Properties

Label 2-93e2-1.1-c1-0-99
Degree $2$
Conductor $8649$
Sign $1$
Analytic cond. $69.0626$
Root an. cond. $8.31039$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.67·2-s + 0.792·4-s − 3.89·5-s + 4.51·7-s − 2.01·8-s − 6.51·10-s − 0.335·11-s − 1.74·13-s + 7.54·14-s − 4.95·16-s + 3.47·17-s + 0.211·19-s − 3.08·20-s − 0.560·22-s − 2.74·23-s + 10.1·25-s − 2.91·26-s + 3.57·28-s + 7.23·29-s − 4.24·32-s + 5.79·34-s − 17.5·35-s − 7.41·37-s + 0.354·38-s + 7.85·40-s − 6.51·41-s + 3.05·43-s + ⋯
L(s)  = 1  + 1.18·2-s + 0.396·4-s − 1.74·5-s + 1.70·7-s − 0.713·8-s − 2.05·10-s − 0.101·11-s − 0.484·13-s + 2.01·14-s − 1.23·16-s + 0.841·17-s + 0.0486·19-s − 0.690·20-s − 0.119·22-s − 0.571·23-s + 2.03·25-s − 0.572·26-s + 0.676·28-s + 1.34·29-s − 0.751·32-s + 0.994·34-s − 2.97·35-s − 1.21·37-s + 0.0574·38-s + 1.24·40-s − 1.01·41-s + 0.466·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8649 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8649 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8649\)    =    \(3^{2} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(69.0626\)
Root analytic conductor: \(8.31039\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8649,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.559778411\)
\(L(\frac12)\) \(\approx\) \(2.559778411\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
31 \( 1 \)
good2 \( 1 - 1.67T + 2T^{2} \)
5 \( 1 + 3.89T + 5T^{2} \)
7 \( 1 - 4.51T + 7T^{2} \)
11 \( 1 + 0.335T + 11T^{2} \)
13 \( 1 + 1.74T + 13T^{2} \)
17 \( 1 - 3.47T + 17T^{2} \)
19 \( 1 - 0.211T + 19T^{2} \)
23 \( 1 + 2.74T + 23T^{2} \)
29 \( 1 - 7.23T + 29T^{2} \)
37 \( 1 + 7.41T + 37T^{2} \)
41 \( 1 + 6.51T + 41T^{2} \)
43 \( 1 - 3.05T + 43T^{2} \)
47 \( 1 + 3.33T + 47T^{2} \)
53 \( 1 + 12.1T + 53T^{2} \)
59 \( 1 - 1.37T + 59T^{2} \)
61 \( 1 - 3.58T + 61T^{2} \)
67 \( 1 + 1.37T + 67T^{2} \)
71 \( 1 - 1.73T + 71T^{2} \)
73 \( 1 - 13.0T + 73T^{2} \)
79 \( 1 - 8.50T + 79T^{2} \)
83 \( 1 - 7.95T + 83T^{2} \)
89 \( 1 - 8.05T + 89T^{2} \)
97 \( 1 + 3.44T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82508340547894869698344982961, −7.13184078508846841241554296073, −6.32973985895105530782055096672, −5.17950123042331712510189382413, −4.95905942107635470472511728394, −4.34909810246325123646423682114, −3.65761209388290390549076086115, −3.05241945229474594116374426861, −1.92626482816974233687060936501, −0.64919586873917901558152155119, 0.64919586873917901558152155119, 1.92626482816974233687060936501, 3.05241945229474594116374426861, 3.65761209388290390549076086115, 4.34909810246325123646423682114, 4.95905942107635470472511728394, 5.17950123042331712510189382413, 6.32973985895105530782055096672, 7.13184078508846841241554296073, 7.82508340547894869698344982961

Graph of the $Z$-function along the critical line