Properties

Label 2883.2.a.o.1.3
Level $2883$
Weight $2$
Character 2883.1
Self dual yes
Analytic conductor $23.021$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2883,2,Mod(1,2883)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2883, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2883.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2883 = 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2883.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,1,-8,13,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0208709027\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 14x^{6} + 10x^{5} + 62x^{4} - 31x^{3} - 82x^{2} + 42x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 93)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.67120\) of defining polynomial
Character \(\chi\) \(=\) 2883.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.67120 q^{2} -1.00000 q^{3} +0.792899 q^{4} +3.89560 q^{5} +1.67120 q^{6} +4.51364 q^{7} +2.01730 q^{8} +1.00000 q^{9} -6.51032 q^{10} -0.335097 q^{11} -0.792899 q^{12} +1.74603 q^{13} -7.54317 q^{14} -3.89560 q^{15} -4.95711 q^{16} +3.47039 q^{17} -1.67120 q^{18} +0.211855 q^{19} +3.08882 q^{20} -4.51364 q^{21} +0.560013 q^{22} -2.74271 q^{23} -2.01730 q^{24} +10.1757 q^{25} -2.91796 q^{26} -1.00000 q^{27} +3.57886 q^{28} +7.23800 q^{29} +6.51032 q^{30} +4.24970 q^{32} +0.335097 q^{33} -5.79970 q^{34} +17.5833 q^{35} +0.792899 q^{36} +7.41580 q^{37} -0.354051 q^{38} -1.74603 q^{39} +7.85861 q^{40} +6.51032 q^{41} +7.54317 q^{42} -3.05753 q^{43} -0.265698 q^{44} +3.89560 q^{45} +4.58361 q^{46} +3.33460 q^{47} +4.95711 q^{48} +13.3729 q^{49} -17.0056 q^{50} -3.47039 q^{51} +1.38442 q^{52} -12.1365 q^{53} +1.67120 q^{54} -1.30540 q^{55} +9.10537 q^{56} -0.211855 q^{57} -12.0961 q^{58} -1.37161 q^{59} -3.08882 q^{60} -3.58978 q^{61} +4.51364 q^{63} +2.81214 q^{64} +6.80184 q^{65} -0.560013 q^{66} -1.37225 q^{67} +2.75167 q^{68} +2.74271 q^{69} -29.3852 q^{70} -1.73742 q^{71} +2.01730 q^{72} -13.0174 q^{73} -12.3933 q^{74} -10.1757 q^{75} +0.167979 q^{76} -1.51250 q^{77} +2.91796 q^{78} -8.50919 q^{79} -19.3109 q^{80} +1.00000 q^{81} -10.8800 q^{82} +7.95742 q^{83} -3.57886 q^{84} +13.5193 q^{85} +5.10973 q^{86} -7.23800 q^{87} -0.675992 q^{88} +8.05400 q^{89} -6.51032 q^{90} +7.88094 q^{91} -2.17469 q^{92} -5.57278 q^{94} +0.825302 q^{95} -4.24970 q^{96} -3.44476 q^{97} -22.3488 q^{98} -0.335097 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} - 8 q^{3} + 13 q^{4} + 3 q^{5} - q^{6} - q^{7} + 9 q^{8} + 8 q^{9} + 6 q^{10} + 5 q^{11} - 13 q^{12} + 4 q^{13} + 3 q^{14} - 3 q^{15} + 19 q^{16} - 2 q^{17} + q^{18} - 7 q^{19} + q^{20}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.67120 −1.18171 −0.590857 0.806776i \(-0.701210\pi\)
−0.590857 + 0.806776i \(0.701210\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.792899 0.396449
\(5\) 3.89560 1.74217 0.871083 0.491136i \(-0.163418\pi\)
0.871083 + 0.491136i \(0.163418\pi\)
\(6\) 1.67120 0.682263
\(7\) 4.51364 1.70599 0.852997 0.521916i \(-0.174783\pi\)
0.852997 + 0.521916i \(0.174783\pi\)
\(8\) 2.01730 0.713225
\(9\) 1.00000 0.333333
\(10\) −6.51032 −2.05874
\(11\) −0.335097 −0.101035 −0.0505177 0.998723i \(-0.516087\pi\)
−0.0505177 + 0.998723i \(0.516087\pi\)
\(12\) −0.792899 −0.228890
\(13\) 1.74603 0.484261 0.242131 0.970244i \(-0.422154\pi\)
0.242131 + 0.970244i \(0.422154\pi\)
\(14\) −7.54317 −2.01600
\(15\) −3.89560 −1.00584
\(16\) −4.95711 −1.23928
\(17\) 3.47039 0.841693 0.420847 0.907132i \(-0.361733\pi\)
0.420847 + 0.907132i \(0.361733\pi\)
\(18\) −1.67120 −0.393905
\(19\) 0.211855 0.0486028 0.0243014 0.999705i \(-0.492264\pi\)
0.0243014 + 0.999705i \(0.492264\pi\)
\(20\) 3.08882 0.690681
\(21\) −4.51364 −0.984956
\(22\) 0.560013 0.119395
\(23\) −2.74271 −0.571895 −0.285947 0.958245i \(-0.592308\pi\)
−0.285947 + 0.958245i \(0.592308\pi\)
\(24\) −2.01730 −0.411780
\(25\) 10.1757 2.03514
\(26\) −2.91796 −0.572259
\(27\) −1.00000 −0.192450
\(28\) 3.57886 0.676340
\(29\) 7.23800 1.34406 0.672031 0.740523i \(-0.265422\pi\)
0.672031 + 0.740523i \(0.265422\pi\)
\(30\) 6.51032 1.18862
\(31\) 0 0
\(32\) 4.24970 0.751247
\(33\) 0.335097 0.0583329
\(34\) −5.79970 −0.994641
\(35\) 17.5833 2.97212
\(36\) 0.792899 0.132150
\(37\) 7.41580 1.21915 0.609575 0.792729i \(-0.291340\pi\)
0.609575 + 0.792729i \(0.291340\pi\)
\(38\) −0.354051 −0.0574347
\(39\) −1.74603 −0.279588
\(40\) 7.85861 1.24256
\(41\) 6.51032 1.01674 0.508370 0.861139i \(-0.330248\pi\)
0.508370 + 0.861139i \(0.330248\pi\)
\(42\) 7.54317 1.16394
\(43\) −3.05753 −0.466269 −0.233134 0.972445i \(-0.574898\pi\)
−0.233134 + 0.972445i \(0.574898\pi\)
\(44\) −0.265698 −0.0400555
\(45\) 3.89560 0.580722
\(46\) 4.58361 0.675816
\(47\) 3.33460 0.486402 0.243201 0.969976i \(-0.421803\pi\)
0.243201 + 0.969976i \(0.421803\pi\)
\(48\) 4.95711 0.715497
\(49\) 13.3729 1.91042
\(50\) −17.0056 −2.40496
\(51\) −3.47039 −0.485952
\(52\) 1.38442 0.191985
\(53\) −12.1365 −1.66708 −0.833541 0.552458i \(-0.813690\pi\)
−0.833541 + 0.552458i \(0.813690\pi\)
\(54\) 1.67120 0.227421
\(55\) −1.30540 −0.176021
\(56\) 9.10537 1.21676
\(57\) −0.211855 −0.0280609
\(58\) −12.0961 −1.58830
