\) −35.8795 −1.66567
\(465\) 0 0
\(466\) −12.8507 −0.595298
\(467\) −26.2440 −1.21443 −0.607213 0.794539i \(-0.707713\pi\)
−0.607213 + 0.794539i \(0.707713\pi\)
\(468\) 0 0
\(469\) −6.19382 −0.286004
\(470\) 21.7093 1.00138
\(471\) 0 0
\(472\) −2.76695 −0.127359
\(473\) −1.02457 −0.0471097
\(474\) 0 0
\(475\) 2.15577 0.0989137
\(476\) 12.4200 0.569271
\(477\) 0 0
\(478\) 37.3584 1.70874
\(479\) 41.7540 1.90779 0.953895 0.300141i \(-0.0970338\pi\)
0.953895 + 0.300141i \(0.0970338\pi\)
\(480\) 0 0
\(481\) 12.9482 0.590387
\(482\) 14.6846 0.668867
\(483\) 0 0
\(484\) −8.63285 −0.392402
\(485\) 13.4194 0.609345
\(486\) 0 0
\(487\) −34.5409 −1.56520 −0.782598 0.622527i \(-0.786106\pi\)
−0.782598 + 0.622527i \(0.786106\pi\)
\(488\) −7.24167 −0.327815
\(489\) 0 0
\(490\) −87.0619 −3.93305
\(491\) −13.4986 −0.609183 −0.304592 0.952483i \(-0.598520\pi\)
−0.304592 + 0.952483i \(0.598520\pi\)
\(492\) 0 0
\(493\) 25.1187 1.13129
\(494\) −0.618184 −0.0278134
\(495\) 0 0
\(496\) 0 0
\(497\) 7.84208 0.351766
\(498\) 0 0
\(499\) −37.7824 −1.69137 −0.845687 0.533679i \(-0.820809\pi\)
−0.845687 + 0.533679i \(0.820809\pi\)
\(500\) −15.9868 −0.714953
\(501\) 0 0
\(502\) −15.4962 −0.691628
\(503\) −5.37870 −0.239824 −0.119912 0.992785i \(-0.538261\pi\)
−0.119912 + 0.992785i \(0.538261\pi\)
\(504\) 0 0
\(505\) −2.46324 −0.109613
\(506\) 1.53595 0.0682814
\(507\) 0 0
\(508\) 10.2816 0.456174
\(509\) 18.4656 0.818475 0.409237 0.912428i \(-0.365795\pi\)
0.409237 + 0.912428i \(0.365795\pi\)
\(510\) 0 0
\(511\) 58.7556 2.59920
\(512\) 1.06623 0.0471210
\(513\) 0 0
\(514\) 3.40104 0.150014
\(515\) −4.23815 −0.186755
\(516\) 0 0
\(517\) 1.11742 0.0491439
\(518\) −55.9387 −2.45780
\(519\) 0 0
\(520\) −13.7214 −0.601722
\(521\) 20.3286 0.890610 0.445305 0.895379i \(-0.353095\pi\)
0.445305 + 0.895379i \(0.353095\pi\)
\(522\) 0 0
\(523\) −5.37216 −0.234908 −0.117454 0.993078i \(-0.537473\pi\)
−0.117454 + 0.993078i \(0.537473\pi\)
\(524\) −10.5193 −0.459539
\(525\) 0 0
\(526\) 49.4789 2.15738
\(527\) 0 0
\(528\) 0 0
\(529\) −15.4775 −0.672936
\(530\) 79.0127 3.43209
\(531\) 0 0
\(532\) 0.758198 0.0328721
\(533\) 11.3672 0.492368
\(534\) 0 0
\(535\) −31.0775 −1.34360
\(536\) 2.76824 0.119570
\(537\) 0 0
\(538\) 34.5020 1.48748
\(539\) −4.48122 −0.193020
\(540\) 0 0
\(541\) 29.3978 1.26391 0.631954 0.775006i \(-0.282253\pi\)
0.631954 + 0.775006i \(0.282253\pi\)
\(542\) 10.8009 0.463938
\(543\) 0 0
\(544\) −14.7481 −0.632320
\(545\) −0.854904 −0.0366200
\(546\) 0 0
\(547\) −37.7150 −1.61258 −0.806288 0.591523i \(-0.798527\pi\)
