Properties

Label 279.2.i.c.190.3
Level $279$
Weight $2$
Character 279.190
Analytic conductor $2.228$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [279,2,Mod(64,279)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(279, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("279.64"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 279 = 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 279.i (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.22782621639\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 13 x^{14} - 28 x^{13} + 90 x^{12} - 119 x^{11} + 382 x^{10} - 356 x^{9} + 1869 x^{8} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 93)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 190.3
Root \(0.516428 + 1.58940i\) of defining polynomial
Character \(\chi\) \(=\) 279.190
Dual form 279.2.i.c.163.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.516428 + 1.58940i) q^{2} +(-0.641469 + 0.466054i) q^{4} -3.89560 q^{5} +(-3.65161 + 2.65305i) q^{7} +(1.63203 + 1.18574i) q^{8} +(-2.01180 - 6.19168i) q^{10} +(0.271099 - 0.196965i) q^{11} +(-0.539553 + 1.66057i) q^{13} +(-6.10256 - 4.43377i) q^{14} +(-1.53183 + 4.71449i) q^{16} +(-2.80760 - 2.03984i) q^{17} +(0.0654667 + 0.201486i) q^{19} +(2.49891 - 1.81556i) q^{20} +(0.453060 + 0.329167i) q^{22} +(2.21890 + 1.61213i) q^{23} +10.1757 q^{25} -2.91796 q^{26} +(1.10593 - 3.40369i) q^{28} +(2.23666 + 6.88374i) q^{29} +(5.52424 + 0.694857i) q^{31} -4.24970 q^{32} +(1.79221 - 5.51585i) q^{34} +(14.2252 - 10.3352i) q^{35} -7.41580 q^{37} +(-0.286433 + 0.208106i) q^{38} +(-6.35775 - 4.61918i) q^{40} +(-2.01180 - 6.19168i) q^{41} +(0.944828 + 2.90788i) q^{43} +(-0.0821051 + 0.252694i) q^{44} +(-1.41641 + 4.35927i) q^{46} +(-1.03045 + 3.17140i) q^{47} +(4.13246 - 12.7184i) q^{49} +(5.25503 + 16.1733i) q^{50} +(-0.427811 - 1.31667i) q^{52} +(9.81866 + 7.13368i) q^{53} +(-1.05609 + 0.767297i) q^{55} -9.10537 q^{56} +(-9.78596 + 7.10992i) q^{58} +(0.423851 - 1.30448i) q^{59} +3.58978 q^{61} +(1.74846 + 9.13908i) q^{62} +(0.868998 + 2.67450i) q^{64} +(2.10188 - 6.46893i) q^{65} -1.37225 q^{67} +2.75167 q^{68} +(23.7731 + 17.2722i) q^{70} +(-1.40560 - 1.02123i) q^{71} +(-10.5313 + 7.65141i) q^{73} +(-3.82973 - 11.7867i) q^{74} +(-0.135898 - 0.0987358i) q^{76} +(-0.467390 + 1.43848i) q^{77} +(-6.88408 - 5.00157i) q^{79} +(5.96740 - 18.3658i) q^{80} +(8.80212 - 6.39512i) q^{82} +(2.45898 + 7.56796i) q^{83} +(10.9373 + 7.94642i) q^{85} +(-4.13386 + 3.00343i) q^{86} +0.675992 q^{88} +(-6.51582 + 4.73402i) q^{89} +(-2.43534 - 7.49522i) q^{91} -2.17469 q^{92} -5.57278 q^{94} +(-0.255032 - 0.784909i) q^{95} +(2.78687 - 2.02478i) q^{97} +22.3488 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 3 q^{2} - 9 q^{4} - 6 q^{5} - 7 q^{7} + 2 q^{8} - 3 q^{10} - 10 q^{11} - 3 q^{13} + 4 q^{14} - 17 q^{16} + q^{17} - 4 q^{19} - 7 q^{20} + 10 q^{22} - 7 q^{23} + 30 q^{25} + 16 q^{26} + 9 q^{28}+ \cdots + 82 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/279\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(218\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.516428 + 1.58940i 0.365170 + 1.12388i 0.949875 + 0.312631i \(0.101210\pi\)
−0.584705 + 0.811246i \(0.698790\pi\)
\(3\) 0 0
\(4\) −0.641469 + 0.466054i −0.320734 + 0.233027i
\(5\) −3.89560 −1.74217 −0.871083 0.491136i \(-0.836582\pi\)
−0.871083 + 0.491136i \(0.836582\pi\)
\(6\) 0 0
\(7\) −3.65161 + 2.65305i −1.38018 + 1.00276i −0.383315 + 0.923618i \(0.625217\pi\)
−0.996863 + 0.0791402i \(0.974783\pi\)
\(8\) 1.63203 + 1.18574i 0.577011 + 0.419223i
\(9\) 0 0
\(10\) −2.01180 6.19168i −0.636187 1.95798i
\(11\) 0.271099 0.196965i 0.0817394 0.0593872i −0.546165 0.837678i \(-0.683913\pi\)
0.627904 + 0.778290i \(0.283913\pi\)
\(12\) 0 0
\(13\) −0.539553 + 1.66057i −0.149645 + 0.460560i −0.997579 0.0695418i \(-0.977846\pi\)
0.847934 + 0.530102i \(0.177846\pi\)
\(14\) −6.10256 4.43377i −1.63098 1.18497i
\(15\) 0 0
\(16\) −1.53183 + 4.71449i −0.382958 + 1.17862i
\(17\) −2.80760 2.03984i −0.680944 0.494735i 0.192727 0.981252i \(-0.438267\pi\)
−0.873671 + 0.486518i \(0.838267\pi\)
\(18\) 0 0
\(19\) 0.0654667 + 0.201486i 0.0150191 + 0.0462240i 0.958285 0.285814i \(-0.0922639\pi\)
−0.943266 + 0.332038i \(0.892264\pi\)
\(20\) 2.49891 1.81556i 0.558772 0.405972i
\(21\) 0 0
\(22\) 0.453060 + 0.329167i 0.0965927 + 0.0701787i
\(23\) 2.21890 + 1.61213i 0.462673 + 0.336151i 0.794579 0.607161i \(-0.207692\pi\)
−0.331906 + 0.943312i \(0.607692\pi\)
\(24\) 0 0
\(25\) 10.1757 2.03514
\(26\) −2.91796 −0.572259
\(27\) 0 0
\(28\) 1.10593 3.40369i 0.209001 0.643238i
\(29\) 2.23666 + 6.88374i 0.415338 + 1.27828i 0.911948 + 0.410305i \(0.134578\pi\)
−0.496610 + 0.867974i \(0.665422\pi\)
\(30\) 0 0
\(31\) 5.52424 + 0.694857i 0.992182 + 0.124800i
\(32\) −4.24970 −0.751247
\(33\) 0 0
\(34\) 1.79221 5.51585i 0.307361 0.945960i
\(35\) 14.2252 10.3352i 2.40450 1.74697i
\(36\) 0 0
\(37\) −7.41580 −1.21915 −0.609575 0.792729i \(-0.708660\pi\)
−0.609575 + 0.792729i \(0.708660\pi\)
\(38\) −0.286433 + 0.208106i −0.0464656 + 0.0337593i
\(39\) 0 0
\(40\) −6.35775 4.61918i −1.00525 0.730356i
\(41\) −2.01180 6.19168i −0.314190 0.966978i −0.976086 0.217383i \(-0.930248\pi\)
0.661896 0.749595i \(-0.269752\pi\)
\(42\) 0 0
\(43\) 0.944828 + 2.90788i 0.144085 + 0.443448i 0.996892 0.0787779i \(-0.0251018\pi\)
−0.852807 + 0.522226i \(0.825102\pi\)
\(44\) −0.0821051 + 0.252694i −0.0123778 + 0.0380950i
\(45\) 0 0
\(46\) −1.41641 + 4.35927i −0.208839 + 0.642740i
\(47\) −1.03045 + 3.17140i −0.150307 + 0.462596i −0.997655 0.0684411i \(-0.978197\pi\)
0.847349 + 0.531037i \(0.178197\pi\)
\(48\) 0 0
\(49\) 4.13246 12.7184i 0.590351 1.81691i
\(50\) 5.25503 + 16.1733i 0.743173 + 2.28725i
\(51\) 0 0
\(52\) −0.427811 1.31667i −0.0593267 0.182589i
\(53\) 9.81866 + 7.13368i 1.34870 + 0.979886i 0.999075 + 0.0429949i \(0.0136899\pi\)
0.349622 + 0.936891i \(0.386310\pi\)
\(54\) 0 0
\(55\) −1.05609 + 0.767297i −0.142404 + 0.103462i
\(56\) −9.10537 −1.21676
\(57\) 0 0
\(58\) −9.78596 + 7.10992i −1.28496 + 0.933578i
\(59\) 0.423851 1.30448i 0.0551807 0.169829i −0.919668 0.392697i \(-0.871542\pi\)
0.974849 + 0.222868i \(0.0715421\pi\)