\(59\) −1.37161 −0.178568 −0.0892842 0.996006i \(-0.528458\pi\)
−0.0892842 + 0.996006i \(0.528458\pi\)
\(60\) −3.08882 −0.398765
\(61\) −3.58978 −0.459624 −0.229812 0.973235i \(-0.573811\pi\)
−0.229812 + 0.973235i \(0.573811\pi\)
\(62\) 0 0
\(63\) 4.51364 0.568665
\(64\) 2.81214 0.351517
\(65\) 6.80184 0.843664
\(66\) −0.560013 −0.0689328
\(67\) −1.37225 −0.167647 −0.0838233 0.996481i \(-0.526713\pi\)
−0.0838233 + 0.996481i \(0.526713\pi\)
\(68\) 2.75167 0.333689
\(69\) 2.74271 0.330184
\(70\) −29.3852 −3.51220
\(71\) −1.73742 −0.206194 −0.103097 0.994671i \(-0.532875\pi\)
−0.103097 + 0.994671i \(0.532875\pi\)
\(72\) 2.01730 0.237742
\(73\) −13.0174 −1.52357 −0.761784 0.647832i \(-0.775676\pi\)
−0.761784 + 0.647832i \(0.775676\pi\)
\(74\) −12.3933 −1.44069
\(75\) −10.1757 −1.17499
\(76\) 0.167979 0.0192686
\(77\) −1.51250 −0.172366
\(78\) 2.91796 0.330394
\(79\) −8.50919 −0.957358 −0.478679 0.877990i \(-0.658884\pi\)
−0.478679 + 0.877990i \(0.658884\pi\)
\(80\) −19.3109 −2.15903
\(81\) 1.00000 0.111111
\(82\) −10.8800 −1.20150
\(83\) 7.95742 0.873440 0.436720 0.899597i \(-0.356140\pi\)
0.436720 + 0.899597i \(0.356140\pi\)
\(84\) −3.57886 −0.390485
\(85\) 13.5193 1.46637
\(86\) 5.10973 0.550997
\(87\) −7.23800 −0.775995
\(88\) −0.675992 −0.0720610
\(89\) 8.05400 0.853722 0.426861 0.904317i \(-0.359619\pi\)
0.426861 + 0.904317i \(0.359619\pi\)
\(90\) −6.51032 −0.686248
\(91\) 7.88094 0.826147
\(92\) −2.17469 −0.226727
\(93\) 0 0
\(94\) −5.57278 −0.574788
\(95\) 0.825302 0.0846742
\(96\) −4.24970 −0.433733
\(97\) −3.44476 −0.349763 −0.174881 0.984589i \(-0.555954\pi\)
−0.174881 + 0.984589i \(0.555954\pi\)
\(98\) −22.3488 −2.25757
\(99\) −0.335097 −0.0336785
\(100\) 8.06831 0.806831
\(101\) −0.632314 −0.0629176 −0.0314588 0.999505i \(-0.510015\pi\)
−0.0314588 + 0.999505i \(0.510015\pi\)
\(102\) 5.79970 0.574256
\(103\) 1.08793 0.107197 0.0535985 0.998563i \(-0.482931\pi\)
0.0535985 + 0.998563i \(0.482931\pi\)
\(104\) 3.52227 0.345387
\(105\) −17.5833 −1.71596
\(106\) 20.2825 1.97001
\(107\) −7.97759 −0.771223 −0.385611 0.922661i \(-0.626009\pi\)
−0.385611 + 0.922661i \(0.626009\pi\)
\(108\) −0.792899 −0.0762967
\(109\) 0.219454 0.0210198 0.0105099 0.999945i \(-0.496655\pi\)
0.0105099 + 0.999945i \(0.496655\pi\)
\(110\) 2.18159 0.208006
\(111\) −7.41580 −0.703876
\(112\) −22.3746 −2.11420
\(113\) −11.9252 −1.12183 −0.560916 0.827873i \(-0.689551\pi\)
−0.560916 + 0.827873i \(0.689551\pi\)
\(114\) 0.354051 0.0331599
\(115\) −10.6845 −0.996336
\(116\) 5.73900 0.532853
\(117\) 1.74603 0.161420
\(118\) 2.29223 0.211017
\(119\) 15.6641 1.43592
\(120\) −7.85861 −0.717390
\(121\) −10.8877 −0.989792
\(122\) 5.99922 0.543144
\(123\) −6.51032 −0.587016
\(124\) 0 0
\(125\) 20.1625 1.80339
\(126\) −7.54317 −0.671999
\(127\) −12.9672 −1.15065 −0.575324 0.817925i \(-0.695124\pi\)
−0.575324 + 0.817925i \(0.695124\pi\)
\(128\) −13.1990 −1.16664
\(129\) 3.05753 0.269200
\(130\) −11.3672 −0.996970
\(131\) 13.2669 1.15914 0.579568 0.814924i \(-0.303221\pi\)
0.579568 + 0.814924i \(0.303221\pi\)
\(132\) 0.265698 0.0231260
\(133\) 0.956236 0.0829161
\(134\) 2.29330 0.198111
\(135\) −3.89560 −0.335280
\(136\) 7.00083 0.600316
\(137\) 10.5121 0.898109 0.449054 0.893504i \(-0.351761\pi\)
0.449054 + 0.893504i \(0.351761\pi\)
\(138\) −4.58361 −0.390183
\(139\) −23.4907 −1.99245 −0.996227 0.0867830i \(-0.972341\pi\)
−0.996227 + 0.0867830i \(0.972341\pi\)
\(140\) 13.9418 1.17830
\(141\) −3.33460 −0.280824
\(142\) 2.90357 0.243662
\(143\) −0.585089 −0.0489276
\(144\) −4.95711 −0.413092
\(145\) 28.1963 2.34158
\(146\) 21.7546 1.80042
\(147\) −13.3729 −1.10298
\(148\) 5.87998 0.483331
\(149\) −10.6943 −0.876113 −0.438056 0.898948i \(-0.644333\pi\)
−0.438056 + 0.898948i \(0.644333\pi\)
\(150\) 17.0056 1.38850
\(151\) −2.81490 −0.229073 −0.114537 0.993419i \(-0.536538\pi\)
−0.114537 + 0.993419i \(0.536538\pi\)
\(152\) 0.427376 0.0346647
\(153\) 3.47039 0.280564
\(154\) 2.52769 0.203687
\(155\) 0 0
\(156\) −1.38442 −0.110843
\(157\) 14.6205 1.16684 0.583420 0.812171i \(-0.301714\pi\)
0.583420 + 0.812171i \(0.301714\pi\)
\(158\) 14.2205 1.13132
\(159\) 12.1365 0.962490
\(160\) 16.5551 1.30880
\(161\) −12.3796 −0.975649
\(162\) −1.67120 −0.131302
\(163\) −17.2452 −1.35075 −0.675374 0.737476i \(-0.736018\pi\)
−0.675374 + 0.737476i \(0.736018\pi\)
\(164\) 5.16202 0.403086
\(165\) 1.30540 0.101626
\(166\) −13.2984 −1.03216
\(167\) 0.408108 0.0315804 0.0157902 0.999875i \(-0.494974\pi\)
0.0157902 + 0.999875i \(0.494974\pi\)
\(168\) −9.10537 −0.702495
\(169\) −9.95138 −0.765491
\(170\) −22.5933 −1.73283
\(171\) 0.211855 0.0162009
\(172\) −2.42431 −0.184852
\(173\) 3.74370 0.284628 0.142314 0.989822i \(-0.454546\pi\)
0.142314 + 0.989822i \(0.454546\pi\)
\(174\) 12.0961 0.917004
\(175\) 45.9295 3.47194
\(176\) 1.66111 0.125211
\(177\) 1.37161 0.103097
\(178\) −13.4598 −1.00886
\(179\) −1.83178 −0.136913 −0.0684567 0.997654i \(-0.521808\pi\)
−0.0684567 + 0.997654i \(0.521808\pi\)
\(180\) 3.08882 0.230227
\(181\) 11.5508 0.858565 0.429283 0.903170i \(-0.358766\pi\)
0.429283 + 0.903170i \(0.358766\pi\)
\(182\) −13.1706 −0.976270
\(183\) 3.58978 0.265364
\(184\) −5.53288 −0.407889