−0.806288 + 0.591523i \(0.798527\pi\)
\(548\) 8.33502 0.356055
\(549\) 0 0
\(550\) −5.69853 −0.242986
\(551\) 1.53340 0.0653252
\(552\) 0 0
\(553\) 38.4074 1.63325
\(554\) 15.7978 0.671186
\(555\) 0 0
\(556\) 18.6257 0.789907
\(557\) −2.12741 −0.0901411 −0.0450706 0.998984i \(-0.514351\pi\)
−0.0450706 + 0.998984i \(0.514351\pi\)
\(558\) 0 0
\(559\) −5.33854 −0.225796
\(560\) 87.1625 3.68329
\(561\) 0 0
\(562\) 3.79637 0.160140
\(563\) 15.4591 0.651523 0.325761 0.945452i \(-0.394379\pi\)
0.325761 + 0.945452i \(0.394379\pi\)
\(564\) 0 0
\(565\) −46.4559 −1.95442
\(566\) −45.3299 −1.90536
\(567\) 0 0
\(568\) −3.50491 −0.147063
\(569\) −43.4928 −1.82331 −0.911656 0.410954i \(-0.865196\pi\)
−0.911656 + 0.410954i \(0.865196\pi\)
\(570\) 0 0
\(571\) 9.60615 0.402005 0.201002 0.979591i \(-0.435580\pi\)
0.201002 + 0.979591i \(0.435580\pi\)
\(572\) 0.463916 0.0193973
\(573\) 0 0
\(574\) −49.1085 −2.04975
\(575\) −27.9090 −1.16389
\(576\) 0 0
\(577\) 45.8418 1.90842 0.954210 0.299139i \(-0.0966993\pi\)
0.954210 + 0.299139i \(0.0966993\pi\)
\(578\) −8.28312 −0.344532
\(579\) 0 0
\(580\) −22.3568 −0.928318
\(581\) 35.9169 1.49008
\(582\) 0 0
\(583\) 4.06691 0.168434
\(584\) −26.2600 −1.08665
\(585\) 0 0
\(586\) −15.3302 −0.633283
\(587\) 0.304600 0.0125722 0.00628610 0.999980i \(-0.497999\pi\)
0.00628610 + 0.999980i \(0.497999\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −8.92962 −0.367627
\(591\) 0 0
\(592\) 36.7609 1.51086
\(593\) −32.9188 −1.35181 −0.675906 0.736988i \(-0.736247\pi\)
−0.675906 + 0.736988i \(0.736247\pi\)
\(594\) 0 0
\(595\) −61.0210 −2.50162
\(596\) 8.47951 0.347334
\(597\) 0 0
\(598\) 8.00312 0.327272
\(599\) −0.464587 −0.0189825 −0.00949125 0.999955i \(-0.503021\pi\)
−0.00949125 + 0.999955i \(0.503021\pi\)
\(600\) 0 0
\(601\) 4.23305 0.172670 0.0863349 0.996266i \(-0.472484\pi\)
0.0863349 + 0.996266i \(0.472484\pi\)
\(602\) 23.0635 0.939997
\(603\) 0 0
\(604\) 2.23193 0.0908160
\(605\) 42.4142 1.72438
\(606\) 0 0
\(607\) −16.3205 −0.662430 −0.331215 0.943555i \(-0.607459\pi\)
−0.331215 + 0.943555i \(0.607459\pi\)
\(608\) −0.900319 −0.0365128
\(609\) 0 0
\(610\) −23.3706 −0.946247
\(611\) 5.82232 0.235546
\(612\) 0 0
\(613\) −19.5044 −0.787773 −0.393887 0.919159i \(-0.628870\pi\)
−0.393887 + 0.919159i \(0.628870\pi\)
\(614\) −15.1565 −0.611666
\(615\) 0 0
\(616\) 3.05118 0.122936
\(617\) 3.39753 0.136779 0.0683897 0.997659i \(-0.478214\pi\)
0.0683897 + 0.997659i \(0.478214\pi\)
\(618\) 0 0
\(619\) −26.4142 −1.06168 −0.530839 0.847473i \(-0.678123\pi\)