\(60\) 0 0
\(61\) 3.58978 0.459624 0.229812 0.973235i \(-0.426189\pi\)
0.229812 + 0.973235i \(0.426189\pi\)
\(62\) 1.74846 + 9.13908i 0.222055 + 1.16066i
\(63\) 0 0
\(64\) 0.868998 + 2.67450i 0.108625 + 0.334313i
\(65\) 2.10188 6.46893i 0.260706 0.802372i
\(66\) 0 0
\(67\) −1.37225 −0.167647 −0.0838233 0.996481i \(-0.526713\pi\)
−0.0838233 + 0.996481i \(0.526713\pi\)
\(68\) 2.75167 0.333689
\(69\) 0 0
\(70\) 23.7731 + 17.2722i 2.84143 + 2.06442i
\(71\) −1.40560 1.02123i −0.166814 0.121198i 0.501246 0.865305i \(-0.332875\pi\)
−0.668060 + 0.744107i \(0.732875\pi\)
\(72\) 0 0
\(73\) −10.5313 + 7.65141i −1.23259 + 0.895530i −0.997082 0.0763415i \(-0.975676\pi\)
−0.235510 + 0.971872i \(0.575676\pi\)
\(74\) −3.82973 11.7867i −0.445197 1.37017i
\(75\) 0 0
\(76\) −0.135898 0.0987358i −0.0155886 0.0113258i
\(77\) −0.467390 + 1.43848i −0.0532640 + 0.163930i
\(78\) 0 0
\(79\) −6.88408 5.00157i −0.774519 0.562721i 0.128810 0.991669i \(-0.458884\pi\)
−0.903329 + 0.428948i \(0.858884\pi\)
\(80\) 5.96740 18.3658i 0.667176 2.05336i
\(81\) 0 0
\(82\) 8.80212 6.39512i 0.972032 0.706222i
\(83\) 2.45898 + 7.56796i 0.269908 + 0.830691i 0.990522 + 0.137355i \(0.0438600\pi\)
−0.720614 + 0.693336i \(0.756140\pi\)
\(84\) 0 0
\(85\) 10.9373 + 7.94642i 1.18632 + 0.861910i
\(86\) −4.13386 + 3.00343i −0.445766 + 0.323868i
\(87\) 0 0
\(88\) 0.675992 0.0720610
\(89\) −6.51582 + 4.73402i −0.690676 + 0.501805i −0.876882 0.480705i \(-0.840381\pi\)
0.186206 + 0.982511i \(0.440381\pi\)
\(90\) 0 0
\(91\) −2.43534 7.49522i −0.255294 0.785713i
\(92\) −2.17469 −0.226727
\(93\) 0 0
\(94\) −5.57278 −0.574788
\(95\) −0.255032 0.784909i −0.0261658 0.0805300i
\(96\) 0 0
\(97\) 2.78687 2.02478i 0.282964 0.205585i −0.437245 0.899342i \(-0.644046\pi\)
0.720209 + 0.693757i \(0.244046\pi\)
\(98\) 22.3488 2.25757
\(99\) 0 0
\(100\) −6.52740 + 4.74243i −0.652740 + 0.474243i
\(101\) −0.511553 0.371665i −0.0509014 0.0369820i 0.562044 0.827108i \(-0.310015\pi\)
−0.612945 + 0.790126i \(0.710015\pi\)
\(102\) 0 0
\(103\) 0.336189 + 1.03468i 0.0331257 + 0.101950i 0.966252 0.257598i \(-0.0829309\pi\)
−0.933127 + 0.359548i \(0.882931\pi\)
\(104\) −2.84958 + 2.07034i −0.279424 + 0.203013i
\(105\) 0 0
\(106\) −6.26765 + 19.2898i −0.608768 + 1.87359i
\(107\) −6.45400 4.68911i −0.623932 0.453313i 0.230361 0.973105i \(-0.426009\pi\)
−0.854293 + 0.519792i \(0.826009\pi\)
\(108\) 0 0
\(109\) 0.0678149 0.208713i 0.00649549 0.0199911i −0.947756 0.318995i \(-0.896655\pi\)
0.954252 + 0.299004i \(0.0966545\pi\)
\(110\) −1.76494 1.28230i −0.168280 0.122263i
\(111\) 0 0
\(112\) −6.91413 21.2795i −0.653324 2.01072i
\(113\) −9.64771 + 7.00947i −0.907580 + 0.659396i −0.940402 0.340065i \(-0.889551\pi\)
0.0328213 + 0.999461i \(0.489551\pi\)
\(114\) 0 0
\(115\) −8.64395 6.28020i −0.806052 0.585631i
\(116\) −4.64295 3.37330i −0.431087 0.313203i
\(117\) 0 0
\(118\) 2.29223 0.211017
\(119\) 15.6641 1.43592
\(120\) 0 0
\(121\) −3.36449 + 10.3548i −0.305862 + 0.941348i
\(122\) 1.85386 + 5.70560i 0.167841 + 0.516561i
\(123\) 0 0
\(124\) −3.86746 + 2.12886i −0.347309 + 0.191178i
\(125\) −20.1625 −1.80339
\(126\) 0 0
\(127\) 4.00707 12.3325i 0.355570 1.09433i −0.600108 0.799919i \(-0.704876\pi\)
0.955678 0.294413i \(-0.0951242\pi\)
\(128\) −10.6782 + 7.75820i −0.943832 + 0.685734i
\(129\) 0 0
\(130\) 11.3672 0.996970
\(131\) 10.7332 7.79810i 0.937761 0.681323i −0.0101198 0.999949i \(-0.503221\pi\)
0.947881 + 0.318626i \(0.103221\pi\)
\(132\) 0 0
\(133\) −0.773611 0.562061i −0.0670806 0.0487369i
\(134\) −0.708667 2.18105i −0.0612195 0.188414i
\(135\) 0 0
\(136\) −2.16338 6.65818i −0.185508 0.570935i
\(137\) 3.24841 9.99759i 0.277531 0.854152i −0.711008 0.703184i \(-0.751761\pi\)
0.988539 0.150968i \(-0.0482390\pi\)
\(138\) 0 0
\(139\) 7.25902 22.3410i 0.615702 1.89494i 0.225316 0.974286i \(-0.427659\pi\)
0.390387 0.920651i \(-0.372341\pi\)
\(140\) −4.30825 + 13.2594i −0.364114 + 1.12063i
\(141\) 0 0
\(142\) 0.897253 2.76146i 0.0752958 0.231737i
\(143\) 0.180802 + 0.556453i 0.0151195 + 0.0465329i
\(144\) 0 0
\(145\) −8.71315 26.8163i −0.723588 2.22697i
\(146\) −17.5998 12.7870i −1.45657 1.05826i
\(147\) 0 0
\(148\) 4.75700 3.45616i 0.391023 0.284095i
\(149\) 10.6943 0.876113 0.438056 0.898948i \(-0.355667\pi\)
0.438056 + 0.898948i \(0.355667\pi\)
\(150\) 0 0
\(151\) −2.27730 + 1.65456i −0.185324 + 0.134646i −0.676579 0.736370i \(-0.736538\pi\)
0.491255 + 0.871016i \(0.336538\pi\)
\(152\) −0.132066 + 0.406458i −0.0107120 + 0.0329681i
\(153\) 0 0
\(154\) −2.52769 −0.203687
\(155\) −21.5202 2.70689i −1.72855 0.217422i
\(156\) 0 0
\(157\) 4.51797 + 13.9049i 0.360573 + 1.10973i 0.952707 + 0.303890i \(0.0982857\pi\)
−0.592134 + 0.805840i \(0.701714\pi\)
\(158\) 4.39438 13.5245i 0.349598 1.07595i
\(159\) 0 0
\(160\) 16.5551 1.30880
\(161\) −12.3796 −0.975649
\(162\) 0 0
\(163\) 13.9517 + 10.1365i 1.09278 + 0.793950i 0.979866 0.199655i \(-0.0639823\pi\)
0.112912 + 0.993605i \(0.463982\pi\)
\(164\) 4.17616 + 3.03416i 0.326104 + 0.236928i
\(165\) 0 0
\(166\) −10.7586 + 7.81661i −0.835033 + 0.606687i
\(167\) 0.126112 + 0.388134i 0.00975887 + 0.0300347i 0.955817 0.293961i \(-0.0949736\pi\)
−0.946059 + 0.323996i \(0.894974\pi\)
\(168\) 0 0
\(169\) 8.05084 + 5.84927i 0.619295 + 0.449944i
\(170\) −6.98172 + 21.4875i −0.535474 + 1.64802i
\(171\) 0 0
\(172\) −1.96131 1.42497i −0.149548 0.108653i
\(173\) −1.15687 + 3.56047i −0.0879549 + 0.270697i −0.985354 0.170523i \(-0.945454\pi\)
0.897399 + 0.441220i \(0.145454\pi\)
\(174\) 0 0
\(175\) −37.1577 + 26.9967i −2.80886 + 2.04076i
\(176\) 0.513312 + 1.57981i 0.0386923 + 0.119083i
\(177\) 0 0
\(178\) −10.8892 7.91148i −0.816182 0.592991i
\(179\) 1.48194 1.07669i 0.110765 0.0804757i −0.531024 0.847357i \(-0.678192\pi\)
0.641789 + 0.766881i \(0.278192\pi\)
\(180\) 0 0
\(181\) −11.5508 −0.858565 −0.429283 0.903170i \(-0.641234\pi\)
−0.429283 + 0.903170i \(0.641234\pi\)
\(182\) 10.6552 7.74149i 0.789819 0.573837i
\(183\) 0 0
\(184\) 1.70975 + 5.26208i 0.126045 + 0.387926i
\(185\) 28.8890 2.12396
\(186\) 0 0
\(187\) −1.16292 −0.0850409
\(188\) −0.817042 2.51460i −0.0595889 0.183396i
\(189\) 0 0
