Properties

Label 864.2.bf.a.241.11
Level $864$
Weight $2$
Character 864.241
Analytic conductor $6.899$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [864,2,Mod(49,864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("864.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(864, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 864.bf (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89907473464\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 241.11
Character \(\chi\) \(=\) 864.241
Dual form 864.2.bf.a.337.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.919076 + 1.46809i) q^{3} +(-0.185555 - 0.221136i) q^{5} +(2.62731 - 0.956263i) q^{7} +(-1.31060 - 2.69858i) q^{9} +(-3.08006 + 3.67067i) q^{11} +(3.17478 - 0.559799i) q^{13} +(0.495188 - 0.0691714i) q^{15} +(2.81522 + 4.87610i) q^{17} +(-0.00428975 - 0.00247669i) q^{19} +(-1.01082 + 4.73602i) q^{21} +(-1.84294 - 0.670777i) q^{23} +(0.853770 - 4.84197i) q^{25} +(5.16631 + 0.556122i) q^{27} +(7.88122 + 1.38967i) q^{29} +(5.45972 + 1.98718i) q^{31} +(-2.55808 - 7.89544i) q^{33} +(-0.698975 - 0.403553i) q^{35} +(-8.20717 + 4.73841i) q^{37} +(-2.09603 + 5.17537i) q^{39} +(1.69965 + 9.63917i) q^{41} +(-3.57494 + 4.26045i) q^{43} +(-0.353565 + 0.790555i) q^{45} +(-3.48835 + 1.26966i) q^{47} +(0.626015 - 0.525289i) q^{49} +(-9.74597 - 0.348505i) q^{51} +0.865665i q^{53} +1.38324 q^{55} +(0.00757862 - 0.00402149i) q^{57} +(3.57109 + 4.25586i) q^{59} +(2.43327 + 6.68534i) q^{61} +(-6.02390 - 5.83673i) q^{63} +(-0.712888 - 0.598184i) q^{65} +(0.224950 - 0.0396647i) q^{67} +(2.67857 - 2.08912i) q^{69} +(-0.429923 - 0.744648i) q^{71} +(-2.02670 + 3.51035i) q^{73} +(6.32379 + 5.70356i) q^{75} +(-4.58214 + 12.5893i) q^{77} +(0.797428 - 4.52244i) q^{79} +(-5.56467 + 7.07350i) q^{81} +(4.00250 + 0.705749i) q^{83} +(0.555903 - 1.52733i) q^{85} +(-9.28361 + 10.2932i) q^{87} +(-1.77889 + 3.08112i) q^{89} +(7.80581 - 4.50669i) q^{91} +(-7.93526 + 6.18901i) q^{93} +(0.000248300 + 0.00140818i) q^{95} +(6.04757 + 5.07452i) q^{97} +(13.9423 + 3.50101i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 12 q^{7} - 12 q^{9} + 12 q^{15} - 6 q^{17} + 12 q^{23} - 12 q^{25} + 12 q^{31} + 12 q^{39} - 24 q^{41} + 12 q^{47} - 12 q^{49} + 24 q^{55} - 30 q^{57} + 72 q^{63} - 12 q^{65} + 90 q^{71} - 6 q^{73}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.919076 + 1.46809i −0.530629 + 0.847604i
\(4\) 0 0
\(5\) −0.185555 0.221136i −0.0829828 0.0988950i 0.722956 0.690895i \(-0.242783\pi\)
−0.805938 + 0.592000i \(0.798339\pi\)
\(6\) 0 0
\(7\) 2.62731 0.956263i 0.993030 0.361433i 0.206137 0.978523i \(-0.433911\pi\)
0.786893 + 0.617090i \(0.211688\pi\)
\(8\) 0 0
\(9\) −1.31060 2.69858i −0.436866 0.899527i
\(10\) 0 0
\(11\) −3.08006 + 3.67067i −0.928672 + 1.10675i 0.0653817 + 0.997860i \(0.479174\pi\)