\(185\) 28.8890 2.12396
\(186\) 0 0
\(187\) −1.16292 −0.0850409
\(188\) 2.64400 0.192834
\(189\) −4.51364 −0.328319
\(190\) −1.37924 −0.100061
\(191\) −8.89041 −0.643287 −0.321644 0.946861i \(-0.604235\pi\)
−0.321644 + 0.946861i \(0.604235\pi\)
\(192\) −2.81214 −0.202949
\(193\) −11.3286 −0.815449 −0.407725 0.913105i \(-0.633678\pi\)
−0.407725 + 0.913105i \(0.633678\pi\)
\(194\) 5.75688 0.413320
\(195\) −6.80184 −0.487090
\(196\) 10.6034 0.757383
\(197\) 13.9315 0.992579 0.496289 0.868157i \(-0.334696\pi\)
0.496289 + 0.868157i \(0.334696\pi\)
\(198\) 0.560013 0.0397984
\(199\) −0.446722 −0.0316673 −0.0158336 0.999875i \(-0.505040\pi\)
−0.0158336 + 0.999875i \(0.505040\pi\)
\(200\) 20.5275 1.45151
\(201\) 1.37225 0.0967909
\(202\) 1.05672 0.0743506
\(203\) 32.6697 2.29296
\(204\) −2.75167 −0.192655
\(205\) 25.3616 1.77133
\(206\) −1.81815 −0.126676
\(207\) −2.74271 −0.190632
\(208\) −8.65526 −0.600134
\(209\) −0.0709919 −0.00491061
\(210\) 29.3852 2.02777
\(211\) 20.4011 1.40447 0.702234 0.711946i \(-0.252186\pi\)
0.702234 + 0.711946i \(0.252186\pi\)
\(212\) −9.62304 −0.660913
\(213\) 1.73742 0.119046
\(214\) 13.3321 0.911365
\(215\) −11.9109 −0.812318
\(216\) −2.01730 −0.137260
\(217\) 0 0
\(218\) −0.366750 −0.0248394
\(219\) 13.0174 0.879632
\(220\) −1.03505 −0.0697833
\(221\) 6.05940 0.407599
\(222\) 12.3933 0.831781
\(223\) −20.4372 −1.36857 −0.684287 0.729213i \(-0.739886\pi\)
−0.684287 + 0.729213i \(0.739886\pi\)
\(224\) 19.1816 1.28162
\(225\) 10.1757 0.678381
\(226\) 19.9294 1.32568
\(227\) −12.1282 −0.804976 −0.402488 0.915425i \(-0.631854\pi\)
−0.402488 + 0.915425i \(0.631854\pi\)
\(228\) −0.167979 −0.0111247
\(229\) −23.5742 −1.55783 −0.778915 0.627130i \(-0.784230\pi\)
−0.778915 + 0.627130i \(0.784230\pi\)
\(230\) 17.8559 1.17738
\(231\) 1.51250 0.0995155
\(232\) 14.6012 0.958618
\(233\) 7.68952 0.503757 0.251879 0.967759i \(-0.418952\pi\)
0.251879 + 0.967759i \(0.418952\pi\)
\(234\) −2.91796 −0.190753
\(235\) 12.9903 0.847393
\(236\) −1.08755 −0.0707934
\(237\) 8.50919 0.552731
\(238\) −26.1777 −1.69685
\(239\) 22.3543 1.44598 0.722990 0.690859i \(-0.242767\pi\)
0.722990 + 0.690859i \(0.242767\pi\)
\(240\) 19.3109 1.24651
\(241\) −8.78690 −0.566014 −0.283007 0.959118i \(-0.591332\pi\)
−0.283007 + 0.959118i \(0.591332\pi\)
\(242\) 18.1955 1.16965
\(243\) −1.00000 −0.0641500
\(244\) −2.84633 −0.182218
\(245\) 52.0955 3.32826
\(246\) 10.8800 0.693685
\(247\) 0.369905 0.0235365
\(248\) 0 0
\(249\) −7.95742 −0.504281
\(250\) −33.6955 −2.13109
\(251\) −9.27250 −0.585275 −0.292637 0.956223i \(-0.594533\pi\)
−0.292637 + 0.956223i \(0.594533\pi\)
\(252\) 3.57886 0.225447
\(253\) 0.919074 0.0577817
\(254\) 21.6707 1.35974
\(255\) −13.5193 −0.846609
\(256\) 16.4339 1.02712
\(257\) −2.03509 −0.126946 −0.0634729 0.997984i \(-0.520218\pi\)
−0.0634729 + 0.997984i \(0.520218\pi\)
\(258\) −5.10973 −0.318118
\(259\) 33.4722 2.07986
\(260\) 5.39317 0.334470
\(261\) 7.23800 0.448021
\(262\) −22.1716 −1.36977
\(263\) 29.6069 1.82564 0.912819 0.408364i \(-0.133900\pi\)
0.912819 + 0.408364i \(0.133900\pi\)
\(264\) 0.675992 0.0416044
\(265\) −47.2791 −2.90433
\(266\) −1.59806 −0.0979832
\(267\) −8.05400 −0.492897
\(268\) −1.08805 −0.0664634
\(269\) 20.6451 1.25875 0.629376 0.777101i \(-0.283311\pi\)
0.629376 + 0.777101i \(0.283311\pi\)
\(270\) 6.51032 0.396205
\(271\) −6.46297 −0.392598 −0.196299 0.980544i \(-0.562892\pi\)
−0.196299 + 0.980544i \(0.562892\pi\)
\(272\) −17.2031 −1.04309
\(273\) −7.88094 −0.476976
\(274\) −17.5678 −1.06131
\(275\) −3.40985 −0.205622
\(276\) 2.17469 0.130901
\(277\) −9.45301 −0.567976 −0.283988 0.958828i \(-0.591658\pi\)
−0.283988 + 0.958828i \(0.591658\pi\)
\(278\) 39.2576 2.35451
\(279\) 0 0
\(280\) 35.4709 2.11979
\(281\) −2.27165 −0.135515 −0.0677575 0.997702i \(-0.521584\pi\)
−0.0677575 + 0.997702i \(0.521584\pi\)
\(282\) 5.57278 0.331854
\(283\) −27.1242 −1.61237 −0.806183 0.591667i \(-0.798470\pi\)
−0.806183 + 0.591667i \(0.798470\pi\)
\(284\) −1.37760 −0.0817454
\(285\) −0.825302 −0.0488867
\(286\) 0.977799 0.0578184
\(287\) 29.3852 1.73455
\(288\) 4.24970 0.250416
\(289\) −4.95640 −0.291553
\(290\) −47.1216 −2.76708
\(291\) 3.44476 0.201936
\(292\) −10.3215 −0.604017
\(293\) 9.17316 0.535902 0.267951 0.963433i \(-0.413653\pi\)
0.267951 + 0.963433i \(0.413653\pi\)
\(294\) 22.3488 1.30341
\(295\) −5.34325 −0.311096
\(296\) 14.9599 0.869527
\(297\) 0.335097 0.0194443
\(298\) 17.8723 1.03532
\(299\) −4.78885 −0.276947
\(300\) −8.06831 −0.465824
\(301\) −13.8006 −0.795452
\(302\) 4.70425 0.270699
\(303\) 0.632314 0.0363255
\(304\) −1.05019 −0.0602324
\(305\) −13.9843 −0.800741
\(306\) −5.79970 −0.331547
\(307\) −9.06925 −0.517609 −0.258805 0.965930i \(-0.583329\pi\)
−0.258805 + 0.965930i \(0.583329\pi\)
\(308\) −1.19926 −0.0683344
\(309\) −1.08793 −0.0618902
\(310\) 0 0
\(311\) −11.8965 −0.674587 −0.337293 0.941400i \(-0.609511\pi\)
−0.337293 + 0.941400i \(0.609511\pi\)
\(312\) −3.52227 −0.199409
\(313\) 15.6841 0.886516 0.443258 0.896394i \(-0.353823\pi\)
0.443258 + 0.896394i \(0.353823\pi\)
\(314\) −24.4337 −1.37887
\(315\) 17.5833 0.990708
\(316\) −6.74692 −0.379544
\(317\) −15.0304 −0.844194 −0.422097 0.906551i \(-0.638706\pi\)