\(190\) 1.11583 0.810698i 0.0809508 0.0588142i
\(191\) 8.89041 0.643287 0.321644 0.946861i \(-0.395765\pi\)
0.321644 + 0.946861i \(0.395765\pi\)
\(192\) 0 0
\(193\) 9.16501 6.65877i 0.659712 0.479309i −0.206854 0.978372i \(-0.566322\pi\)
0.866566 + 0.499063i \(0.166322\pi\)
\(194\) 4.65741 + 3.38381i 0.334383 + 0.242943i
\(195\) 0 0
\(196\) 3.27662 + 10.0844i 0.234044 + 0.720314i
\(197\) −11.2708 + 8.18873i −0.803013 + 0.583423i −0.911796 0.410642i \(-0.865304\pi\)
0.108784 + 0.994065i \(0.465304\pi\)
\(198\) 0 0
\(199\) 0.138045 0.424858i 0.00978573 0.0301174i −0.946044 0.324037i \(-0.894960\pi\)
0.955830 + 0.293920i \(0.0949598\pi\)
\(200\) 16.6071 + 12.0658i 1.17430 + 0.853178i
\(201\) 0 0
\(202\) 0.326545 1.00500i 0.0229756 0.0707116i
\(203\) −26.4303 19.2028i −1.85504 1.34777i
\(204\) 0 0
\(205\) 7.83717 + 24.1203i 0.547371 + 1.68464i
\(206\) −1.47091 + 1.06868i −0.102483 + 0.0744585i
\(207\) 0 0
\(208\) −7.00225 5.08743i −0.485519 0.352750i
\(209\) 0.0574336 + 0.0417280i 0.00397277 + 0.00288638i
\(210\) 0 0
\(211\) 20.4011 1.40447 0.702234 0.711946i \(-0.252186\pi\)
0.702234 + 0.711946i \(0.252186\pi\)
\(212\) −9.62304 −0.660913
\(213\) 0 0
\(214\) 4.11985 12.6796i 0.281627 0.866760i
\(215\) −3.68068 11.3280i −0.251020 0.772560i
\(216\) 0 0
\(217\) −22.0158 + 12.1187i −1.49453 + 0.822672i
\(218\) 0.366750 0.0248394
\(219\) 0 0
\(220\) 0.319849 0.984394i 0.0215642 0.0663678i
\(221\) 4.90216 3.56163i 0.329755 0.239581i
\(222\) 0 0
\(223\) 20.4372 1.36857 0.684287 0.729213i \(-0.260114\pi\)
0.684287 + 0.729213i \(0.260114\pi\)
\(224\) 15.5182 11.2747i 1.03686 0.753319i
\(225\) 0 0
\(226\) −16.1232 11.7142i −1.07250 0.779218i
\(227\) 3.74782 + 11.5346i 0.248751 + 0.765578i 0.994997 + 0.0999069i \(0.0318545\pi\)
−0.746246 + 0.665671i \(0.768146\pi\)
\(228\) 0 0
\(229\) 7.28484 + 22.4204i 0.481396 + 1.48158i 0.837134 + 0.546998i \(0.184230\pi\)
−0.355738 + 0.934586i \(0.615770\pi\)
\(230\) 5.51778 16.9820i 0.363832 1.11976i
\(231\) 0 0
\(232\) −4.51203 + 13.8866i −0.296229 + 0.911700i
\(233\) −2.37619 + 7.31317i −0.155670 + 0.479102i −0.998228 0.0595030i \(-0.981048\pi\)
0.842559 + 0.538605i \(0.181048\pi\)
\(234\) 0 0
\(235\) 4.01422 12.3545i 0.261859 0.805919i
\(236\) 0.336071 + 1.03432i 0.0218764 + 0.0673285i
\(237\) 0 0
\(238\) 8.08937 + 24.8965i 0.524356 + 1.61380i
\(239\) −18.0850 13.1395i −1.16982 0.849926i −0.178835 0.983879i \(-0.557233\pi\)
−0.990988 + 0.133954i \(0.957233\pi\)
\(240\) 0 0
\(241\) −7.10875 + 5.16481i −0.457915 + 0.332695i −0.792713 0.609595i \(-0.791332\pi\)
0.334798 + 0.942290i \(0.391332\pi\)
\(242\) −18.1955 −1.16965
\(243\) 0 0
\(244\) −2.30273 + 1.67303i −0.147417 + 0.107105i
\(245\) −16.0984 + 49.5458i −1.02849 + 3.16536i
\(246\) 0 0
\(247\) −0.369905 −0.0235365
\(248\) 8.19181 + 7.68434i 0.520181 + 0.487956i
\(249\) 0 0
\(250\) −10.4125 32.0464i −0.658544 2.02679i
\(251\) −2.86536 + 8.81867i −0.180860 + 0.556630i −0.999853 0.0171745i \(-0.994533\pi\)
0.818993 + 0.573804i \(0.194533\pi\)
\(252\) 0 0
\(253\) 0.919074 0.0577817
\(254\) 21.6707 1.35974
\(255\) 0 0
\(256\) −13.2953 9.65961i −0.830957 0.603725i
\(257\) −1.64643 1.19620i −0.102701 0.0746168i 0.535249 0.844694i \(-0.320218\pi\)
−0.637951 + 0.770077i \(0.720218\pi\)
\(258\) 0 0
\(259\) 27.0796 19.6745i 1.68264 1.22251i
\(260\) 1.66658 + 5.12921i 0.103357 + 0.318100i
\(261\) 0 0
\(262\) 17.9372 + 13.0322i 1.10817 + 0.805129i
\(263\) 9.14903 28.1578i 0.564153 1.73629i −0.106300 0.994334i \(-0.533900\pi\)
0.670454 0.741952i \(-0.266100\pi\)
\(264\) 0 0
\(265\) −38.2496 27.7900i −2.34965 1.70712i
\(266\) 0.493827 1.51984i 0.0302785 0.0931876i
\(267\) 0 0
\(268\) 0.880254 0.639542i 0.0537700 0.0390662i
\(269\) 6.37967 + 19.6346i 0.388976 + 1.19714i 0.933555 + 0.358434i \(0.116689\pi\)
−0.544579 + 0.838709i \(0.683311\pi\)
\(270\) 0 0
\(271\) −5.22865 3.79884i −0.317618 0.230763i 0.417540 0.908658i \(-0.362892\pi\)
−0.735158 + 0.677895i \(0.762892\pi\)
\(272\) 13.9176 10.1117i 0.843878 0.613114i
\(273\) 0 0
\(274\) 17.5678 1.06131
\(275\) 2.75863 2.00426i 0.166351 0.120861i
\(276\) 0 0
\(277\) 2.92114 + 8.99034i 0.175514 + 0.540177i 0.999657 0.0262054i \(-0.00834238\pi\)
−0.824142 + 0.566383i \(0.808342\pi\)
\(278\) 39.2576 2.35451
\(279\) 0 0
\(280\) 35.4709 2.11979
\(281\) 0.701977 + 2.16046i 0.0418765 + 0.128883i 0.969809 0.243866i \(-0.0784156\pi\)
−0.927933 + 0.372748i \(0.878416\pi\)
\(282\) 0 0
\(283\) 21.9439 15.9432i 1.30443 0.947725i 0.304443 0.952531i \(-0.401530\pi\)
0.999988 + 0.00480608i \(0.00152983\pi\)
\(284\) 1.37760 0.0817454
\(285\) 0 0
\(286\) −0.791056 + 0.574736i −0.0467761 + 0.0339848i
\(287\) 23.7731 + 17.2722i 1.40328 + 1.01954i
\(288\) 0 0
\(289\) −1.53161 4.71382i −0.0900948 0.277283i
\(290\) 38.1222 27.6974i 2.23861 1.62645i
\(291\) 0 0
\(292\) 3.18950 9.81628i 0.186652 0.574455i
\(293\) 7.42124 + 5.39185i 0.433554 + 0.314995i 0.783068 0.621936i \(-0.213653\pi\)
−0.349515 + 0.936931i \(0.613653\pi\)
\(294\) 0 0
\(295\) −1.65115 + 5.08173i −0.0961339 + 0.295870i
\(296\) −12.1028 8.79322i −0.703463 0.511095i
\(297\) 0 0
\(298\) 5.52285 + 16.9976i 0.319930 + 0.984643i
\(299\) −3.87426 + 2.81482i −0.224055 + 0.162785i
\(300\) 0 0
\(301\) −11.1649 8.11177i −0.643534 0.467555i
\(302\) −3.80582 2.76509i −0.219000 0.159113i
\(303\) 0 0
\(304\) −1.05019 −0.0602324
\(305\) −13.9843 −0.800741
\(306\) 0 0
\(307\) −2.80255 + 8.62537i −0.159950 + 0.492276i −0.998629 0.0523508i \(-0.983329\pi\)
0.838679 + 0.544627i \(0.183329\pi\)
\(308\) −0.370593 1.14057i −0.0211165 0.0649898i
\(309\) 0 0
\(310\) −6.81132 35.6022i −0.386857 2.02207i
\(311\) 11.8965 0.674587 0.337293 0.941400i \(-0.390489\pi\)
0.337293 + 0.941400i \(0.390489\pi\)
\(312\) 0 0
\(313\) −4.84664 + 14.9164i −0.273948 + 0.843127i 0.715547 + 0.698564i \(0.246177\pi\)
−0.989496 + 0.144562i \(0.953823\pi\)
\(314\) −19.7672 + 14.3617i −1.11553 + 0.810480i
\(315\) 0 0
\(316\) 6.74692 0.379544
\(317\) −12.1599 + 8.83468i −0.682967 + 0.496205i −0.874341 0.485313i \(-0.838706\pi\)
0.191373 + 0.981517i \(0.438706\pi\)
\(318\) 0 0
\(319\) 1.96221 + 1.42563i 0.109863 + 0.0798200i
\(320\) −3.38527 10.4188i −0.189242 0.582428i
\(321\) 0 0