−0.994054 + 0.108888i \(0.965271\pi\)
\(12\) 0 0
\(13\) 3.17478 0.559799i 0.880525 0.155260i 0.284933 0.958547i \(-0.408029\pi\)
0.595592 + 0.803287i \(0.296918\pi\)
\(14\) 0 0
\(15\) 0.495188 0.0691714i 0.127857 0.0178600i
\(16\) 0 0
\(17\) 2.81522 + 4.87610i 0.682791 + 1.18263i 0.974126 + 0.226007i \(0.0725672\pi\)
−0.291335 + 0.956621i \(0.594099\pi\)
\(18\) 0 0
\(19\) −0.00428975 0.00247669i −0.000984137 0.000568192i 0.499508 0.866309i \(-0.333514\pi\)
−0.500492 + 0.865741i \(0.666848\pi\)
\(20\) 0 0
\(21\) −1.01082 + 4.73602i −0.220578 + 1.03348i
\(22\) 0 0
\(23\) −1.84294 0.670777i −0.384280 0.139867i 0.142654 0.989773i \(-0.454436\pi\)
−0.526934 + 0.849906i \(0.676659\pi\)
\(24\) 0 0
\(25\) 0.853770 4.84197i 0.170754 0.968395i
\(26\) 0 0
\(27\) 5.16631 + 0.556122i 0.994256 + 0.107026i
\(28\) 0 0
\(29\) 7.88122 + 1.38967i 1.46351 + 0.258056i 0.847966 0.530050i \(-0.177827\pi\)
0.615540 + 0.788106i \(0.288938\pi\)
\(30\) 0 0
\(31\) 5.45972 + 1.98718i 0.980595 + 0.356907i 0.782071 0.623189i \(-0.214163\pi\)
0.198523 + 0.980096i \(0.436385\pi\)
\(32\) 0 0
\(33\) −2.55808 7.89544i −0.445304 1.37442i
\(34\) 0 0
\(35\) −0.698975 0.403553i −0.118148 0.0682130i
\(36\) 0 0
\(37\) −8.20717 + 4.73841i −1.34925 + 0.778990i −0.988143 0.153534i \(-0.950934\pi\)
−0.361107 + 0.932524i \(0.617601\pi\)
\(38\) 0 0
\(39\) −2.09603 + 5.17537i −0.335633 + 0.828722i
\(40\) 0 0
\(41\) 1.69965 + 9.63917i 0.265440 + 1.50539i 0.767779 + 0.640715i \(0.221362\pi\)
−0.502339 + 0.864671i \(0.667527\pi\)
\(42\) 0 0
\(43\) −3.57494 + 4.26045i −0.545173 + 0.649712i −0.966339 0.257271i \(-0.917177\pi\)
0.421166 + 0.906984i \(0.361621\pi\)
\(44\) 0 0
\(45\) −0.353565 + 0.790555i −0.0527064 + 0.117849i
\(46\) 0 0
\(47\) −3.48835 + 1.26966i −0.508829 + 0.185199i −0.583661 0.811998i \(-0.698380\pi\)
0.0748320 + 0.997196i \(0.476158\pi\)
\(48\) 0 0
\(49\) 0.626015 0.525289i 0.0894307 0.0750413i
\(50\) 0 0
\(51\) −9.74597 0.348505i −1.36471 0.0488005i
\(52\) 0 0
\(53\) 0.865665i 0.118908i 0.998231 + 0.0594541i \(0.0189360\pi\)
−0.998231 + 0.0594541i \(0.981064\pi\)
\(54\) 0 0
\(55\) 1.38324 0.186516
\(56\) 0 0
\(57\) 0.00757862 0.00402149i 0.00100381 0.000532660i
\(58\) 0 0
\(59\) 3.57109 + 4.25586i 0.464916 + 0.554066i 0.946655 0.322249i \(-0.104439\pi\)
−0.481739 + 0.876315i \(0.659995\pi\)
\(60\) 0 0
\(61\) 2.43327 + 6.68534i 0.311548 + 0.855970i 0.992345 + 0.123498i \(0.0394113\pi\)
−0.680797 + 0.732472i \(0.738366\pi\)
\(62\) 0 0
\(63\) −6.02390 5.83673i −0.758940 0.735359i
\(64\) 0 0
\(65\) −0.712888 0.598184i −0.0884228 0.0741956i
\(66\) 0 0
\(67\) 0.224950 0.0396647i 0.0274820 0.00484582i −0.159890 0.987135i \(-0.551114\pi\)
0.187372 + 0.982289i \(0.440003\pi\)
\(68\) 0 0
\(69\) 2.67857 2.08912i 0.322462 0.251500i
\(70\) 0 0
\(71\) −0.429923 0.744648i −0.0510224 0.0883735i 0.839386 0.543535i \(-0.182915\pi\)