−0.422097 + 0.906551i \(0.638706\pi\)
\(318\) −20.2825 −1.13739
\(319\) −2.42543 −0.135798
\(320\) 10.9550 0.612401
\(321\) 7.97759 0.445266
\(322\) 20.6887 1.15294
\(323\) 0.735219 0.0409087
\(324\) 0.792899 0.0440499
\(325\) 17.7671 0.985541
\(326\) 28.8201 1.59620
\(327\) −0.219454 −0.0121358
\(328\) 13.1333 0.725164
\(329\) 15.0512 0.829799
\(330\) −2.18159 −0.120092
\(331\) −13.5963 −0.747318 −0.373659 0.927566i \(-0.621897\pi\)
−0.373659 + 0.927566i \(0.621897\pi\)
\(332\) 6.30943 0.346275
\(333\) 7.41580 0.406383
\(334\) −0.682029 −0.0373190
\(335\) −5.34573 −0.292068
\(336\) 22.3746 1.22063
\(337\) 10.3562 0.564136 0.282068 0.959394i \(-0.408980\pi\)
0.282068 + 0.959394i \(0.408980\pi\)
\(338\) 16.6307 0.904592
\(339\) 11.9252 0.647689
\(340\) 10.7194 0.581341
\(341\) 0 0
\(342\) −0.354051 −0.0191449
\(343\) 28.7650 1.55316
\(344\) −6.16796 −0.332554
\(345\) 10.6845 0.575235
\(346\) −6.25645 −0.336349
\(347\) 2.52600 0.135603 0.0678013 0.997699i \(-0.478402\pi\)
0.0678013 + 0.997699i \(0.478402\pi\)
\(348\) −5.73900 −0.307643
\(349\) 34.8988 1.86809 0.934046 0.357153i \(-0.116252\pi\)
0.934046 + 0.357153i \(0.116252\pi\)
\(350\) −76.7572 −4.10284
\(351\) −1.74603 −0.0931962
\(352\) −1.42406 −0.0759027
\(353\) −9.14039 −0.486494 −0.243247 0.969964i \(-0.578213\pi\)
−0.243247 + 0.969964i \(0.578213\pi\)
\(354\) −2.29223 −0.121831
\(355\) −6.76830 −0.359224
\(356\) 6.38601 0.338458
\(357\) −15.6641 −0.829031
\(358\) 3.06126 0.161793
\(359\) −4.71581 −0.248891 −0.124445 0.992226i \(-0.539715\pi\)
−0.124445 + 0.992226i \(0.539715\pi\)
\(360\) 7.85861 0.414185
\(361\) −18.9551 −0.997638
\(362\) −19.3037 −1.01458
\(363\) 10.8877 0.571457
\(364\) 6.24879 0.327526
\(365\) −50.7105 −2.65431
\(366\) −5.99922 −0.313584
\(367\) 24.4353 1.27551 0.637756 0.770238i \(-0.279863\pi\)
0.637756 + 0.770238i \(0.279863\pi\)
\(368\) 13.5959 0.708736
\(369\) 6.51032 0.338914
\(370\) −48.2792 −2.50992
\(371\) −54.7799 −2.84403
\(372\) 0 0
\(373\) −3.54248 −0.183422 −0.0917112 0.995786i \(-0.529234\pi\)
−0.0917112 + 0.995786i \(0.529234\pi\)
\(374\) 1.94346 0.100494
\(375\) −20.1625 −1.04119
\(376\) 6.72691 0.346914
\(377\) 12.6378 0.650877
\(378\) 7.54317 0.387979
\(379\) 24.1617 1.24111 0.620553 0.784165i \(-0.286908\pi\)
0.620553 + 0.784165i \(0.286908\pi\)
\(380\) 0.654381 0.0335690
\(381\) 12.9672 0.664327
\(382\) 14.8576 0.760182
\(383\) −1.18780 −0.0606935 −0.0303468 0.999539i \(-0.509661\pi\)
−0.0303468 + 0.999539i \(0.509661\pi\)
\(384\) 13.1990 0.673560
\(385\) −5.89212 −0.300290
\(386\) 18.9323 0.963628
\(387\) −3.05753 −0.155423
\(388\) −2.73135 −0.138663
\(389\) −18.2656 −0.926102 −0.463051 0.886332i \(-0.653245\pi\)
−0.463051 + 0.886332i \(0.653245\pi\)
\(390\) 11.3672 0.575601
\(391\) −9.51827 −0.481360
\(392\) 26.9772 1.36256
\(393\) −13.2669 −0.669228
\(394\) −23.2823 −1.17294
\(395\) −33.1484 −1.66788
\(396\) −0.265698 −0.0133518
\(397\) −2.65218 −0.133109 −0.0665546 0.997783i \(-0.521201\pi\)
−0.0665546 + 0.997783i \(0.521201\pi\)
\(398\) 0.746560 0.0374217
\(399\) −0.956236 −0.0478717
\(400\) −50.4421 −2.52211
\(401\) 16.6033 0.829131 0.414566 0.910019i \(-0.363934\pi\)
0.414566 + 0.910019i \(0.363934\pi\)
\(402\) −2.29330 −0.114379
\(403\) 0 0
\(404\) −0.501361 −0.0249436
\(405\) 3.89560 0.193574
\(406\) −54.5975 −2.70963
\(407\) −2.48501 −0.123177
\(408\) −7.00083 −0.346593
\(409\) −25.6723 −1.26942 −0.634708 0.772752i \(-0.718880\pi\)
−0.634708 + 0.772752i \(0.718880\pi\)
\(410\) −42.3842 −2.09321
\(411\) −10.5121 −0.518523
\(412\) 0.862619 0.0424982
\(413\) −6.19095 −0.304637
\(414\) 4.58361 0.225272
\(415\) 30.9989 1.52168
\(416\) 7.42010 0.363800
\(417\) 23.4907 1.15034
\(418\) 0.118641 0.00580294
\(419\) 31.1576 1.52215 0.761075 0.648664i \(-0.224672\pi\)
0.761075 + 0.648664i \(0.224672\pi\)
\(420\) −13.9418 −0.680290
\(421\) −30.5518 −1.48900 −0.744502 0.667620i \(-0.767313\pi\)
−0.744502 + 0.667620i \(0.767313\pi\)
\(422\) −34.0942 −1.65968
\(423\) 3.33460 0.162134
\(424\) −24.4831 −1.18900
\(425\) 35.3137 1.71297
\(426\) −2.90357 −0.140679
\(427\) −16.2029 −0.784115
\(428\) −6.32542 −0.305751
\(429\) 0.585089 0.0282484
\(430\) 19.9055 0.959928
\(431\) −36.6717 −1.76641 −0.883206 0.468986i \(-0.844620\pi\)
−0.883206 + 0.468986i \(0.844620\pi\)
\(432\) 4.95711 0.238499
\(433\) 13.7562 0.661083 0.330541 0.943791i \(-0.392769\pi\)
0.330541 + 0.943791i \(0.392769\pi\)
\(434\) 0 0
\(435\) −28.1963 −1.35191
\(436\) 0.174004 0.00833330
\(437\) −0.581057 −0.0277957
\(438\) −21.7546 −1.03947
\(439\) −5.74749 −0.274313 −0.137156 0.990549i \(-0.543796\pi\)
−0.137156 + 0.990549i \(0.543796\pi\)
\(440\) −2.63340 −0.125542
\(441\) 13.3729 0.636805
\(442\) −10.1265 −0.481666
\(443\) 32.0745 1.52390 0.761952 0.647633i \(-0.224241\pi\)
0.761952 + 0.647633i \(0.224241\pi\)
\(444\) −5.87998 −0.279051
\(445\) 31.3752 1.48733
\(446\) 34.1545 1.61726
\(447\) 10.6943 0.505824
\(448\) 12.6930 0.599686
\(449\) 22.5738 1.06532 0.532662 0.846328i \(-0.321192\pi\)
0.532662 + 0.846328i \(0.321192\pi\)
\(450\) −17.0056 −0.801653
\(451\) −2.18159 −0.102727
\(452\) −9.45550 −0.444749
\(453\) 2.81490 0.132256
\(454\) 20.2686 0.951252