\(322\) −6.39317 19.6762i −0.356278 1.09651i
\(323\) 0.227195 0.699235i 0.0126415 0.0389065i
\(324\) 0 0
\(325\) −5.49033 + 16.8975i −0.304549 + 0.937305i
\(326\) −8.90590 + 27.4096i −0.493252 + 1.51807i
\(327\) 0 0
\(328\) 4.05841 12.4905i 0.224088 0.689672i
\(329\) −4.65107 14.3145i −0.256422 0.789186i
\(330\) 0 0
\(331\) 4.20147 + 12.9308i 0.230934 + 0.710741i 0.997635 + 0.0687370i \(0.0218969\pi\)
−0.766701 + 0.642004i \(0.778103\pi\)
\(332\) −5.10444 3.70859i −0.280142 0.203535i
\(333\) 0 0
\(334\) −0.551773 + 0.400887i −0.0301917 + 0.0219355i
\(335\) 5.34573 0.292068
\(336\) 0 0
\(337\) 8.37831 6.08720i 0.456396 0.331591i −0.335720 0.941962i \(-0.608980\pi\)
0.792116 + 0.610371i \(0.208980\pi\)
\(338\) −5.13917 + 15.8168i −0.279534 + 0.860318i
\(339\) 0 0
\(340\) −10.7194 −0.581341
\(341\) 1.63448 0.899706i 0.0885119 0.0487218i
\(342\) 0 0
\(343\) 8.88887 + 27.3571i 0.479954 + 1.47715i
\(344\) −1.90601 + 5.86608i −0.102765 + 0.316278i
\(345\) 0 0
\(346\) −6.25645 −0.336349
\(347\) 2.52600 0.135603 0.0678013 0.997699i \(-0.478402\pi\)
0.0678013 + 0.997699i \(0.478402\pi\)
\(348\) 0 0
\(349\) −28.2338 20.5130i −1.51132 1.09804i −0.965588 0.260076i \(-0.916252\pi\)
−0.545730 0.837961i \(-0.683748\pi\)
\(350\) −62.0979 45.1167i −3.31927 2.41159i
\(351\) 0 0
\(352\) −1.15209 + 0.837041i −0.0614065 + 0.0446145i
\(353\) −2.82453 8.69302i −0.150335 0.462683i 0.847324 0.531077i \(-0.178213\pi\)
−0.997658 + 0.0683940i \(0.978213\pi\)
\(354\) 0 0
\(355\) 5.47567 + 3.97831i 0.290618 + 0.211147i
\(356\) 1.97338 6.07345i 0.104589 0.321892i
\(357\) 0 0
\(358\) 2.47661 + 1.79936i 0.130893 + 0.0950993i
\(359\) 1.45727 4.48500i 0.0769115 0.236709i −0.905208 0.424970i \(-0.860285\pi\)
0.982119 + 0.188260i \(0.0602848\pi\)
\(360\) 0 0
\(361\) 15.3350 11.1415i 0.807106 0.586397i
\(362\) −5.96517 18.3589i −0.313522 0.964922i
\(363\) 0 0
\(364\) 5.05538 + 3.67295i 0.264974 + 0.192515i
\(365\) 41.0256 29.8069i 2.14738 1.56016i
\(366\) 0 0
\(367\) −24.4353 −1.27551 −0.637756 0.770238i \(-0.720137\pi\)
−0.637756 + 0.770238i \(0.720137\pi\)
\(368\) −10.9993 + 7.99148i −0.573380 + 0.416585i
\(369\) 0 0
\(370\) 14.9191 + 45.9162i 0.775607 + 2.38707i
\(371\) −54.7799 −2.84403
\(372\) 0 0
\(373\) −3.54248 −0.183422 −0.0917112 0.995786i \(-0.529234\pi\)
−0.0917112 + 0.995786i \(0.529234\pi\)
\(374\) −0.600563 1.84834i −0.0310544 0.0955755i
\(375\) 0 0
\(376\) −5.44218 + 3.95398i −0.280659 + 0.203911i
\(377\) −12.6378 −0.650877
\(378\) 0 0
\(379\) −19.5473 + 14.2019i −1.00408 + 0.729503i −0.962958 0.269651i \(-0.913092\pi\)
−0.0411172 + 0.999154i \(0.513092\pi\)
\(380\) 0.529405 + 0.384636i 0.0271579 + 0.0197314i
\(381\) 0 0
\(382\) 4.59126 + 14.1304i 0.234909 + 0.722976i
\(383\) 0.960947 0.698169i 0.0491021 0.0356747i −0.562963 0.826482i \(-0.690339\pi\)
0.612066 + 0.790807i \(0.290339\pi\)
\(384\) 0 0
\(385\) 1.82076 5.60374i 0.0927947 0.285593i
\(386\) 15.3165 + 11.1281i 0.779592 + 0.566406i
\(387\) 0 0
\(388\) −0.844034 + 2.59767i −0.0428493 + 0.131877i
\(389\) 14.7772 + 10.7362i 0.749232 + 0.544349i 0.895589 0.444883i \(-0.146755\pi\)
−0.146356 + 0.989232i \(0.546755\pi\)
\(390\) 0 0
\(391\) −2.94131 9.05242i −0.148748 0.457800i
\(392\) 21.8250 15.8568i 1.10233 0.800890i
\(393\) 0 0
\(394\) −18.8358 13.6850i −0.948932 0.689440i
\(395\) 26.8176 + 19.4841i 1.34934 + 0.980354i
\(396\) 0 0
\(397\) −2.65218 −0.133109 −0.0665546 0.997783i \(-0.521201\pi\)
−0.0665546 + 0.997783i \(0.521201\pi\)
\(398\) 0.746560 0.0374217
\(399\) 0 0
\(400\) −15.5875 + 47.9733i −0.779374 + 2.39867i
\(401\) 5.13071 + 15.7907i 0.256216 + 0.788551i 0.993588 + 0.113064i \(0.0360665\pi\)
−0.737372 + 0.675487i \(0.763934\pi\)
\(402\) 0 0
\(403\) −4.13448 + 8.79848i −0.205953 + 0.438284i
\(404\) 0.501361 0.0249436
\(405\) 0 0
\(406\) 16.8715 51.9253i 0.837321 2.57701i
\(407\) −2.01042 + 1.46065i −0.0996526 + 0.0724018i
\(408\) 0 0
\(409\) 25.6723 1.26942 0.634708 0.772752i \(-0.281120\pi\)
0.634708 + 0.772752i \(0.281120\pi\)
\(410\) −34.2896 + 24.9128i −1.69344 + 1.23036i
\(411\) 0 0
\(412\) −0.697874 0.507035i −0.0343818 0.0249798i
\(413\) 1.91311 + 5.88794i 0.0941379 + 0.289727i
\(414\) 0 0
\(415\) −9.57920 29.4817i −0.470224 1.44720i
\(416\) 2.29294 7.05693i 0.112420 0.345995i
\(417\) 0 0
\(418\) −0.0366622 + 0.112835i −0.00179321 + 0.00551892i
\(419\) −9.62824 + 29.6327i −0.470370 + 1.44765i 0.381731 + 0.924273i \(0.375328\pi\)
−0.852101 + 0.523377i \(0.824672\pi\)
\(420\) 0 0
\(421\) −9.44103 + 29.0565i −0.460128 + 1.41613i 0.404881 + 0.914370i \(0.367313\pi\)
−0.865008 + 0.501758i \(0.832687\pi\)
\(422\) 10.5357 + 32.4255i 0.512869 + 1.57845i
\(423\) 0 0
\(424\) 7.56569 + 23.2848i 0.367422 + 1.13081i
\(425\) −28.5694 20.7569i −1.38582 1.00686i
\(426\) 0 0
\(427\) −13.1085 + 9.52385i −0.634363 + 0.460891i
\(428\) 6.32542 0.305751
\(429\) 0 0
\(430\) 16.1039 11.7001i 0.776598 0.564231i
\(431\) 11.3322 34.8768i 0.545851 1.67996i −0.173106 0.984903i \(-0.555380\pi\)
0.718957 0.695054i \(-0.244620\pi\)
\(432\) 0 0
\(433\) −13.7562 −0.661083 −0.330541 0.943791i \(-0.607231\pi\)
−0.330541 + 0.943791i \(0.607231\pi\)
\(434\) −30.6311 28.7336i −1.47034 1.37926i
\(435\) 0 0
\(436\) 0.0537703 + 0.165488i 0.00257513 + 0.00792544i
\(437\) −0.179556 + 0.552618i −0.00858935 + 0.0264353i
\(438\) 0 0
\(439\) −5.74749 −0.274313 −0.137156 0.990549i \(-0.543796\pi\)
−0.137156 + 0.990549i \(0.543796\pi\)
\(440\) −2.63340 −0.125542
\(441\) 0 0
\(442\) 8.19247 + 5.95218i 0.389676 + 0.283116i
\(443\) 25.9488 + 18.8529i 1.23286 + 0.895728i 0.997102 0.0760822i \(-0.0242412\pi\)
0.235763 + 0.971811i \(0.424241\pi\)
\(444\) 0 0
\(445\) 25.3830 18.4419i 1.20327 0.874228i
\(446\) 10.5543 + 32.4829i 0.499762 + 1.53811i
\(447\) 0 0
\(448\) −10.2688 7.46074i −0.485156 0.352487i
\(449\) 6.97569 21.4690i 0.329203 1.01318i −0.640304 0.768121i \(-0.721192\pi\)
0.969507 0.245062i \(-0.0788083\pi\)
\(450\) 0 0
\(451\) −1.76494 1.28230i −0.0831078 0.0603814i
\(452\) 2.92191 8.99271i 0.137435 0.422982i
\(453\) 0 0
\(454\) −16.3976 + 11.9136i −0.769579 + 0.559132i
\(455\) 9.48713 + 29.1984i 0.444764 + 1.36884i
\(456\) 0 0