−0.530839 + 0.847473i \(0.678123\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 19.8813 0.797169
\(623\) 36.3528 1.45644
\(624\) 0 0
\(625\) 27.6666 1.10666
\(626\) −26.2112 −1.04761
\(627\) 0 0
\(628\) 11.5925 0.462593
\(629\) −25.7357 −1.02615
\(630\) 0 0
\(631\) −27.5230 −1.09567 −0.547836 0.836586i \(-0.684548\pi\)
−0.547836 + 0.836586i \(0.684548\pi\)
\(632\) −17.1656 −0.682811
\(633\) 0 0
\(634\) 25.1188 0.997596
\(635\) −50.5149 −2.00462
\(636\) 0 0
\(637\) −23.3495 −0.925141
\(638\) −4.05337 −0.160474
\(639\) 0 0
\(640\) −51.4182 −2.03248
\(641\) 8.91667 0.352187 0.176094 0.984373i \(-0.443654\pi\)
0.176094 + 0.984373i \(0.443654\pi\)
\(642\) 0 0
\(643\) −12.6584 −0.499199 −0.249600 0.968349i \(-0.580299\pi\)
−0.249600 + 0.968349i \(0.580299\pi\)
\(644\) −9.81577 −0.386795
\(645\) 0 0
\(646\) 1.22870 0.0483424
\(647\) 29.0256 1.14111 0.570556 0.821259i \(-0.306728\pi\)
0.570556 + 0.821259i \(0.306728\pi\)
\(648\) 0 0
\(649\) −0.459622 −0.0180418
\(650\) −29.6923 −1.16463
\(651\) 0 0
\(652\) −13.6737 −0.535503
\(653\) −32.4706 −1.27067 −0.635337 0.772235i \(-0.719139\pi\)
−0.635337 + 0.772235i \(0.719139\pi\)
\(654\) 0 0
\(655\) 51.6826 2.01941
\(656\) 32.2724 1.26002
\(657\) 0 0
\(658\) −25.1535 −0.980586
\(659\) −9.23568 −0.359771 −0.179886 0.983688i \(-0.557573\pi\)
−0.179886 + 0.983688i \(0.557573\pi\)
\(660\) 0 0
\(661\) −21.1259 −0.821704 −0.410852 0.911702i \(-0.634769\pi\)
−0.410852 + 0.911702i \(0.634769\pi\)
\(662\) 22.7220 0.883116
\(663\) 0 0
\(664\) −16.0525 −0.622959
\(665\) −3.72511 −0.144454
\(666\) 0 0
\(667\) −19.8517 −0.768662
\(668\) 0.323588 0.0125200
\(669\) 0 0
\(670\) 8.93377 0.345141
\(671\) −1.20292 −0.0464383
\(672\) 0 0
\(673\) 40.4793 1.56036 0.780181 0.625554i \(-0.215127\pi\)
0.780181 + 0.625554i \(0.215127\pi\)
\(674\) −17.3072 −0.666648
\(675\) 0 0
\(676\) −7.89044 −0.303478
\(677\) −16.5546 −0.636245 −0.318123 0.948050i \(-0.603052\pi\)
−0.318123 + 0.948050i \(0.603052\pi\)
\(678\) 0 0
\(679\) −15.5484 −0.596693
\(680\) 27.2724 1.04585
\(681\) 0 0
\(682\) 0 0
\(683\) 15.8493 0.606455 0.303228 0.952918i \(-0.401936\pi\)
0.303228 + 0.952918i \(0.401936\pi\)
\(684\) 0 0
\(685\) −40.9509 −1.56465
\(686\) 48.0719 1.83540
\(687\) 0 0
\(688\) −15.1565 −0.577836
\(689\) 21.1907 0.807303
\(690\) 0 0
\(691\) 0.273282 0.0103961 0.00519807 0.999986i \(-0.498345\pi\)
0.00519807 + 0.999986i \(0.498345\pi\)
\(692\) −2.96837 −0.112841
\(693\) 0 0
\(694\) 4.22144 0.160244
\(695\) −91.5104 −3.47119
\(696\) 0 0
\(697\) −22.5933 −0.855784