\(455\) 30.7010 1.43929
\(456\) −0.427376 −0.0200137
\(457\) −8.28399 −0.387509 −0.193754 0.981050i \(-0.562066\pi\)
−0.193754 + 0.981050i \(0.562066\pi\)
\(458\) 39.3972 1.84091
\(459\) −3.47039 −0.161984
\(460\) −8.47173 −0.394997
\(461\) 15.7988 0.735822 0.367911 0.929861i \(-0.380073\pi\)
0.367911 + 0.929861i \(0.380073\pi\)
\(462\) −2.52769 −0.117599
\(463\) 14.2339 0.661506 0.330753 0.943717i \(-0.392697\pi\)
0.330753 + 0.943717i \(0.392697\pi\)
\(464\) −35.8795 −1.66567
\(465\) 0 0
\(466\) −12.8507 −0.595298
\(467\) 26.2440 1.21443 0.607213 0.794539i \(-0.292287\pi\)
0.607213 + 0.794539i \(0.292287\pi\)
\(468\) 1.38442 0.0639951
\(469\) −6.19382 −0.286004
\(470\) −21.7093 −1.00138
\(471\) −14.6205 −0.673675
\(472\) −2.76695 −0.127359
\(473\) 1.02457 0.0471097
\(474\) −14.2205 −0.653170
\(475\) 2.15577 0.0989137
\(476\) 12.4200 0.569271
\(477\) −12.1365 −0.555694
\(478\) −37.3584 −1.70874
\(479\) −41.7540 −1.90779 −0.953895 0.300141i \(-0.902966\pi\)
−0.953895 + 0.300141i \(0.902966\pi\)
\(480\) −16.5551 −0.755635
\(481\) 12.9482 0.590387
\(482\) 14.6846 0.668867
\(483\) 12.3796 0.563291
\(484\) −8.63285 −0.392402
\(485\) −13.4194 −0.609345
\(486\) 1.67120 0.0758070
\(487\) 34.5409 1.56520 0.782598 0.622527i \(-0.213894\pi\)
0.782598 + 0.622527i \(0.213894\pi\)
\(488\) −7.24167 −0.327815
\(489\) 17.2452 0.779855
\(490\) −87.0619 −3.93305
\(491\) −13.4986 −0.609183 −0.304592 0.952483i \(-0.598520\pi\)
−0.304592 + 0.952483i \(0.598520\pi\)
\(492\) −5.16202 −0.232722
\(493\) 25.1187 1.13129
\(494\) −0.618184 −0.0278134
\(495\) −1.30540 −0.0586735
\(496\) 0 0
\(497\) −7.84208 −0.351766
\(498\) 13.2984 0.595916
\(499\) 37.7824 1.69137 0.845687 0.533679i \(-0.179191\pi\)
0.845687 + 0.533679i \(0.179191\pi\)
\(500\) 15.9868 0.714953
\(501\) −0.408108 −0.0182329
\(502\) 15.4962 0.691628
\(503\) 5.37870 0.239824 0.119912 0.992785i \(-0.461739\pi\)
0.119912 + 0.992785i \(0.461739\pi\)
\(504\) 9.10537 0.405586
\(505\) −2.46324 −0.109613
\(506\) −1.53595 −0.0682814
\(507\) 9.95138 0.441956
\(508\) −10.2816 −0.456174
\(509\) 18.4656 0.818475 0.409237 0.912428i \(-0.365795\pi\)
0.409237 + 0.912428i \(0.365795\pi\)
\(510\) 22.5933 1.00045
\(511\) −58.7556 −2.59920
\(512\) −1.06623 −0.0471210
\(513\) −0.211855 −0.00935362
\(514\) 3.40104 0.150014
\(515\) 4.23815 0.186755
\(516\) 2.42431 0.106724
\(517\) −1.11742 −0.0491439
\(518\) −55.9387 −2.45780
\(519\) −3.74370 −0.164330
\(520\) 13.7214 0.601722
\(521\) −20.3286 −0.890610 −0.445305 0.895379i \(-0.646905\pi\)
−0.445305 + 0.895379i \(0.646905\pi\)
\(522\) −12.0961 −0.529433
\(523\) 5.37216 0.234908 0.117454 0.993078i \(-0.462527\pi\)
0.117454 + 0.993078i \(0.462527\pi\)
\(524\) 10.5193 0.459539
\(525\) −45.9295 −2.00453
\(526\) −49.4789 −2.15738
\(527\) 0 0
\(528\) −1.66111 −0.0722906
\(529\) −15.4775 −0.672936
\(530\) 79.0127 3.43209
\(531\) −1.37161 −0.0595228
\(532\) 0.758198 0.0328721
\(533\) 11.3672 0.492368
\(534\) 13.4598 0.582463
\(535\) −31.0775 −1.34360
\(536\) −2.76824 −0.119570
\(537\) 1.83178 0.0790470
\(538\) −34.5020 −1.48748
\(539\) −4.48122 −0.193020
\(540\) −3.08882 −0.132922
\(541\) 29.3978 1.26391 0.631954 0.775006i \(-0.282253\pi\)
0.631954 + 0.775006i \(0.282253\pi\)
\(542\) 10.8009 0.463938
\(543\) −11.5508 −0.495693
\(544\) 14.7481 0.632320
\(545\) 0.854904 0.0366200
\(546\) 13.1706 0.563650
\(547\) −37.7150 −1.61258 −0.806288 0.591523i \(-0.798527\pi\)
−0.806288 + 0.591523i \(0.798527\pi\)
\(548\) 8.33502 0.356055
\(549\) −3.58978 −0.153208
\(550\) 5.69853 0.242986
\(551\) 1.53340 0.0653252
\(552\) 5.53288 0.235495
\(553\) −38.4074 −1.63325
\(554\) 15.7978 0.671186
\(555\) −28.8890 −1.22627
\(556\) −18.6257 −0.789907
\(557\) −2.12741 −0.0901411 −0.0450706 0.998984i \(-0.514351\pi\)
−0.0450706 + 0.998984i \(0.514351\pi\)
\(558\) 0 0
\(559\) −5.33854 −0.225796
\(560\) −87.1625 −3.68329
\(561\) 1.16292 0.0490984
\(562\) 3.79637 0.160140
\(563\) −15.4591 −0.651523 −0.325761 0.945452i \(-0.605621\pi\)
−0.325761 + 0.945452i \(0.605621\pi\)
\(564\) −2.64400 −0.111333
\(565\) −46.4559 −1.95442
\(566\) 45.3299 1.90536
\(567\) 4.51364 0.189555
\(568\) −3.50491 −0.147063
\(569\) −43.4928 −1.82331 −0.911656 0.410954i \(-0.865196\pi\)
−0.911656 + 0.410954i \(0.865196\pi\)
\(570\) 1.37924 0.0577701
\(571\) −9.60615 −0.402005 −0.201002 0.979591i \(-0.564420\pi\)
−0.201002 + 0.979591i \(0.564420\pi\)
\(572\) −0.463916 −0.0193973
\(573\) 8.89041 0.371402
\(574\) −49.1085 −2.04975
\(575\) −27.9090 −1.16389
\(576\) 2.81214 0.117172
\(577\) 45.8418 1.90842 0.954210 0.299139i \(-0.0966993\pi\)
0.954210 + 0.299139i \(0.0966993\pi\)
\(578\) 8.28312 0.344532
\(579\) 11.3286 0.470800
\(580\) 22.3568 0.928318
\(581\) 35.9169 1.49008
\(582\) −5.75688 −0.238630
\(583\) 4.06691 0.168434
\(584\) −26.2600 −1.08665
\(585\) 6.80184 0.281221
\(586\) −15.3302 −0.633283
\(587\) 0.304600 0.0125722 0.00628610 0.999980i \(-0.497999\pi\)
0.00628610 + 0.999980i \(0.497999\pi\)
\(588\) −10.6034 −0.437275
\(589\) 0 0
\(590\) 8.92962 0.367627
\(591\) −13.9315 −0.573066
\(592\) −36.7609 −1.51086
\(593\) 32.9188 1.35181 0.675906 0.736988i \(-0.263753\pi\)
0.675906 + 0.736988i \(0.263753\pi\)
\(594\) −0.560013 −0.0229776