\(457\) −6.70189 4.86921i −0.313501 0.227772i 0.419896 0.907572i \(-0.362066\pi\)
−0.733397 + 0.679800i \(0.762066\pi\)
\(458\) −31.8730 + 23.1571i −1.48933 + 1.08206i
\(459\) 0 0
\(460\) 8.47173 0.394997
\(461\) −12.7815 + 9.28628i −0.595292 + 0.432505i −0.844205 0.536021i \(-0.819927\pi\)
0.248913 + 0.968526i \(0.419927\pi\)
\(462\) 0 0
\(463\) −4.39852 13.5373i −0.204417 0.629130i −0.999737 0.0229403i \(-0.992697\pi\)
0.795320 0.606190i \(-0.207303\pi\)
\(464\) −35.8795 −1.66567
\(465\) 0 0
\(466\) −12.8507 −0.595298
\(467\) −8.10983 24.9595i −0.375278 1.15499i −0.943291 0.331968i \(-0.892287\pi\)
0.568012 0.823020i \(-0.307713\pi\)
\(468\) 0 0
\(469\) 5.01091 3.64064i 0.231382 0.168109i
\(470\) 21.7093 1.00138
\(471\) 0 0
\(472\) 2.23851 1.62638i 0.103036 0.0748600i
\(473\) 0.828893 + 0.602226i 0.0381125 + 0.0276904i
\(474\) 0 0
\(475\) 0.666171 + 2.05026i 0.0305660 + 0.0940725i
\(476\) −10.0480 + 7.30031i −0.460550 + 0.334609i
\(477\) 0 0
\(478\) 11.5444 35.5300i 0.528028 1.62510i
\(479\) −33.7797 24.5424i −1.54343 1.12137i −0.948136 0.317866i \(-0.897034\pi\)
−0.595299 0.803505i \(-0.702966\pi\)
\(480\) 0 0
\(481\) 4.00121 12.3145i 0.182440 0.561492i
\(482\) −11.8801 8.63141i −0.541125 0.393150i
\(483\) 0 0
\(484\) −2.66770 8.21033i −0.121259 0.373197i
\(485\) −10.8565 + 7.88774i −0.492970 + 0.358164i
\(486\) 0 0
\(487\) 27.9442 + 20.3026i 1.26627 + 0.919999i 0.999048 0.0436354i \(-0.0138940\pi\)
0.267223 + 0.963635i \(0.413894\pi\)
\(488\) 5.85863 + 4.25655i 0.265208 + 0.192685i
\(489\) 0 0
\(490\) −87.0619 −3.93305
\(491\) −13.4986 −0.609183 −0.304592 0.952483i \(-0.598520\pi\)
−0.304592 + 0.952483i \(0.598520\pi\)
\(492\) 0 0
\(493\) 7.76209 23.8893i 0.349587 1.07592i
\(494\) −0.191029 0.587928i −0.00859481 0.0264521i
\(495\) 0 0
\(496\) −11.7381 + 24.9796i −0.527056 + 1.12162i
\(497\) 7.84208 0.351766
\(498\) 0 0
\(499\) −11.6754 + 35.9332i −0.522663 + 1.60859i 0.246227 + 0.969212i \(0.420809\pi\)
−0.768891 + 0.639380i \(0.779191\pi\)
\(500\) 12.9336 9.39683i 0.578409 0.420239i
\(501\) 0 0
\(502\) −15.4962 −0.691628
\(503\) 4.35146 3.16152i 0.194022 0.140965i −0.486533 0.873662i \(-0.661739\pi\)
0.680555 + 0.732697i \(0.261739\pi\)
\(504\) 0 0
\(505\) 1.99280 + 1.44786i 0.0886787 + 0.0644288i
\(506\) 0.474636 + 1.46078i 0.0211001 + 0.0649395i
\(507\) 0 0
\(508\) 3.17720 + 9.77842i 0.140966 + 0.433847i
\(509\) 5.70619 17.5619i 0.252923 0.778416i −0.741309 0.671164i \(-0.765795\pi\)
0.994232 0.107252i \(-0.0342052\pi\)
\(510\) 0 0
\(511\) 18.1565 55.8799i 0.803196 2.47198i
\(512\) 0.329482 1.01404i 0.0145612 0.0448147i
\(513\) 0 0
\(514\) 1.05098 3.23458i 0.0463568 0.142671i
\(515\) −1.30966 4.03072i −0.0577105 0.177615i
\(516\) 0 0
\(517\) 0.345300 + 1.06273i 0.0151863 + 0.0467386i
\(518\) 45.2553 + 32.8799i 1.98840 + 1.44466i
\(519\) 0 0
\(520\) 11.1008 8.06522i 0.486803 0.353683i
\(521\) 20.3286 0.890610 0.445305 0.895379i \(-0.353095\pi\)
0.445305 + 0.895379i \(0.353095\pi\)
\(522\) 0 0
\(523\) 4.34617 3.15768i 0.190045 0.138076i −0.488694 0.872455i \(-0.662527\pi\)
0.678739 + 0.734379i \(0.262527\pi\)
\(524\) −3.25065 + 10.0045i −0.142005 + 0.437047i
\(525\) 0 0
\(526\) 49.4789 2.15738
\(527\) −14.0925 13.2195i −0.613877 0.575849i
\(528\) 0 0
\(529\) −4.78282 14.7200i −0.207949 0.640001i
\(530\) 24.4163 75.1455i 1.06057 3.26411i
\(531\) 0 0
\(532\) 0.758198 0.0328721
\(533\) 11.3672 0.492368
\(534\) 0 0
\(535\) 25.1422 + 18.2669i 1.08699 + 0.789747i
\(536\) −2.23955 1.62713i −0.0967340 0.0702813i
\(537\) 0 0
\(538\) −27.9127 + 20.2797i −1.20340 + 0.874322i
\(539\) −1.38477 4.26189i −0.0596464 0.183573i
\(540\) 0 0
\(541\) −23.7833 17.2796i −1.02252 0.742907i −0.0557247 0.998446i \(-0.517747\pi\)
−0.966799 + 0.255540i \(0.917747\pi\)
\(542\) 3.33766 10.2723i 0.143365 0.441232i
\(543\) 0 0
\(544\) 11.9315 + 8.66872i 0.511557 + 0.371668i
\(545\) −0.264180 + 0.813062i −0.0113162 + 0.0348277i
\(546\) 0 0
\(547\) 30.5120 22.1683i 1.30460 0.947848i 0.304612 0.952477i \(-0.401473\pi\)
0.999989 + 0.00462851i \(0.00147330\pi\)
\(548\) 2.57566 + 7.92708i 0.110027 + 0.338628i
\(549\) 0 0
\(550\) 4.61021 + 3.34951i 0.196580 + 0.142824i
\(551\) −1.24055 + 0.901312i −0.0528492 + 0.0383972i
\(552\) 0 0
\(553\) 38.4074 1.63325
\(554\) −12.7807 + 9.28573i −0.543001 + 0.394513i
\(555\) 0 0
\(556\) 5.75567 + 17.7141i 0.244095 + 0.751247i
\(557\) −2.12741 −0.0901411 −0.0450706 0.998984i \(-0.514351\pi\)
−0.0450706 + 0.998984i \(0.514351\pi\)
\(558\) 0 0
\(559\) −5.33854 −0.225796
\(560\) 26.9347 + 82.8964i 1.13820 + 3.50301i
\(561\) 0 0
\(562\) −3.07133 + 2.23145i −0.129556 + 0.0941280i
\(563\) 15.4591 0.651523 0.325761 0.945452i \(-0.394379\pi\)
0.325761 + 0.945452i \(0.394379\pi\)
\(564\) 0 0
\(565\) 37.5836 27.3061i 1.58116 1.14878i
\(566\) 36.6726 + 26.6442i 1.54147 + 1.11994i
\(567\) 0 0
\(568\) −1.08308 3.33336i −0.0454448 0.139865i
\(569\) 35.1864 25.5644i 1.47509 1.07172i 0.495992 0.868327i \(-0.334804\pi\)
0.979098 0.203389i \(-0.0651955\pi\)
\(570\) 0 0
\(571\) 2.96846 9.13599i 0.124226 0.382329i −0.869533 0.493875i \(-0.835580\pi\)
0.993759 + 0.111545i \(0.0355801\pi\)
\(572\) −0.375316 0.272683i −0.0156928 0.0114015i
\(573\) 0 0
\(574\) −15.1753 + 46.7049i −0.633407 + 1.94943i
\(575\) 22.5789 + 16.4045i 0.941605 + 0.684116i
\(576\) 0 0
\(577\) 14.1659 + 43.5981i 0.589734 + 1.81501i 0.579365 + 0.815068i \(0.303301\pi\)
0.0103692 + 0.999946i \(0.496699\pi\)
\(578\) 6.70118 4.86869i 0.278732 0.202511i
\(579\) 0 0
\(580\) 18.0871 + 13.1410i 0.751025 + 0.545651i
\(581\) −29.0574 21.1114i −1.20550 0.875849i
\(582\) 0 0
\(583\) 4.06691 0.168434
\(584\) −26.2600 −1.08665
\(585\) 0 0
\(586\) −4.73728 + 14.5798i −0.195695 + 0.602288i
\(587\) 0.0941267 + 0.289692i 0.00388502 + 0.0119569i 0.952980 0.303032i \(-0.0979991\pi\)
−0.949095 + 0.314989i \(0.897999\pi\)
\(588\) 0 0
\(589\) 0.221650 + 1.15855i 0.00913292 + 0.0477370i
\(590\) −8.92962 −0.367627
\(591\) 0 0
\(592\) 11.3597 34.9617i 0.466883 1.43692i
\(593\) 26.6318 19.3492i 1.09364 0.794575i 0.113629 0.993523i \(-0.463753\pi\)
0.980010 + 0.198948i \(0.0637526\pi\)
\(594\) 0 0
\(595\) −61.0210 −2.50162
\(596\) −6.86007 + 4.98413i −0.280999 + 0.204158i