−0.890409 + 0.455162i \(0.849581\pi\)
\(72\) 0 0
\(73\) −2.02670 + 3.51035i −0.237208 + 0.410856i −0.959912 0.280301i \(-0.909566\pi\)
0.722704 + 0.691157i \(0.242899\pi\)
\(74\) 0 0
\(75\) 6.32379 + 5.70356i 0.730208 + 0.658590i
\(76\) 0 0
\(77\) −4.58214 + 12.5893i −0.522184 + 1.43469i
\(78\) 0 0
\(79\) 0.797428 4.52244i 0.0897176 0.508814i −0.906521 0.422161i \(-0.861272\pi\)
0.996239 0.0866531i \(-0.0276172\pi\)
\(80\) 0 0
\(81\) −5.56467 + 7.07350i −0.618297 + 0.785945i
\(82\) 0 0
\(83\) 4.00250 + 0.705749i 0.439332 + 0.0774660i 0.388939 0.921263i \(-0.372842\pi\)
0.0503925 + 0.998729i \(0.483953\pi\)
\(84\) 0 0
\(85\) 0.555903 1.52733i 0.0602961 0.165662i
\(86\) 0 0
\(87\) −9.28361 + 10.2932i −0.995308 + 1.10354i
\(88\) 0 0
\(89\) −1.77889 + 3.08112i −0.188562 + 0.326599i −0.944771 0.327731i \(-0.893716\pi\)
0.756209 + 0.654330i \(0.227049\pi\)
\(90\) 0 0
\(91\) 7.80581 4.50669i 0.818272 0.472429i
\(92\) 0 0
\(93\) −7.93526 + 6.18901i −0.822848 + 0.641771i
\(94\) 0 0
\(95\) 0.000248300 0.00140818i 2.54751e−5 0.000144476i
\(96\) 0 0
\(97\) 6.04757 + 5.07452i 0.614038 + 0.515239i 0.895923 0.444209i \(-0.146515\pi\)
−0.281885 + 0.959448i \(0.590960\pi\)
\(98\) 0 0
\(99\) 13.9423 + 3.50101i 1.40126 + 0.351865i
\(100\) 0 0
\(101\) −6.35260 17.4536i −0.632107 1.73670i −0.675205 0.737630i \(-0.735945\pi\)
0.0430976 0.999071i \(-0.486277\pi\)
\(102\) 0 0
\(103\) 3.47298 2.91418i 0.342203 0.287143i −0.455447 0.890263i \(-0.650521\pi\)
0.797650 + 0.603120i \(0.206076\pi\)
\(104\) 0 0
\(105\) 1.23487 0.655264i 0.120511 0.0639473i
\(106\) 0 0
\(107\) 3.74905i 0.362434i −0.983443 0.181217i \(-0.941996\pi\)
0.983443 0.181217i \(-0.0580036\pi\)
\(108\) 0 0
\(109\) 16.8471i 1.61366i −0.590782 0.806831i \(-0.701181\pi\)
0.590782 0.806831i \(-0.298819\pi\)
\(110\) 0 0
\(111\) 0.586584 16.4039i 0.0556761 1.55698i
\(112\) 0 0
\(113\) 4.67369 3.92169i 0.439664 0.368921i −0.395920 0.918285i \(-0.629574\pi\)
0.835583 + 0.549364i \(0.185130\pi\)
\(114\) 0 0
\(115\) 0.193635 + 0.532007i 0.0180565 + 0.0496099i
\(116\) 0 0
\(117\) −5.67152 7.83372i −0.524332 0.724228i
\(118\) 0 0
\(119\) 12.0593 + 10.1189i 1.10547 + 0.927602i
\(120\) 0 0
\(121\) −2.07693 11.7789i −0.188812 1.07081i
\(122\) 0 0
\(123\) −15.7133 6.36390i −1.41682 0.573813i
\(124\) 0 0
\(125\) −2.47914 + 1.43133i −0.221741 + 0.128022i
\(126\) 0 0
\(127\) 10.6004 18.3604i 0.940632 1.62922i 0.176362 0.984325i \(-0.443567\pi\)
0.764270 0.644896i \(-0.223099\pi\)
\(128\) 0 0
\(129\) −2.96909 9.16403i −0.261414 0.806847i
\(130\) 0 0
\(131\) 3.62600 9.96234i 0.316805 0.870414i −0.674435 0.738335i \(-0.735613\pi\)
0.991239 0.132079i \(-0.0421653\pi\)
\(132\) 0 0
\(133\) −0.0136389 0.00240490i −0.00118264 0.000208532i
\(134\) 0 0
\(135\) −0.835656 1.24565i −0.0719218 0.107208i
\(136\) 0 0