\(595\) 61.0210 2.50162
\(596\) −8.47951 −0.347334
\(597\) 0.446722 0.0182831
\(598\) 8.00312 0.327272
\(599\) 0.464587 0.0189825 0.00949125 0.999955i \(-0.496979\pi\)
0.00949125 + 0.999955i \(0.496979\pi\)
\(600\) −20.5275 −0.838032
\(601\) −4.23305 −0.172670 −0.0863349 0.996266i \(-0.527516\pi\)
−0.0863349 + 0.996266i \(0.527516\pi\)
\(602\) 23.0635 0.939997
\(603\) −1.37225 −0.0558822
\(604\) −2.23193 −0.0908160
\(605\) −42.4142 −1.72438
\(606\) −1.05672 −0.0429263
\(607\) −16.3205 −0.662430 −0.331215 0.943555i \(-0.607459\pi\)
−0.331215 + 0.943555i \(0.607459\pi\)
\(608\) 0.900319 0.0365128
\(609\) −32.6697 −1.32384
\(610\) 23.3706 0.946247
\(611\) 5.82232 0.235546
\(612\) 2.75167 0.111230
\(613\) 19.5044 0.787773 0.393887 0.919159i \(-0.371130\pi\)
0.393887 + 0.919159i \(0.371130\pi\)
\(614\) 15.1565 0.611666
\(615\) −25.3616 −1.02268
\(616\) −3.05118 −0.122936
\(617\) −3.39753 −0.136779 −0.0683897 0.997659i \(-0.521786\pi\)
−0.0683897 + 0.997659i \(0.521786\pi\)
\(618\) 1.81815 0.0731366
\(619\) 26.4142 1.06168 0.530839 0.847473i \(-0.321877\pi\)
0.530839 + 0.847473i \(0.321877\pi\)
\(620\) 0 0
\(621\) 2.74271 0.110061
\(622\) 19.8813 0.797169
\(623\) 36.3528 1.45644
\(624\) 8.65526 0.346488
\(625\) 27.6666 1.10666
\(626\) −26.2112 −1.04761
\(627\) 0.0709919 0.00283514
\(628\) 11.5925 0.462593
\(629\) 25.7357 1.02615
\(630\) −29.3852 −1.17073
\(631\) 27.5230 1.09567 0.547836 0.836586i \(-0.315452\pi\)
0.547836 + 0.836586i \(0.315452\pi\)
\(632\) −17.1656 −0.682811
\(633\) −20.4011 −0.810870
\(634\) 25.1188 0.997596
\(635\) −50.5149 −2.00462
\(636\) 9.62304 0.381579
\(637\) 23.3495 0.925141
\(638\) 4.05337 0.160474
\(639\) −1.73742 −0.0687313
\(640\) −51.4182 −2.03248
\(641\) 8.91667 0.352187 0.176094 0.984373i \(-0.443654\pi\)
0.176094 + 0.984373i \(0.443654\pi\)
\(642\) −13.3321 −0.526177
\(643\) 12.6584 0.499199 0.249600 0.968349i \(-0.419701\pi\)
0.249600 + 0.968349i \(0.419701\pi\)
\(644\) −9.81577 −0.386795
\(645\) 11.9109 0.468992
\(646\) −1.22870 −0.0483424
\(647\) 29.0256 1.14111 0.570556 0.821259i \(-0.306728\pi\)
0.570556 + 0.821259i \(0.306728\pi\)
\(648\) 2.01730 0.0792472
\(649\) 0.459622 0.0180418
\(650\) −29.6923 −1.16463
\(651\) 0 0
\(652\) −13.6737 −0.535503
\(653\) 32.4706 1.27067 0.635337 0.772235i \(-0.280861\pi\)
0.635337 + 0.772235i \(0.280861\pi\)
\(654\) 0.366750 0.0143411
\(655\) 51.6826 2.01941
\(656\) −32.2724 −1.26002
\(657\) −13.0174 −0.507856
\(658\) −25.1535 −0.980586
\(659\) 9.23568 0.359771 0.179886 0.983688i \(-0.442427\pi\)
0.179886 + 0.983688i \(0.442427\pi\)
\(660\) 1.03505 0.0402894
\(661\) −21.1259 −0.821704 −0.410852 0.911702i \(-0.634769\pi\)
−0.410852 + 0.911702i \(0.634769\pi\)
\(662\) 22.7220 0.883116
\(663\) −6.05940 −0.235328
\(664\) 16.0525 0.622959
\(665\) 3.72511 0.144454
\(666\) −12.3933 −0.480229
\(667\) −19.8517 −0.768662
\(668\) 0.323588 0.0125200
\(669\) 20.4372 0.790146
\(670\) 8.93377 0.345141
\(671\) 1.20292 0.0464383
\(672\) −19.1816 −0.739946
\(673\) −40.4793 −1.56036 −0.780181 0.625554i \(-0.784873\pi\)
−0.780181 + 0.625554i \(0.784873\pi\)
\(674\) −17.3072 −0.666648
\(675\) −10.1757 −0.391663
\(676\) −7.89044 −0.303478
\(677\) −16.5546 −0.636245 −0.318123 0.948050i \(-0.603052\pi\)
−0.318123 + 0.948050i \(0.603052\pi\)
\(678\) −19.9294 −0.765384
\(679\) −15.5484 −0.596693
\(680\) 27.2724 1.04585
\(681\) 12.1282 0.464753
\(682\) 0 0
\(683\) −15.8493 −0.606455 −0.303228 0.952918i \(-0.598064\pi\)
−0.303228 + 0.952918i \(0.598064\pi\)
\(684\) 0.167979 0.00642285
\(685\) 40.9509 1.56465
\(686\) −48.0719 −1.83540
\(687\) 23.5742 0.899413
\(688\) 15.1565 0.577836
\(689\) −21.1907 −0.807303
\(690\) −17.8559 −0.679763
\(691\) 0.273282 0.0103961 0.00519807 0.999986i \(-0.498345\pi\)
0.00519807 + 0.999986i \(0.498345\pi\)
\(692\) 2.96837 0.112841
\(693\) −1.51250 −0.0574553
\(694\) −4.22144 −0.160244
\(695\) −91.5104 −3.47119
\(696\) −14.6012 −0.553458
\(697\) 22.5933 0.855784
\(698\) −58.3228 −2.20755
\(699\) −7.68952 −0.290845
\(700\) 36.4174 1.37645
\(701\) −22.4179 −0.846711 −0.423356 0.905964i \(-0.639148\pi\)
−0.423356 + 0.905964i \(0.639148\pi\)
\(702\) 2.91796 0.110131
\(703\) 1.57107 0.0592541
\(704\) −0.942338 −0.0355157
\(705\) −12.9903 −0.489243
\(706\) 15.2754 0.574897
\(707\) −2.85403 −0.107337
\(708\) 1.08755 0.0408726
\(709\) −14.8070 −0.556090 −0.278045 0.960568i \(-0.589686\pi\)
−0.278045 + 0.960568i \(0.589686\pi\)
\(710\) 11.3112 0.424500
\(711\) −8.50919 −0.319119
\(712\) 16.2474 0.608896
\(713\) 0 0
\(714\) 26.1777 0.979678
\(715\) −2.27927 −0.0852400
\(716\) −1.45241 −0.0542793
\(717\) −22.3543 −0.834837
\(718\) 7.88105 0.294118
\(719\) 25.1086 0.936392 0.468196 0.883625i \(-0.344904\pi\)
0.468196 + 0.883625i \(0.344904\pi\)
\(720\) −19.3109 −0.719676
\(721\) 4.91052 0.182877
\(722\) 31.6777 1.17892
\(723\) 8.78690 0.326788
\(724\) 9.15863 0.340378
\(725\) 73.6518 2.73536
\(726\) −18.1955 −0.675299
\(727\) 1.32303 0.0490686 0.0245343 0.999699i \(-0.492190\pi\)
0.0245343 + 0.999699i \(0.492190\pi\)
\(728\) 15.8983 0.589228
\(729\) 1.00000 0.0370370
\(730\) 84.7472 3.13663
\(731\) −10.6108 −0.392455
\(732\) 2.84633 0.105203