\(597\) 0 0
\(598\) −6.47466 4.70412i −0.264768 0.192366i
\(599\) −0.143565 0.441848i −0.00586591 0.0180534i 0.948081 0.318030i \(-0.103021\pi\)
−0.953947 + 0.299976i \(0.903021\pi\)
\(600\) 0 0
\(601\) 1.30809 + 4.02587i 0.0533579 + 0.164219i 0.974184 0.225754i \(-0.0724845\pi\)
−0.920826 + 0.389973i \(0.872484\pi\)
\(602\) 7.12700 21.9347i 0.290475 0.893990i
\(603\) 0 0
\(604\) 0.689705 2.12269i 0.0280637 0.0863711i
\(605\) 13.1067 40.3383i 0.532863 1.63998i
\(606\) 0 0
\(607\) −5.04332 + 15.5217i −0.204702 + 0.630008i 0.795023 + 0.606579i \(0.207459\pi\)
−0.999725 + 0.0234296i \(0.992541\pi\)
\(608\) −0.278214 0.856254i −0.0112831 0.0347257i
\(609\) 0 0
\(610\) −7.22191 22.2267i −0.292406 0.899934i
\(611\) −4.71035 3.42227i −0.190561 0.138450i
\(612\) 0 0
\(613\) 15.7794 11.4644i 0.637322 0.463042i −0.221607 0.975136i \(-0.571130\pi\)
0.858929 + 0.512094i \(0.171130\pi\)
\(614\) −15.1565 −0.611666
\(615\) 0 0
\(616\) −2.46846 + 1.79344i −0.0994570 + 0.0722597i
\(617\) 1.04989 3.23124i 0.0422672 0.130085i −0.927696 0.373336i \(-0.878214\pi\)
0.969963 + 0.243251i \(0.0782139\pi\)
\(618\) 0 0
\(619\) −26.4142 −1.06168 −0.530839 0.847473i \(-0.678123\pi\)
−0.530839 + 0.847473i \(0.678123\pi\)
\(620\) 15.0661 8.29321i 0.605069 0.333063i
\(621\) 0 0
\(622\) 6.14367 + 18.9083i 0.246339 + 0.758153i
\(623\) 11.2336 34.5736i 0.450066 1.38516i
\(624\) 0 0
\(625\) 27.6666 1.10666
\(626\) −26.2112 −1.04761
\(627\) 0 0
\(628\) −9.37856 6.81392i −0.374245 0.271905i
\(629\) 20.8206 + 15.1271i 0.830173 + 0.603156i
\(630\) 0 0
\(631\) 22.2666 16.1776i 0.886418 0.644020i −0.0485238 0.998822i \(-0.515452\pi\)
0.934942 + 0.354802i \(0.115452\pi\)
\(632\) −5.30447 16.3255i −0.211000 0.649392i
\(633\) 0 0
\(634\) −20.3216 14.7645i −0.807072 0.586372i
\(635\) −15.6100 + 48.0425i −0.619462 + 1.90651i
\(636\) 0 0
\(637\) 18.8901 + 13.7245i 0.748454 + 0.543784i
\(638\) −1.25256 + 3.85498i −0.0495893 + 0.152620i
\(639\) 0 0
\(640\) 41.5982 30.2228i 1.64431 1.19466i
\(641\) 2.75540 + 8.48026i 0.108832 + 0.334950i 0.990611 0.136713i \(-0.0436539\pi\)
−0.881779 + 0.471663i \(0.843654\pi\)
\(642\) 0 0
\(643\) 10.2409 + 7.44043i 0.403861 + 0.293422i 0.771112 0.636700i \(-0.219701\pi\)
−0.367251 + 0.930122i \(0.619701\pi\)
\(644\) 7.94112 5.76956i 0.312924 0.227353i
\(645\) 0 0
\(646\) 1.22870 0.0483424
\(647\) −23.4822 + 17.0608i −0.923179 + 0.670729i −0.944313 0.329048i \(-0.893272\pi\)
0.0211340 + 0.999777i \(0.493272\pi\)
\(648\) 0 0
\(649\) −0.142031 0.437127i −0.00557521 0.0171587i
\(650\) −29.6923 −1.16463
\(651\) 0 0
\(652\) −13.6737 −0.535503
\(653\) −10.0340 30.8814i −0.392660 1.20848i −0.930769 0.365608i \(-0.880861\pi\)
0.538109 0.842875i \(-0.319139\pi\)
\(654\) 0 0
\(655\) −41.8121 + 30.3783i −1.63373 + 1.18698i
\(656\) 32.2724 1.26002
\(657\) 0 0
\(658\) 20.3496 14.7849i 0.793310 0.576374i
\(659\) 7.47182 + 5.42860i 0.291061 + 0.211468i 0.723728 0.690086i \(-0.242427\pi\)
−0.432667 + 0.901554i \(0.642427\pi\)
\(660\) 0 0
\(661\) −6.52827 20.0920i −0.253920 0.781487i −0.994040 0.109012i \(-0.965231\pi\)
0.740120 0.672475i \(-0.234769\pi\)
\(662\) −18.3825 + 13.3557i −0.714456 + 0.519083i
\(663\) 0 0
\(664\) −4.96051 + 15.2669i −0.192505 + 0.592469i
\(665\) 3.01368 + 2.18957i 0.116865 + 0.0849077i
\(666\) 0 0
\(667\) −6.13452 + 18.8801i −0.237530 + 0.731041i
\(668\) −0.261789 0.190201i −0.0101289 0.00735908i
\(669\) 0 0
\(670\) 2.76069 + 8.49652i 0.106655 + 0.328249i
\(671\) 0.973185 0.707060i 0.0375694 0.0272957i
\(672\) 0 0
\(673\) −32.7484 23.7931i −1.26236 0.917158i −0.263489 0.964662i \(-0.584873\pi\)
−0.998871 + 0.0475044i \(0.984873\pi\)
\(674\) 14.0018 + 10.1729i 0.539330 + 0.391846i
\(675\) 0 0
\(676\) −7.89044 −0.303478
\(677\) −16.5546 −0.636245 −0.318123 0.948050i \(-0.603052\pi\)
−0.318123 + 0.948050i \(0.603052\pi\)
\(678\) 0 0
\(679\) −4.80472 + 14.7874i −0.184388 + 0.567489i
\(680\) 8.42765 + 25.9376i 0.323186 + 0.994663i
\(681\) 0 0
\(682\) 2.27408 + 2.13321i 0.0870792 + 0.0816848i
\(683\) 15.8493 0.606455 0.303228 0.952918i \(-0.401936\pi\)
0.303228 + 0.952918i \(0.401936\pi\)
\(684\) 0 0
\(685\) −12.6545 + 38.9466i −0.483505 + 1.48807i
\(686\) −38.8910 + 28.2560i −1.48487 + 1.07882i
\(687\) 0 0
\(688\) −15.1565 −0.577836
\(689\) −17.1437 + 12.4556i −0.653122 + 0.474521i
\(690\) 0 0
\(691\) −0.221090 0.160631i −0.00841065 0.00611069i 0.583572 0.812061i \(-0.301655\pi\)
−0.591983 + 0.805951i \(0.701655\pi\)
\(692\) −0.917278 2.82309i −0.0348697 0.107318i
\(693\) 0 0
\(694\) 1.30450 + 4.01483i 0.0495180 + 0.152401i
\(695\) −28.2783 + 87.0315i −1.07266 + 3.30129i
\(696\) 0 0
\(697\) −6.98172 + 21.4875i −0.264452 + 0.813899i
\(698\) 18.0227 55.4683i 0.682171 2.09951i
\(699\) 0 0
\(700\) 11.2536 34.6350i 0.425346 1.30908i
\(701\) 6.92750 + 21.3207i 0.261648 + 0.805270i 0.992447 + 0.122677i \(0.0391479\pi\)
−0.730798 + 0.682593i \(0.760852\pi\)
\(702\) 0 0
\(703\) −0.485488 1.49418i −0.0183105 0.0563540i
\(704\) 0.762368 + 0.553892i 0.0287328 + 0.0208756i
\(705\) 0 0
\(706\) 12.3580 8.97865i 0.465101 0.337916i
\(707\) 2.85403 0.107337
\(708\) 0 0
\(709\) −11.9791 + 8.70336i −0.449886 + 0.326861i −0.789551 0.613685i \(-0.789686\pi\)
0.339665 + 0.940547i \(0.389686\pi\)
\(710\) −3.49534 + 10.7576i −0.131178 + 0.403724i
\(711\) 0 0
\(712\) −16.2474 −0.608896
\(713\) 11.1375 + 10.4476i 0.417104 + 0.391265i
\(714\) 0 0
\(715\) −0.704334 2.16772i −0.0263406 0.0810680i
\(716\) −0.448821 + 1.38133i −0.0167732 + 0.0516227i
\(717\) 0 0
\(718\) 7.88105 0.294118
\(719\) 25.1086 0.936392 0.468196 0.883625i \(-0.344904\pi\)
0.468196 + 0.883625i \(0.344904\pi\)
\(720\) 0 0
\(721\) −3.97270 2.88633i −0.147951 0.107493i
\(722\) 25.6278 + 18.6197i 0.953769 + 0.692954i
\(723\) 0 0
\(724\) 7.40949 5.38331i 0.275371 0.200069i
\(725\) 22.7596 + 70.0470i 0.845272 + 2.60148i
\(726\) 0 0
\(727\) −1.07036 0.777660i −0.0396973 0.0288418i 0.567760 0.823194i \(-0.307810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(728\) 4.91283 15.1201i 0.182082 0.560390i
\(729\) 0 0
\(730\) 68.5619 + 49.8131i 2.53759 + 1.84367i
\(731\) 3.27892 10.0915i 0.121275 0.373247i
\(732\) 0 0