\(137\) −2.46640 + 13.9877i −0.210719 + 1.19505i 0.677463 + 0.735557i \(0.263079\pi\)
−0.888182 + 0.459491i \(0.848032\pi\)
\(138\) 0 0
\(139\) 3.33532 9.16372i 0.282898 0.777257i −0.714115 0.700028i \(-0.753171\pi\)
0.997013 0.0772283i \(-0.0246070\pi\)
\(140\) 0 0
\(141\) 1.34209 6.28814i 0.113024 0.529557i
\(142\) 0 0
\(143\) −7.72366 + 13.3778i −0.645885 + 1.11871i
\(144\) 0 0
\(145\) −1.15509 2.00068i −0.0959254 0.166148i
\(146\) 0 0
\(147\) 0.195818 + 1.40183i 0.0161508 + 0.115621i
\(148\) 0 0
\(149\) 1.13973 0.200964i 0.0933699 0.0164636i −0.126768 0.991932i \(-0.540460\pi\)
0.220138 + 0.975469i \(0.429349\pi\)
\(150\) 0 0
\(151\) 15.9973 + 13.4234i 1.30184 + 1.09238i 0.989823 + 0.142303i \(0.0454506\pi\)
0.312022 + 0.950075i \(0.398994\pi\)
\(152\) 0 0
\(153\) 9.46893 13.9877i 0.765518 1.13084i
\(154\) 0 0
\(155\) −0.573643 1.57607i −0.0460761 0.126593i
\(156\) 0 0
\(157\) 12.0447 + 14.3543i 0.961268 + 1.14560i 0.989286 + 0.145988i \(0.0466360\pi\)
−0.0280180 + 0.999607i \(0.508920\pi\)
\(158\) 0 0
\(159\) −1.27088 0.795612i −0.100787 0.0630961i
\(160\) 0 0
\(161\) −5.48343 −0.432155
\(162\) 0 0
\(163\) 11.5772i 0.906795i −0.891308 0.453397i \(-0.850212\pi\)
0.891308 0.453397i \(-0.149788\pi\)
\(164\) 0 0
\(165\) −1.27130 + 2.03072i −0.0989706 + 0.158091i
\(166\) 0 0
\(167\) −7.59855 + 6.37594i −0.587994 + 0.493385i −0.887561 0.460690i \(-0.847602\pi\)
0.299568 + 0.954075i \(0.403158\pi\)
\(168\) 0 0
\(169\) −2.45017 + 0.891789i −0.188475 + 0.0685991i
\(170\) 0 0
\(171\) −0.00106141 + 0.0148222i −8.11679e−5 + 0.00113348i
\(172\) 0 0
\(173\) 12.8453 15.3084i 0.976609 1.16388i −0.00986338 0.999951i \(-0.503140\pi\)
0.986473 0.163926i \(-0.0524159\pi\)
\(174\) 0 0
\(175\) −2.38708 13.5378i −0.180446 1.02336i
\(176\) 0 0
\(177\) −9.53010 + 1.33123i −0.716326 + 0.100062i
\(178\) 0 0
\(179\) −18.6622 + 10.7746i −1.39488 + 0.805335i −0.993851 0.110730i \(-0.964681\pi\)
−0.401030 + 0.916065i \(0.631348\pi\)
\(180\) 0 0
\(181\) −17.9309 10.3524i −1.33280 0.769490i −0.347068 0.937840i \(-0.612823\pi\)
−0.985727 + 0.168350i \(0.946156\pi\)
\(182\) 0 0
\(183\) −12.0511 2.57208i −0.890840 0.190134i
\(184\) 0 0
\(185\) 2.57071 + 0.935664i 0.189003 + 0.0687914i
\(186\) 0 0
\(187\) −26.5696 4.68494i −1.94296 0.342596i
\(188\) 0 0
\(189\) 14.1053 3.47924i 1.02601 0.253078i
\(190\) 0 0
\(191\) 0.173666 0.984911i 0.0125661 0.0712657i −0.977880 0.209167i \(-0.932925\pi\)
0.990446 + 0.137902i \(0.0440358\pi\)
\(192\) 0 0
\(193\) 18.6207 + 6.77739i 1.34035 + 0.487847i 0.909923 0.414778i \(-0.136141\pi\)
0.430427 + 0.902625i \(0.358363\pi\)
\(194\) 0 0
\(195\) 1.53339 0.496809i 0.109808 0.0355772i
\(196\) 0 0
\(197\) −5.14676 2.97148i −0.366691 0.211709i 0.305321 0.952250i \(-0.401236\pi\)
−0.672012 + 0.740540i \(0.734570\pi\)
\(198\) 0 0
\(199\) 4.22572 + 7.31916i 0.299553 + 0.518842i 0.976034 0.217619i \(-0.0698290\pi\)