\(698\) 58.3228 2.20755
\(699\) 0 0
\(700\) 36.4174 1.37645
\(701\) 22.4179 0.846711 0.423356 0.905964i \(-0.360852\pi\)
0.423356 + 0.905964i \(0.360852\pi\)
\(702\) 0 0
\(703\) −1.57107 −0.0592541
\(704\) −0.942338 −0.0355157
\(705\) 0 0
\(706\) −15.2754 −0.574897
\(707\) 2.85403 0.107337
\(708\) 0 0
\(709\) 14.8070 0.556090 0.278045 0.960568i \(-0.410314\pi\)
0.278045 + 0.960568i \(0.410314\pi\)
\(710\) −11.3112 −0.424500
\(711\) 0 0
\(712\) −16.2474 −0.608896
\(713\) 0 0
\(714\) 0 0
\(715\) −2.27927 −0.0852400
\(716\) −1.45241 −0.0542793
\(717\) 0 0
\(718\) 7.88105 0.294118
\(719\) 25.1086 0.936392 0.468196 0.883625i \(-0.344904\pi\)
0.468196 + 0.883625i \(0.344904\pi\)
\(720\) 0 0
\(721\) 4.91052 0.182877
\(722\) −31.6777 −1.17892
\(723\) 0 0
\(724\) −9.15863 −0.340378
\(725\) 73.6518 2.73536
\(726\) 0 0
\(727\) 1.32303 0.0490686 0.0245343 0.999699i \(-0.492190\pi\)
0.0245343 + 0.999699i \(0.492190\pi\)
\(728\) 15.8983 0.589228
\(729\) 0 0
\(730\) −84.7472 −3.13663
\(731\) 10.6108 0.392455
\(732\) 0 0
\(733\) 21.3453 0.788408 0.394204 0.919023i \(-0.371020\pi\)
0.394204 + 0.919023i \(0.371020\pi\)
\(734\) −40.8362 −1.50729
\(735\) 0 0
\(736\) 11.6557 0.429635
\(737\) 0.459836 0.0169383
\(738\) 0 0
\(739\) −22.1603 −0.815178 −0.407589 0.913165i \(-0.633630\pi\)
−0.407589 + 0.913165i \(0.633630\pi\)
\(740\) 22.9060 0.842043
\(741\) 0 0
\(742\) −91.5480 −3.36083
\(743\) 29.6842 1.08901 0.544503 0.838759i \(-0.316718\pi\)
0.544503 + 0.838759i \(0.316718\pi\)
\(744\) 0 0
\(745\) −41.6608 −1.52633
\(746\) −5.92018 −0.216753
\(747\) 0 0
\(748\) −0.922075 −0.0337144
\(749\) 36.0079 1.31570
\(750\) 0 0
\(751\) 15.5930 0.568996 0.284498 0.958677i \(-0.408173\pi\)
0.284498 + 0.958677i \(0.408173\pi\)
\(752\) 16.5300 0.602787
\(753\) 0 0
\(754\) −21.1202 −0.769151
\(755\) −10.9657 −0.399084
\(756\) 0 0
\(757\) 21.2045 0.770691 0.385345 0.922772i \(-0.374082\pi\)
0.385345 + 0.922772i \(0.374082\pi\)
\(758\) 40.3790 1.46663
\(759\) 0 0
\(760\) 1.66488 0.0603917
\(761\) 24.4271 0.885481 0.442740 0.896650i \(-0.354006\pi\)
0.442740 + 0.896650i \(0.354006\pi\)
\(762\) 0 0
\(763\) 0.990533 0.0358597
\(764\) 7.04920 0.255031
\(765\) 0 0
\(766\) −1.98504 −0.0717224
\(767\) −2.39487 −0.0864738
\(768\) 0 0
\(769\) 23.9568 0.863903 0.431952 0.901897i \(-0.357825\pi\)
0.431952 + 0.901897i \(0.357825\pi\)
\(770\) 9.84689 0.354857
\(771\) 0 0
\(772\) −8.98242 −0.323284
\(773\) −45.1977 −1.62565 −0.812825 0.582508i \(-0.802071\pi\)
−0.812825 + 0.582508i \(0.802071\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 6.94914 0.249459