\(733\) −17.2687 + 12.5465i −0.637835 + 0.463414i −0.859106 0.511798i \(-0.828980\pi\)
0.221271 + 0.975212i \(0.428980\pi\)
\(734\) −12.6191 38.8375i −0.465779 1.43352i
\(735\) 0 0
\(736\) −9.42965 6.85104i −0.347582 0.252533i
\(737\) −0.372015 + 0.270285i −0.0137033 + 0.00995606i
\(738\) 0 0
\(739\) −22.1603 −0.815178 −0.407589 0.913165i \(-0.633630\pi\)
−0.407589 + 0.913165i \(0.633630\pi\)
\(740\) −18.5314 + 13.4638i −0.681227 + 0.494941i
\(741\) 0 0
\(742\) −28.2899 87.0673i −1.03855 3.19634i
\(743\) 29.6842 1.08901 0.544503 0.838759i \(-0.316718\pi\)
0.544503 + 0.838759i \(0.316718\pi\)
\(744\) 0 0
\(745\) −41.6608 −1.52633
\(746\) −1.82943 5.63042i −0.0669804 0.206144i
\(747\) 0 0
\(748\) 0.745974 0.541982i 0.0272755 0.0198168i
\(749\) 36.0079 1.31570
\(750\) 0 0
\(751\) −12.6150 + 9.16532i −0.460327 + 0.334447i −0.793660 0.608362i \(-0.791827\pi\)
0.333333 + 0.942809i \(0.391827\pi\)
\(752\) −13.3730 9.71609i −0.487665 0.354309i
\(753\) 0 0
\(754\) −6.52649 20.0865i −0.237681 0.731506i
\(755\) 8.87146 6.44549i 0.322866 0.234576i
\(756\) 0 0
\(757\) 6.55255 20.1667i 0.238157 0.732970i −0.758530 0.651638i \(-0.774082\pi\)
0.996687 0.0813329i \(-0.0259177\pi\)
\(758\) −32.6673 23.7342i −1.18653 0.862065i
\(759\) 0 0
\(760\) 0.514478 1.58340i 0.0186621 0.0574359i
\(761\) −19.7619 14.3579i −0.716369 0.520473i 0.168853 0.985641i \(-0.445994\pi\)
−0.885222 + 0.465169i \(0.845994\pi\)
\(762\) 0 0
\(763\) 0.306092 + 0.942053i 0.0110813 + 0.0341046i
\(764\) −5.70292 + 4.14341i −0.206324 + 0.149903i
\(765\) 0 0
\(766\) 1.60593 + 1.16678i 0.0580246 + 0.0421574i
\(767\) 1.93749 + 1.40767i 0.0699588 + 0.0508280i
\(768\) 0 0
\(769\) 23.9568 0.863903 0.431952 0.901897i \(-0.357825\pi\)
0.431952 + 0.901897i \(0.357825\pi\)
\(770\) 9.84689 0.354857
\(771\) 0 0
\(772\) −2.77572 + 8.54279i −0.0999003 + 0.307462i
\(773\) −13.9669 42.9856i −0.502353 1.54608i −0.805175 0.593037i \(-0.797929\pi\)
0.302822 0.953047i \(-0.402071\pi\)
\(774\) 0 0
\(775\) 56.2130 + 7.07067i 2.01923 + 0.253986i
\(776\) 6.94914 0.249459
\(777\) 0 0
\(778\) −9.43287 + 29.0314i −0.338185 + 1.04083i
\(779\) 1.11583 0.810698i 0.0399788 0.0290463i
\(780\) 0 0
\(781\) −0.582204 −0.0208329
\(782\) 12.8690 9.34985i 0.460193 0.334350i
\(783\) 0 0
\(784\) 53.6305 + 38.9648i 1.91538 + 1.39160i
\(785\) −17.6002 54.1679i −0.628178 1.93333i
\(786\) 0 0
\(787\) −6.14933 18.9257i −0.219200 0.674628i −0.998829 0.0483860i \(-0.984592\pi\)
0.779629 0.626242i \(-0.215408\pi\)
\(788\) 3.41349 10.5056i 0.121600 0.374248i
\(789\) 0 0
\(790\) −17.1188 + 52.6862i −0.609058 + 1.87449i
\(791\) 16.6332 51.1917i 0.591408 1.82017i
\(792\) 0 0
\(793\) −1.93687 + 5.96108i −0.0687804 + 0.211684i
\(794\) −1.36966 4.21538i −0.0486075 0.149598i
\(795\) 0 0
\(796\) 0.109455 + 0.336869i 0.00387955 + 0.0119400i
\(797\) −33.3028 24.1959i −1.17964 0.857062i −0.187513 0.982262i \(-0.560043\pi\)
−0.992131 + 0.125200i \(0.960043\pi\)
\(798\) 0 0
\(799\) 9.36225 6.80207i 0.331213 0.240640i
\(800\) −43.2437 −1.52890
\(801\) 0 0
\(802\) −22.4482 + 16.3095i −0.792672 + 0.575910i
\(803\) −1.34796 + 4.14858i −0.0475683 + 0.146400i
\(804\) 0 0
\(805\) 48.2260 1.69974
\(806\) −16.1195 2.02756i −0.567785 0.0714179i
\(807\) 0 0
\(808\) −0.394172 1.21314i −0.0138669 0.0426780i
\(809\) −13.6189 + 41.9145i −0.478813 + 1.47364i 0.361932 + 0.932205i \(0.382117\pi\)
−0.840745 + 0.541431i \(0.817883\pi\)
\(810\) 0 0
\(811\) 24.0093 0.843079 0.421539 0.906810i \(-0.361490\pi\)
0.421539 + 0.906810i \(0.361490\pi\)
\(812\) 25.9037 0.909043
\(813\) 0 0
\(814\) −3.35980 2.44104i −0.117761 0.0855583i
\(815\) −54.3501 39.4877i −1.90380 1.38319i
\(816\) 0 0
\(817\) −0.524043 + 0.380739i −0.0183339 + 0.0133204i
\(818\) 13.2579 + 40.8037i 0.463552 + 1.42667i
\(819\) 0 0
\(820\) −16.2687 11.8199i −0.568127 0.412768i
\(821\) −12.9352 + 39.8104i −0.451441 + 1.38939i 0.423822 + 0.905745i \(0.360688\pi\)
−0.875263 + 0.483647i \(0.839312\pi\)
\(822\) 0 0
\(823\) −33.7649 24.5316i −1.17697 0.855118i −0.185143 0.982712i \(-0.559275\pi\)
−0.991827 + 0.127593i \(0.959275\pi\)
\(824\) −0.678196 + 2.08727i −0.0236261 + 0.0727135i
\(825\) 0 0
\(826\) −8.37033 + 6.08140i −0.291241 + 0.211599i
\(827\) −5.57224 17.1496i −0.193766 0.596350i −0.999989 0.00473793i \(-0.998492\pi\)
0.806223 0.591612i \(-0.201508\pi\)
\(828\) 0 0
\(829\) −10.2529 7.44918i −0.356098 0.258721i 0.395325 0.918542i \(-0.370632\pi\)
−0.751423 + 0.659821i \(0.770632\pi\)
\(830\) 41.9114 30.4504i 1.45477 1.05695i
\(831\) 0 0
\(832\) −4.91007 −0.170226
\(833\) −37.5458 + 27.2786i −1.30089 + 0.945149i
\(834\) 0 0
\(835\) −0.491284 1.51202i −0.0170016 0.0523254i
\(836\) −0.0562894 −0.00194681
\(837\) 0 0
\(838\) −52.0705 −1.79875
\(839\) 13.3184 + 40.9897i 0.459801 + 1.41512i 0.865405 + 0.501073i \(0.167061\pi\)
−0.405604 + 0.914049i \(0.632939\pi\)
\(840\) 0 0
\(841\) −18.9218 + 13.7475i −0.652474 + 0.474050i
\(842\) −51.0581 −1.75958
\(843\) 0 0
\(844\) −13.0866 + 9.50800i −0.450461 + 0.327279i
\(845\) −31.3629 22.7864i −1.07891 0.783878i
\(846\) 0 0
\(847\) −15.1861 46.7379i −0.521800 1.60593i
\(848\) −48.6722 + 35.3624i −1.67141 + 1.21435i
\(849\) 0 0
\(850\) 18.2370 56.1277i 0.625523 1.92516i
\(851\) −16.4549 11.9552i −0.564067 0.409819i
\(852\) 0 0
\(853\) 13.8701 42.6879i 0.474904 1.46160i −0.371183 0.928560i \(-0.621048\pi\)
0.846087 0.533045i \(-0.178952\pi\)
\(854\) −21.9068 15.9162i −0.749636 0.544642i
\(855\) 0 0
\(856\) −4.97308 15.3056i −0.169976 0.523133i
\(857\) 11.5054 8.35916i 0.393017 0.285544i −0.373674 0.927560i \(-0.621902\pi\)
0.766691 + 0.642017i \(0.221902\pi\)
\(858\) 0 0
\(859\) 19.0567 + 13.8455i 0.650205 + 0.472402i 0.863341 0.504621i \(-0.168368\pi\)
−0.213136 + 0.977023i \(0.568368\pi\)
\(860\) 7.64048 + 5.55113i 0.260538 + 0.189292i
\(861\) 0 0
\(862\) 61.2856 2.08739
\(863\) −33.9831 −1.15680 −0.578400 0.815754i \(-0.696323\pi\)
−0.578400 + 0.815754i \(0.696323\pi\)
\(864\) 0 0
\(865\) 4.50669 13.8702i 0.153232 0.471600i
\(866\) −7.10411 21.8642i −0.241408 0.742976i
\(867\) 0 0
\(868\) 8.47448 18.0343i 0.287643 0.612126i
\(869\) −2.85140 −0.0967272
\(870\) 0 0
\(871\) 0.740400 2.27872i 0.0250875 0.0772114i