\(733\) 21.3453 0.788408 0.394204 0.919023i \(-0.371020\pi\)
0.394204 + 0.919023i \(0.371020\pi\)
\(734\) −40.8362 −1.50729
\(735\) −52.0955 −1.92157
\(736\) −11.6557 −0.429635
\(737\) 0.459836 0.0169383
\(738\) −10.8800 −0.400499
\(739\) 22.1603 0.815178 0.407589 0.913165i \(-0.366370\pi\)
0.407589 + 0.913165i \(0.366370\pi\)
\(740\) 22.9060 0.842043
\(741\) −0.369905 −0.0135888
\(742\) 91.5480 3.36083
\(743\) 29.6842 1.08901 0.544503 0.838759i \(-0.316718\pi\)
0.544503 + 0.838759i \(0.316718\pi\)
\(744\) 0 0
\(745\) −41.6608 −1.52633
\(746\) 5.92018 0.216753
\(747\) 7.95742 0.291147
\(748\) −0.922075 −0.0337144
\(749\) −36.0079 −1.31570
\(750\) 33.6955 1.23039
\(751\) 15.5930 0.568996 0.284498 0.958677i \(-0.408173\pi\)
0.284498 + 0.958677i \(0.408173\pi\)
\(752\) −16.5300 −0.602787
\(753\) 9.27250 0.337909
\(754\) −21.1202 −0.769151
\(755\) −10.9657 −0.399084
\(756\) −3.57886 −0.130162
\(757\) −21.2045 −0.770691 −0.385345 0.922772i \(-0.625918\pi\)
−0.385345 + 0.922772i \(0.625918\pi\)
\(758\) −40.3790 −1.46663
\(759\) −0.919074 −0.0333603
\(760\) 1.66488 0.0603917
\(761\) 24.4271 0.885481 0.442740 0.896650i \(-0.354006\pi\)
0.442740 + 0.896650i \(0.354006\pi\)
\(762\) −21.6707 −0.785045
\(763\) 0.990533 0.0358597
\(764\) −7.04920 −0.255031
\(765\) 13.5193 0.488790
\(766\) 1.98504 0.0717224
\(767\) −2.39487 −0.0864738
\(768\) −16.4339 −0.593007
\(769\) 23.9568 0.863903 0.431952 0.901897i \(-0.357825\pi\)
0.431952 + 0.901897i \(0.357825\pi\)
\(770\) 9.84689 0.354857
\(771\) 2.03509 0.0732921
\(772\) −8.98242 −0.323284
\(773\) −45.1977 −1.62565 −0.812825 0.582508i \(-0.802071\pi\)
−0.812825 + 0.582508i \(0.802071\pi\)
\(774\) 5.10973 0.183666
\(775\) 0 0
\(776\) −6.94914 −0.249459
\(777\) −33.4722 −1.20081
\(778\) 30.5254 1.09439
\(779\) 1.37924 0.0494165
\(780\) −5.39317 −0.193106
\(781\) 0.582204 0.0208329
\(782\) 15.9069 0.568830
\(783\) −7.23800 −0.258665
\(784\) −66.2910 −2.36753
\(785\) 56.9555 2.03283
\(786\) 22.1716 0.790836
\(787\) 19.8996 0.709346 0.354673 0.934990i \(-0.384592\pi\)
0.354673 + 0.934990i \(0.384592\pi\)
\(788\) 11.0463 0.393507
\(789\) −29.6069 −1.05403
\(790\) 55.3975 1.97095
\(791\) −53.8261 −1.91384
\(792\) −0.675992 −0.0240203
\(793\) −6.26785 −0.222578
\(794\) 4.43232 0.157297
\(795\) 47.2791 1.67682
\(796\) −0.354205 −0.0125545
\(797\) 41.1645 1.45812 0.729060 0.684449i \(-0.239957\pi\)
0.729060 + 0.684449i \(0.239957\pi\)
\(798\) 1.59806 0.0565706
\(799\) 11.5724 0.409401
\(800\) 43.2437 1.52890
\(801\) 8.05400 0.284574
\(802\) −27.7474 −0.979796
\(803\) 4.36208 0.153934
\(804\) 1.08805 0.0383727
\(805\) −48.2260 −1.69974
\(806\) 0 0
\(807\) −20.6451 −0.726740
\(808\) −1.27557 −0.0448744
\(809\) −44.0715 −1.54947 −0.774736 0.632285i \(-0.782117\pi\)
−0.774736 + 0.632285i \(0.782117\pi\)
\(810\) −6.51032 −0.228749
\(811\) 24.0093 0.843079 0.421539 0.906810i \(-0.361490\pi\)
0.421539 + 0.906810i \(0.361490\pi\)
\(812\) 25.9037 0.909043
\(813\) 6.46297 0.226666
\(814\) 4.15294 0.145561
\(815\) −67.1804 −2.35323
\(816\) 17.2031 0.602229
\(817\) −0.647752 −0.0226620
\(818\) 42.9035 1.50009
\(819\) 7.88094 0.275382
\(820\) 20.1092 0.702243
\(821\) −41.8591 −1.46089 −0.730447 0.682970i \(-0.760688\pi\)
−0.730447 + 0.682970i \(0.760688\pi\)
\(822\) 17.5678 0.612746
\(823\) −41.7357 −1.45481 −0.727407 0.686206i \(-0.759275\pi\)
−0.727407 + 0.686206i \(0.759275\pi\)
\(824\) 2.19469 0.0764555
\(825\) 3.40985 0.118716
\(826\) 10.3463 0.359994
\(827\) −18.0321 −0.627039 −0.313520 0.949582i \(-0.601508\pi\)
−0.313520 + 0.949582i \(0.601508\pi\)
\(828\) −2.17469 −0.0755758
\(829\) −12.6733 −0.440162 −0.220081 0.975482i \(-0.570632\pi\)
−0.220081 + 0.975482i \(0.570632\pi\)
\(830\) −51.8053 −1.79819
\(831\) 9.45301 0.327921
\(832\) 4.91007 0.170226
\(833\) 46.4092 1.60798
\(834\) −39.2576 −1.35938
\(835\) 1.58983 0.0550182
\(836\) −0.0562894 −0.00194681
\(837\) 0 0
\(838\) −52.0705 −1.79875
\(839\) −43.0991 −1.48795 −0.743974 0.668209i \(-0.767061\pi\)
−0.743974 + 0.668209i \(0.767061\pi\)
\(840\) −35.4709 −1.22386
\(841\) 23.3886 0.806503
\(842\) 51.0581 1.75958
\(843\) 2.27165 0.0782397
\(844\) 16.1760 0.556800
\(845\) −38.7666 −1.33361
\(846\) −5.57278 −0.191596
\(847\) −49.1432 −1.68858
\(848\) 60.1621 2.06598
\(849\) 27.1242 0.930900
\(850\) −59.0161 −2.02424
\(851\) −20.3394 −0.697225
\(852\) 1.37760 0.0471958
\(853\) 44.8847 1.53682 0.768411 0.639956i \(-0.221048\pi\)
0.768411 + 0.639956i \(0.221048\pi\)
\(854\) 27.0783 0.926600
\(855\) 0.825302 0.0282247
\(856\) −16.0932 −0.550055
\(857\) 14.2215 0.485796 0.242898 0.970052i \(-0.421902\pi\)
0.242898 + 0.970052i \(0.421902\pi\)
\(858\) −0.977799 −0.0333815
\(859\) 23.5553 0.803698 0.401849 0.915706i \(-0.368368\pi\)
0.401849 + 0.915706i \(0.368368\pi\)
\(860\) −9.44415 −0.322043
\(861\) −29.3852 −1.00144
\(862\) 61.2856 2.08739
\(863\) −33.9831 −1.15680 −0.578400 0.815754i \(-0.696323\pi\)
−0.578400 + 0.815754i \(0.696323\pi\)
\(864\) −4.24970 −0.144578
\(865\) 14.5840 0.495869
\(866\) −22.9894 −0.781211
\(867\) 4.95640 0.168328
\(868\) 0 0
\(869\) 2.85140 0.0967272
\(870\) 47.1216 1.59757
\(871\) −2.39598 −0.0811848
\(872\) 0.442704 0.0149919
\(873\) −3.44476 −0.116588