\(777\) 0 0
\(778\) −30.5254 −1.09439
\(779\) −1.37924 −0.0494165
\(780\) 0 0
\(781\) −0.582204 −0.0208329
\(782\) −15.9069 −0.568830
\(783\) 0 0
\(784\) −66.2910 −2.36753
\(785\) −56.9555 −2.03283
\(786\) 0 0
\(787\) −19.8996 −0.709346 −0.354673 0.934990i \(-0.615408\pi\)
−0.354673 + 0.934990i \(0.615408\pi\)
\(788\) 11.0463 0.393507
\(789\) 0 0
\(790\) −55.3975 −1.97095
\(791\) 53.8261 1.91384
\(792\) 0 0
\(793\) −6.26785 −0.222578
\(794\) −4.43232 −0.157297
\(795\) 0 0
\(796\) 0.354205 0.0125545
\(797\) 41.1645 1.45812 0.729060 0.684449i \(-0.239957\pi\)
0.729060 + 0.684449i \(0.239957\pi\)
\(798\) 0 0
\(799\) −11.5724 −0.409401
\(800\) −43.2437 −1.52890
\(801\) 0 0
\(802\) 27.7474 0.979796
\(803\) −4.36208 −0.153934
\(804\) 0 0
\(805\) 48.2260 1.69974
\(806\) 0 0
\(807\) 0 0
\(808\) −1.27557 −0.0448744
\(809\) −44.0715 −1.54947 −0.774736 0.632285i \(-0.782117\pi\)
−0.774736 + 0.632285i \(0.782117\pi\)
\(810\) 0 0
\(811\) 24.0093 0.843079 0.421539 0.906810i \(-0.361490\pi\)
0.421539 + 0.906810i \(0.361490\pi\)
\(812\) 25.9037 0.909043
\(813\) 0 0
\(814\) 4.15294 0.145561
\(815\) 67.1804 2.35323
\(816\) 0 0
\(817\) 0.647752 0.0226620
\(818\) 42.9035 1.50009
\(819\) 0 0
\(820\) 20.1092 0.702243
\(821\) −41.8591 −1.46089 −0.730447 0.682970i \(-0.760688\pi\)
−0.730447 + 0.682970i \(0.760688\pi\)
\(822\) 0 0
\(823\) 41.7357 1.45481 0.727407 0.686206i \(-0.240725\pi\)
0.727407 + 0.686206i \(0.240725\pi\)
\(824\) −2.19469 −0.0764555
\(825\) 0 0
\(826\) 10.3463 0.359994
\(827\) −18.0321 −0.627039 −0.313520 0.949582i \(-0.601508\pi\)
−0.313520 + 0.949582i \(0.601508\pi\)
\(828\) 0 0
\(829\) 12.6733 0.440162 0.220081 0.975482i \(-0.429368\pi\)
0.220081 + 0.975482i \(0.429368\pi\)
\(830\) −51.8053 −1.79819
\(831\) 0 0
\(832\) −4.91007 −0.170226
\(833\) 46.4092 1.60798
\(834\) 0 0
\(835\) −1.58983 −0.0550182
\(836\) −0.0562894 −0.00194681
\(837\) 0 0
\(838\) −52.0705 −1.79875
\(839\) 43.0991 1.48795 0.743974 0.668209i \(-0.232939\pi\)
0.743974 + 0.668209i \(0.232939\pi\)
\(840\) 0 0
\(841\) 23.3886 0.806503
\(842\) −51.0581 −1.75958
\(843\) 0 0
\(844\) 16.1760 0.556800
\(845\) 38.7666 1.33361
\(846\) 0 0
\(847\) −49.1432 −1.68858
\(848\) 60.1621 2.06598
\(849\) 0 0
\(850\) 59.0161 2.02424
\(851\) 20.3394 0.697225
\(852\) 0 0
\(853\) 44.8847 1.53682 0.768411 0.639956i \(-0.221048\pi\)
0.768411 + 0.639956i \(0.221048\pi\)
\(854\) 27.0783 0.926600
\(855\) 0 0
\(856\) −16.0932 −0.550055
\(857\) −14.2215 −0.485796 −0.242898 0.970052i \(-0.578098\pi\)