\(872\) 0.358155 0.260215i 0.0121287 0.00881200i
\(873\) 0 0
\(874\) −0.971060 −0.0328466
\(875\) 73.6256 53.4921i 2.48900 1.80836i
\(876\) 0 0
\(877\) 34.2692 + 24.8980i 1.15719 + 0.840747i 0.989420 0.145080i \(-0.0463439\pi\)
0.167769 + 0.985826i \(0.446344\pi\)
\(878\) −2.96817 9.13508i −0.100171 0.308294i
\(879\) 0 0
\(880\) −1.99966 6.15431i −0.0674084 0.207462i
\(881\) 10.3273 31.7841i 0.347934 1.07083i −0.612060 0.790812i \(-0.709659\pi\)
0.959994 0.280020i \(-0.0903412\pi\)
\(882\) 0 0
\(883\) −5.00096 + 15.3914i −0.168296 + 0.517961i −0.999264 0.0383588i \(-0.987787\pi\)
0.830968 + 0.556320i \(0.187787\pi\)
\(884\) −1.48467 + 4.56934i −0.0499349 + 0.153684i
\(885\) 0 0
\(886\) −16.5642 + 50.9793i −0.556484 + 1.71268i
\(887\) 13.2941 + 40.9151i 0.446373 + 1.37379i 0.880971 + 0.473170i \(0.156891\pi\)
−0.434598 + 0.900625i \(0.643109\pi\)
\(888\) 0 0
\(889\) 18.0865 + 55.6644i 0.606600 + 1.86692i
\(890\) 42.4201 + 30.8200i 1.42192 + 1.03309i
\(891\) 0 0
\(892\) −13.1098 + 9.52483i −0.438949 + 0.318915i
\(893\) −0.706452 −0.0236405
\(894\) 0 0
\(895\) −5.77304 + 4.19436i −0.192972 + 0.140202i
\(896\) 18.4099 56.6598i 0.615031 1.89287i
\(897\) 0 0
\(898\) 37.7253 1.25891
\(899\) 7.57264 + 39.5816i 0.252562 + 1.32012i
\(900\) 0 0
\(901\) −13.0153 40.0571i −0.433604 1.33449i
\(902\) 1.12663 3.46742i 0.0375128 0.115452i
\(903\) 0 0
\(904\) −24.0568 −0.800117
\(905\) 44.9974 1.49576
\(906\) 0 0
\(907\) −14.9442 10.8576i −0.496214 0.360521i 0.311355 0.950294i \(-0.399217\pi\)
−0.807569 + 0.589773i \(0.799217\pi\)
\(908\) −7.77985 5.65239i −0.258183 0.187581i
\(909\) 0 0
\(910\) −41.5086 + 30.1577i −1.37600 + 0.999720i
\(911\) −6.45301 19.8603i −0.213798 0.658002i −0.999237 0.0390629i \(-0.987563\pi\)
0.785439 0.618939i \(-0.212437\pi\)
\(912\) 0 0
\(913\) 2.15725 + 1.56733i 0.0713945 + 0.0518711i
\(914\) 4.27808 13.1666i 0.141506 0.435512i
\(915\) 0 0
\(916\) −15.1221 10.9869i −0.499649 0.363016i
\(917\) −18.5046 + 56.9512i −0.611075 + 1.88069i
\(918\) 0 0
\(919\) 12.0720 8.77082i 0.398218 0.289323i −0.370597 0.928794i \(-0.620847\pi\)
0.768815 + 0.639471i \(0.220847\pi\)
\(920\) −6.66052 20.4990i −0.219591 0.675831i
\(921\) 0 0
\(922\) −21.3603 15.5192i −0.703465 0.511098i
\(923\) 2.45422 1.78310i 0.0807818 0.0586914i
\(924\) 0 0
\(925\) −75.4610 −2.48114
\(926\) 19.2446 13.9820i 0.632418 0.459479i
\(927\) 0 0
\(928\) −9.50514 29.2538i −0.312022 0.960304i
\(929\) 19.8663 0.651793 0.325897 0.945405i \(-0.394334\pi\)
0.325897 + 0.945405i \(0.394334\pi\)
\(930\) 0 0
\(931\) 2.83312 0.0928516
\(932\) −1.88408 5.79861i −0.0617151 0.189940i
\(933\) 0 0
\(934\) 35.4826 25.7796i 1.16102 0.843534i
\(935\) 4.53026 0.148155
\(936\) 0 0
\(937\) −8.17157 + 5.93699i −0.266954 + 0.193953i −0.713207 0.700954i \(-0.752758\pi\)
0.446253 + 0.894907i \(0.352758\pi\)
\(938\) 8.37422 + 6.08422i 0.273428 + 0.198657i
\(939\) 0 0
\(940\) 3.18287 + 9.79587i 0.103814 + 0.319506i
\(941\) −10.2657 + 7.45844i −0.334651 + 0.243138i −0.742401 0.669955i \(-0.766313\pi\)
0.407751 + 0.913093i \(0.366313\pi\)
\(942\) 0 0
\(943\) 5.51778 16.9820i 0.179684 0.553010i
\(944\) 5.50069 + 3.99648i 0.179032 + 0.130074i
\(945\) 0 0
\(946\) −0.529116 + 1.62845i −0.0172030 + 0.0529455i
\(947\) 13.4397 + 9.76448i 0.436730 + 0.317303i 0.784334 0.620338i \(-0.213005\pi\)
−0.347604 + 0.937641i \(0.613005\pi\)
\(948\) 0 0
\(949\) −7.02356 21.6163i −0.227994 0.701694i
\(950\) −2.91466 + 2.11763i −0.0945642 + 0.0687049i
\(951\) 0 0
\(952\) 25.5643 + 18.5735i 0.828543 + 0.601972i
\(953\) −44.7050 32.4801i −1.44814 1.05213i −0.986262 0.165189i \(-0.947177\pi\)
−0.461875 0.886945i \(-0.652823\pi\)
\(954\) 0 0
\(955\) −34.6335 −1.12071
\(956\) 17.7247 0.573258
\(957\) 0 0
\(958\) 21.5630 66.3639i 0.696667 2.14412i
\(959\) 14.6622 + 45.1255i 0.473466 + 1.45718i
\(960\) 0 0
\(961\) 30.0343 + 7.67711i 0.968850 + 0.247649i
\(962\) 21.6390 0.697669
\(963\) 0 0
\(964\) 2.15296 6.62613i 0.0693421 0.213413i
\(965\) −35.7032 + 25.9399i −1.14933 + 0.835036i
\(966\) 0 0
\(967\) −44.8302 −1.44164 −0.720821 0.693121i \(-0.756235\pi\)
−0.720821 + 0.693121i \(0.756235\pi\)
\(968\) −17.7691 + 12.9100i −0.571121 + 0.414943i
\(969\) 0 0
\(970\) −18.1434 13.1820i −0.582550 0.423248i
\(971\) 18.8116 + 57.8963i 0.603694 + 1.85798i 0.505530 + 0.862809i \(0.331297\pi\)
0.0981642 + 0.995170i \(0.468703\pi\)
\(972\) 0 0
\(973\) 32.7646 + 100.839i 1.05038 + 3.23275i
\(974\) −17.8379 + 54.8994i −0.571563 + 1.75909i
\(975\) 0 0
\(976\) −5.49893 + 16.9240i −0.176016 + 0.541723i
\(977\) −8.89298 + 27.3698i −0.284512 + 0.875636i 0.702033 + 0.712144i \(0.252276\pi\)
−0.986545 + 0.163492i \(0.947724\pi\)
\(978\) 0 0
\(979\) −0.833996 + 2.56678i −0.0266546 + 0.0820346i
\(980\) −12.7644 39.2848i −0.407744 1.25491i
\(981\) 0 0
\(982\) −6.97106 21.4547i −0.222455 0.684647i
\(983\) 25.6405 + 18.6289i 0.817807 + 0.594171i 0.916083 0.400988i \(-0.131333\pi\)
−0.0982768 + 0.995159i \(0.531333\pi\)
\(984\) 0 0
\(985\) 43.9066 31.9000i 1.39898 1.01642i
\(986\) 41.9782 1.33686
\(987\) 0 0
\(988\) 0.237282 0.172396i 0.00754896 0.00548464i
\(989\) −2.59139 + 7.97548i −0.0824015 + 0.253606i
\(990\) 0 0
\(991\) −2.33148 −0.0740618 −0.0370309 0.999314i \(-0.511790\pi\)
−0.0370309 + 0.999314i \(0.511790\pi\)
\(992\) −23.4763 2.95293i −0.745374 0.0937557i
\(993\) 0 0
\(994\) 4.04987 + 12.4642i 0.128454 + 0.395341i
\(995\) −0.537767 + 1.65508i −0.0170484 + 0.0524695i
\(996\) 0 0
\(997\) 22.7279 0.719800 0.359900 0.932991i \(-0.382811\pi\)
0.359900 + 0.932991i \(0.382811\pi\)
\(998\) −63.1419 −1.99872
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 279.2.i.c.190.3 16
3.2 odd 2 93.2.f.b.4.2 16
31.8 even 5 inner 279.2.i.c.163.3 16
31.15 odd 10 8649.2.a.bg.1.6 8
31.16 even 5 8649.2.a.bh.1.6 8
93.8 odd 10 93.2.f.b.70.2 yes 16
93.47 odd 10 2883.2.a.p.1.3 8
93.77 even 10 2883.2.a.o.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.2.f.b.4.2 16 3.2 odd 2
93.2.f.b.70.2 yes 16 93.8 odd 10
279.2.i.c.163.3 16 31.8 even 5 inner
279.2.i.c.190.3 16 1.1 even 1 trivial
2883.2.a.o.1.3 8 93.77 even 10
2883.2.a.p.1.3 8 93.47 odd 10
8649.2.a.bg.1.6 8 31.15 odd 10
8649.2.a.bh.1.6 8 31.16 even 5