\(874\) 0.971060 0.0328466
\(875\) 91.0062 3.07657
\(876\) 10.3215 0.348730
\(877\) −42.3591 −1.43036 −0.715182 0.698938i \(-0.753656\pi\)
−0.715182 + 0.698938i \(0.753656\pi\)
\(878\) 9.60519 0.324160
\(879\) −9.17316 −0.309403
\(880\) 6.47103 0.218138
\(881\) 33.4197 1.12594 0.562970 0.826478i \(-0.309659\pi\)
0.562970 + 0.826478i \(0.309659\pi\)
\(882\) −22.3488 −0.752522
\(883\) 16.1834 0.544616 0.272308 0.962210i \(-0.412213\pi\)
0.272308 + 0.962210i \(0.412213\pi\)
\(884\) 4.80449 0.161593
\(885\) 5.34325 0.179611
\(886\) −53.6028 −1.80082
\(887\) −43.0207 −1.44449 −0.722247 0.691635i \(-0.756891\pi\)
−0.722247 + 0.691635i \(0.756891\pi\)
\(888\) −14.9599 −0.502022
\(889\) −58.5290 −1.96300
\(890\) −52.4341 −1.75759
\(891\) −0.335097 −0.0112262
\(892\) −16.2046 −0.542570
\(893\) 0.706452 0.0236405
\(894\) −17.8723 −0.597739
\(895\) −7.13588 −0.238526
\(896\) −59.5756 −1.99028
\(897\) 4.78885 0.159895
\(898\) −37.7253 −1.25891
\(899\) 0 0
\(900\) 8.06831 0.268944
\(901\) −42.1185 −1.40317
\(902\) 3.64586 0.121394
\(903\) 13.8006 0.459254
\(904\) −24.0568 −0.800117
\(905\) 44.9974 1.49576
\(906\) −4.70425 −0.156288
\(907\) 18.4721 0.613354 0.306677 0.951814i \(-0.400783\pi\)
0.306677 + 0.951814i \(0.400783\pi\)
\(908\) −9.61642 −0.319132
\(909\) −0.632314 −0.0209725
\(910\) −51.3074 −1.70082
\(911\) −20.8824 −0.691864 −0.345932 0.938260i \(-0.612437\pi\)
−0.345932 + 0.938260i \(0.612437\pi\)
\(912\) 1.05019 0.0347752
\(913\) −2.66651 −0.0882485
\(914\) 13.8442 0.457925
\(915\) 13.9843 0.462308
\(916\) −18.6920 −0.617601
\(917\) 59.8820 1.97748
\(918\) 5.79970 0.191419
\(919\) −14.9218 −0.492225 −0.246112 0.969241i \(-0.579153\pi\)
−0.246112 + 0.969241i \(0.579153\pi\)
\(920\) −21.5539 −0.710611
\(921\) 9.06925 0.298842
\(922\) −26.4028 −0.869531
\(923\) −3.03359 −0.0998518
\(924\) 1.19926 0.0394529
\(925\) 75.4610 2.48114
\(926\) −23.7877 −0.781712
\(927\) 1.08793 0.0357323
\(928\) 30.7593 1.00972
\(929\) 19.8663 0.651793 0.325897 0.945405i \(-0.394334\pi\)
0.325897 + 0.945405i \(0.394334\pi\)
\(930\) 0 0
\(931\) 2.83312 0.0928516
\(932\) 6.09701 0.199714
\(933\) 11.8965 0.389473
\(934\) −43.8588 −1.43511
\(935\) −4.53026 −0.148155
\(936\) 3.52227 0.115129
\(937\) 10.1006 0.329973 0.164986 0.986296i \(-0.447242\pi\)
0.164986 + 0.986296i \(0.447242\pi\)
\(938\) 10.3511 0.337975
\(939\) −15.6841 −0.511830
\(940\) 10.3000 0.335949
\(941\) 12.6891 0.413651 0.206826 0.978378i \(-0.433687\pi\)
0.206826 + 0.978378i \(0.433687\pi\)
\(942\) 24.4337 0.796092
\(943\) −17.8559 −0.581469
\(944\) 6.79922 0.221296
\(945\) −17.5833 −0.571986
\(946\) −1.71226 −0.0556702
\(947\) −16.6123 −0.539828 −0.269914 0.962884i \(-0.586995\pi\)
−0.269914 + 0.962884i \(0.586995\pi\)
\(948\) 6.74692 0.219130
\(949\) −22.7287 −0.737805
\(950\) −3.60272 −0.116888
\(951\) 15.0304 0.487396
\(952\) 31.5992 1.02414
\(953\) 55.2584 1.79000 0.894998 0.446070i \(-0.147177\pi\)
0.894998 + 0.446070i \(0.147177\pi\)
\(954\) 20.2825 0.656671
\(955\) −34.6335 −1.12071
\(956\) 17.7247 0.573258
\(957\) 2.42543 0.0784030
\(958\) 69.7792 2.25446
\(959\) 47.4478 1.53217
\(960\) −10.9550 −0.353570
\(961\) 0 0
\(962\) −21.6390 −0.697669
\(963\) −7.97759 −0.257074
\(964\) −6.96712 −0.224396
\(965\) −44.1316 −1.42065
\(966\) −20.6887 −0.665649
\(967\) 44.8302 1.44164 0.720821 0.693121i \(-0.243765\pi\)
0.720821 + 0.693121i \(0.243765\pi\)
\(968\) −21.9638 −0.705944
\(969\) −0.735219 −0.0236186
\(970\) 22.4265 0.720072
\(971\) −60.8757 −1.95360 −0.976798 0.214165i \(-0.931297\pi\)
−0.976798 + 0.214165i \(0.931297\pi\)
\(972\) −0.792899 −0.0254322
\(973\) −106.028 −3.39912
\(974\) −57.7246 −1.84962
\(975\) −17.7671 −0.569002
\(976\) 17.7949 0.569601
\(977\) 28.7783 0.920699 0.460349 0.887738i \(-0.347724\pi\)
0.460349 + 0.887738i \(0.347724\pi\)
\(978\) −28.8201 −0.921566
\(979\) −2.69887 −0.0862562
\(980\) 41.3065 1.31949
\(981\) 0.219454 0.00700661
\(982\) 22.5588 0.719881
\(983\) −31.6935 −1.01086 −0.505432 0.862866i \(-0.668667\pi\)
−0.505432 + 0.862866i \(0.668667\pi\)
\(984\) −13.1333 −0.418674
\(985\) 54.2716 1.72924
\(986\) −41.9782 −1.33686
\(987\) −15.0512 −0.479085
\(988\) 0.293297 0.00933102
\(989\) 8.38592 0.266657
\(990\) 2.18159 0.0693354
\(991\) 2.33148 0.0740618 0.0370309 0.999314i \(-0.488210\pi\)
0.0370309 + 0.999314i \(0.488210\pi\)
\(992\) 0 0
\(993\) 13.5963 0.431464
\(994\) 13.1057 0.415686
\(995\) −1.74025 −0.0551696
\(996\) −6.30943 −0.199922
\(997\) 22.7279 0.719800 0.359900 0.932991i \(-0.382811\pi\)
0.359900 + 0.932991i \(0.382811\pi\)
\(998\) −63.1419 −1.99872
\(999\) −7.41580 −0.234625
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2883.2.a.o.1.3 8
3.2 odd 2 8649.2.a.bg.1.6 8
31.15 odd 10 93.2.f.b.70.2 yes 16
31.29 odd 10 93.2.f.b.4.2 16
31.30 odd 2 2883.2.a.p.1.3 8
93.29 even 10 279.2.i.c.190.3 16
93.77 even 10 279.2.i.c.163.3 16
93.92 even 2 8649.2.a.bh.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.2.f.b.4.2 16 31.29 odd 10
93.2.f.b.70.2 yes 16 31.15 odd 10
279.2.i.c.163.3 16 93.77 even 10
279.2.i.c.190.3 16 93.29 even 10
2883.2.a.o.1.3 8 1.1 even 1 trivial
2883.2.a.p.1.3 8 31.30 odd 2
8649.2.a.bg.1.6 8 3.2 odd 2
8649.2.a.bh.1.6 8 93.92 even 2