−0.242898 + 0.970052i \(0.578098\pi\)
\(858\) 0 0
\(859\) −23.5553 −0.803698 −0.401849 0.915706i \(-0.631632\pi\)
−0.401849 + 0.915706i \(0.631632\pi\)
\(860\) −9.44415 −0.322043
\(861\) 0 0
\(862\) 61.2856 2.08739
\(863\) −33.9831 −1.15680 −0.578400 0.815754i \(-0.696323\pi\)
−0.578400 + 0.815754i \(0.696323\pi\)
\(864\) 0 0
\(865\) 14.5840 0.495869
\(866\) −22.9894 −0.781211
\(867\) 0 0
\(868\) 0 0
\(869\) −2.85140 −0.0967272
\(870\) 0 0
\(871\) 2.39598 0.0811848
\(872\) −0.442704 −0.0149919
\(873\) 0 0
\(874\) −0.971060 −0.0328466
\(875\) −91.0062 −3.07657
\(876\) 0 0
\(877\) −42.3591 −1.43036 −0.715182 0.698938i \(-0.753656\pi\)
−0.715182 + 0.698938i \(0.753656\pi\)
\(878\) −9.60519 −0.324160
\(879\) 0 0
\(880\) −6.47103 −0.218138
\(881\) 33.4197 1.12594 0.562970 0.826478i \(-0.309659\pi\)
0.562970 + 0.826478i \(0.309659\pi\)
\(882\) 0 0
\(883\) −16.1834 −0.544616 −0.272308 0.962210i \(-0.587787\pi\)
−0.272308 + 0.962210i \(0.587787\pi\)
\(884\) −4.80449 −0.161593
\(885\) 0 0
\(886\) −53.6028 −1.80082
\(887\) 43.0207 1.44449 0.722247 0.691635i \(-0.243109\pi\)
0.722247 + 0.691635i \(0.243109\pi\)
\(888\) 0 0
\(889\) 58.5290 1.96300
\(890\) −52.4341 −1.75759
\(891\) 0 0
\(892\) 16.2046 0.542570
\(893\) −0.706452 −0.0236405
\(894\) 0 0
\(895\) 7.13588 0.238526
\(896\) 59.5756 1.99028
\(897\) 0 0
\(898\) 37.7253 1.25891
\(899\) 0 0
\(900\) 0 0
\(901\) −42.1185 −1.40317
\(902\) 3.64586 0.121394
\(903\) 0 0
\(904\) −24.0568 −0.800117
\(905\) 44.9974 1.49576
\(906\) 0 0
\(907\) 18.4721 0.613354 0.306677 0.951814i \(-0.400783\pi\)
0.306677 + 0.951814i \(0.400783\pi\)
\(908\) 9.61642 0.319132
\(909\) 0 0
\(910\) 51.3074 1.70082
\(911\) −20.8824 −0.691864 −0.345932 0.938260i \(-0.612437\pi\)
−0.345932 + 0.938260i \(0.612437\pi\)
\(912\) 0 0
\(913\) −2.66651 −0.0882485
\(914\) 13.8442 0.457925
\(915\) 0 0
\(916\) 18.6920 0.617601
\(917\) −59.8820 −1.97748
\(918\) 0 0
\(919\) −14.9218 −0.492225 −0.246112 0.969241i \(-0.579153\pi\)
−0.246112 + 0.969241i \(0.579153\pi\)
\(920\) −21.5539 −0.710611
\(921\) 0 0
\(922\) 26.4028 0.869531
\(923\) −3.03359 −0.0998518
\(924\) 0 0
\(925\) −75.4610 −2.48114
\(926\) −23.7877 −0.781712
\(927\) 0 0
\(928\) −30.7593 −1.00972
\(929\) 19.8663 0.651793 0.325897 0.945405i \(-0.394334\pi\)
0.325897 + 0.945405i \(0.394334\pi\)
\(930\) 0 0
\(931\) 2.83312 0.0928516
\(932\) −6.09701 −0.199714
\(933\) 0 0
\(934\) −43.8588 −1.43511
\(935\) 4.53026 0.148155
\(936\) 0 0
\(937\) 10.1006 0.329973 0.164986 0.986296i \(-0.447242\pi\)
0.164986 + 0.986296i \(0.447242\pi\)
\(938\) −10.3511 −0.337975
