Properties

Label 279.2
Level 279
Weight 2
Dimension 2145
Nonzero newspaces 20
Newform subspaces 37
Sturm bound 11520
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 279 = 3^{2} \cdot 31 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 20 \)
Newform subspaces: \( 37 \)
Sturm bound: \(11520\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(279))\).

Total New Old
Modular forms 3120 2405 715
Cusp forms 2641 2145 496
Eisenstein series 479 260 219

Trace form

\( 2145 q - 45 q^{2} - 60 q^{3} - 45 q^{4} - 45 q^{5} - 60 q^{6} - 45 q^{7} - 45 q^{8} - 60 q^{9} - 135 q^{10} - 45 q^{11} - 60 q^{12} - 45 q^{13} - 45 q^{14} - 60 q^{15} - 45 q^{16} - 45 q^{17} - 60 q^{18}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(279))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
279.2.a \(\chi_{279}(1, \cdot)\) 279.2.a.a 2 1
279.2.a.b 2
279.2.a.c 3
279.2.a.d 6
279.2.c \(\chi_{279}(278, \cdot)\) 279.2.c.a 12 1
279.2.e \(\chi_{279}(160, \cdot)\) 279.2.e.a 60 2
279.2.f \(\chi_{279}(94, \cdot)\) 279.2.f.a 30 2
279.2.f.b 30
279.2.g \(\chi_{279}(25, \cdot)\) 279.2.g.a 60 2
279.2.h \(\chi_{279}(118, \cdot)\) 279.2.h.a 2 2
279.2.h.b 4
279.2.h.c 4
279.2.h.d 6
279.2.h.e 8
279.2.i \(\chi_{279}(64, \cdot)\) 279.2.i.a 4 4
279.2.i.b 8
279.2.i.c 16
279.2.i.d 24
279.2.j \(\chi_{279}(26, \cdot)\) 279.2.j.a 4 2
279.2.j.b 4
279.2.j.c 12
279.2.o \(\chi_{279}(212, \cdot)\) 279.2.o.a 60 2
279.2.r \(\chi_{279}(68, \cdot)\) 279.2.r.a 60 2
279.2.s \(\chi_{279}(92, \cdot)\) 279.2.s.a 60 2
279.2.w \(\chi_{279}(89, \cdot)\) 279.2.w.a 48 4
279.2.y \(\chi_{279}(10, \cdot)\) 279.2.y.a 8 8
279.2.y.b 16
279.2.y.c 16
279.2.y.d 24
279.2.y.e 32
279.2.z \(\chi_{279}(4, \cdot)\) 279.2.z.a 240 8
279.2.ba \(\chi_{279}(76, \cdot)\) 279.2.ba.a 240 8
279.2.bb \(\chi_{279}(7, \cdot)\) 279.2.bb.a 240 8
279.2.be \(\chi_{279}(65, \cdot)\) 279.2.be.a 240 8
279.2.bg \(\chi_{279}(23, \cdot)\) 279.2.bg.a 240 8
279.2.bh \(\chi_{279}(11, \cdot)\) 279.2.bh.a 240 8
279.2.bn \(\chi_{279}(17, \cdot)\) 279.2.bn.a 80 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(279))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(279)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(93))\)\(^{\oplus 2}\)