\(939\) 0 0
\(940\) 10.3000 0.335949
\(941\) 12.6891 0.413651 0.206826 0.978378i \(-0.433687\pi\)
0.206826 + 0.978378i \(0.433687\pi\)
\(942\) 0 0
\(943\) 17.8559 0.581469
\(944\) −6.79922 −0.221296
\(945\) 0 0
\(946\) −1.71226 −0.0556702
\(947\) −16.6123 −0.539828 −0.269914 0.962884i \(-0.586995\pi\)
−0.269914 + 0.962884i \(0.586995\pi\)
\(948\) 0 0
\(949\) −22.7287 −0.737805
\(950\) 3.60272 0.116888
\(951\) 0 0
\(952\) −31.5992 −1.02414
\(953\) 55.2584 1.79000 0.894998 0.446070i \(-0.147177\pi\)
0.894998 + 0.446070i \(0.147177\pi\)
\(954\) 0 0
\(955\) −34.6335 −1.12071
\(956\) 17.7247 0.573258
\(957\) 0 0
\(958\) 69.7792 2.25446
\(959\) 47.4478 1.53217
\(960\) 0 0
\(961\) 0 0
\(962\) 21.6390 0.697669
\(963\) 0 0
\(964\) 6.96712 0.224396
\(965\) 44.1316 1.42065
\(966\) 0 0
\(967\) −44.8302 −1.44164 −0.720821 0.693121i \(-0.756235\pi\)
−0.720821 + 0.693121i \(0.756235\pi\)
\(968\) 21.9638 0.705944
\(969\) 0 0
\(970\) 22.4265 0.720072
\(971\) 60.8757 1.95360 0.976798 0.214165i \(-0.0687030\pi\)
0.976798 + 0.214165i \(0.0687030\pi\)
\(972\) 0 0
\(973\) 106.028 3.39912
\(974\) −57.7246 −1.84962
\(975\) 0 0
\(976\) −17.7949 −0.569601
\(977\) −28.7783 −0.920699 −0.460349 0.887738i \(-0.652276\pi\)
−0.460349 + 0.887738i \(0.652276\pi\)
\(978\) 0 0
\(979\) −2.69887 −0.0862562
\(980\) −41.3065 −1.31949
\(981\) 0 0
\(982\) −22.5588 −0.719881
\(983\) −31.6935 −1.01086 −0.505432 0.862866i \(-0.668667\pi\)
−0.505432 + 0.862866i \(0.668667\pi\)
\(984\) 0 0
\(985\) −54.2716 −1.72924
\(986\) 41.9782 1.33686
\(987\) 0 0
\(988\) −0.293297 −0.00933102
\(989\) −8.38592 −0.266657
\(990\) 0 0
\(991\) −2.33148 −0.0740618 −0.0370309 0.999314i \(-0.511790\pi\)
−0.0370309 + 0.999314i \(0.511790\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 13.1057 0.415686
\(995\) −1.74025 −0.0551696
\(996\) 0 0
\(997\) 22.7279 0.719800 0.359900 0.932991i \(-0.382811\pi\)
0.359900 + 0.932991i \(0.382811\pi\)
\(998\) −63.1419 −1.99872
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8649.2.a.bh.1.6 8
3.2 odd 2 2883.2.a.p.1.3 8
31.2 even 5 279.2.i.c.190.3 16
31.16 even 5 279.2.i.c.163.3 16
31.30 odd 2 8649.2.a.bg.1.6 8
93.2 odd 10 93.2.f.b.4.2 16
93.47 odd 10 93.2.f.b.70.2 yes 16
93.92 even 2 2883.2.a.o.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.2.f.b.4.2 16 93.2 odd 10
93.2.f.b.70.2 yes 16 93.47 odd 10
279.2.i.c.163.3 16 31.16 even 5
279.2.i.c.190.3 16 31.2 even 5
2883.2.a.o.1.3 8 93.92 even 2
2883.2.a.p.1.3 8 3.2 odd 2
8649.2.a.bg.1.6 8 31.30 odd 2
8649.2.a.bh.1.6 8 1.1 even 1 trivial