−0.676480 + 0.736461i \(0.736496\pi\)
\(200\) 0 0
\(201\) −0.148515 + 0.366702i −0.0104754 + 0.0258652i
\(202\) 0 0
\(203\) 22.0353 3.88542i 1.54658 0.272703i
\(204\) 0 0
\(205\) 1.81619 2.16445i 0.126848 0.151172i
\(206\) 0 0
\(207\) 0.605213 + 5.85245i 0.0420652 + 0.406773i
\(208\) 0 0
\(209\) 0.0223038 0.00811792i 0.00154279 0.000561528i
\(210\) 0 0
\(211\) 2.67743 + 3.19083i 0.184322 + 0.219666i 0.850291 0.526313i \(-0.176426\pi\)
−0.665969 + 0.745980i \(0.731982\pi\)
\(212\) 0 0
\(213\) 1.48834 + 0.0532216i 0.101980 + 0.00364668i
\(214\) 0 0
\(215\) 1.60549 0.109493
\(216\) 0 0
\(217\) 16.2446 1.10276
\(218\) 0 0
\(219\) −3.29083 6.20168i −0.222374 0.419070i
\(220\) 0 0
\(221\) 11.6673 + 13.9046i 0.784829 + 0.935323i
\(222\) 0 0
\(223\) −13.7266 + 4.99606i −0.919198 + 0.334561i −0.757919 0.652348i \(-0.773784\pi\)
−0.161279 + 0.986909i \(0.551562\pi\)
\(224\) 0 0
\(225\) −14.1854 + 4.04191i −0.945693 + 0.269461i
\(226\) 0 0
\(227\) 13.2187 15.7535i 0.877359 1.04560i −0.121237 0.992624i \(-0.538686\pi\)
0.998596 0.0529722i \(-0.0168695\pi\)
\(228\) 0 0
\(229\) 11.3156 1.99525i 0.747759 0.131850i 0.213232 0.977002i \(-0.431601\pi\)
0.534527 + 0.845151i \(0.320490\pi\)
\(230\) 0 0
\(231\) −14.2710 18.2976i −0.938962 1.20389i
\(232\) 0 0
\(233\) −2.16566 3.75103i −0.141877 0.245738i 0.786326 0.617811i \(-0.211980\pi\)
−0.928203 + 0.372073i \(0.878647\pi\)
\(234\) 0 0
\(235\) 0.928049 + 0.535809i 0.0605392 + 0.0349523i
\(236\) 0 0
\(237\) 5.90647 + 5.32717i 0.383666 + 0.346037i
\(238\) 0 0
\(239\) 13.2703 + 4.82998i 0.858382 + 0.312426i 0.733453 0.679740i \(-0.237907\pi\)
0.124929 + 0.992166i \(0.460130\pi\)
\(240\) 0 0
\(241\) 2.60609 14.7799i 0.167873 0.952056i −0.778179 0.628042i \(-0.783856\pi\)
0.946052 0.324014i \(-0.105032\pi\)
\(242\) 0 0
\(243\) −5.27021 14.6705i −0.338084 0.941116i
\(244\) 0 0
\(245\) −0.232321 0.0409644i −0.0148424 0.00261712i
\(246\) 0 0
\(247\) −0.0150055 0.00546154i −0.000954774 0.000347509i
\(248\) 0 0
\(249\) −4.71471 + 5.22741i −0.298783 + 0.331274i
\(250\) 0 0
\(251\) −26.0768 15.0554i −1.64595 0.950290i −0.978658 0.205495i \(-0.934120\pi\)
−0.667293 0.744795i \(-0.732547\pi\)
\(252\) 0 0
\(253\) 8.13857 4.69881i 0.511668 0.295412i
\(254\) 0 0
\(255\) 1.73135 + 2.21985i 0.108421 + 0.139012i
\(256\) 0 0
\(257\) −0.685637 3.88844i −0.0427688 0.242554i 0.955927 0.293603i \(-0.0948545\pi\)
−0.998696 + 0.0510494i \(0.983743\pi\)
\(258\) 0 0
\(259\) −17.0316 + 20.2975i −1.05829 + 1.26123i
\(260\) 0 0
\(261\) −6.57897 23.0894i −0.407228 1.42920i
\(262\) 0 0
\(263\) −12.3951 + 4.51144i −0.764313 + 0.278187i −0.694616 0.719381i \(-0.744425\pi\)
−0.0696970 + 0.997568i \(0.522203\pi\)
\(264\) 0 0
\(265\) 0.191430 0.160629i 0.0117594 0.00986733i
\(266\) 0 0
\(267\) −2.88844 5.44336i −0.176770 0.333128i
\(268\) 0 0
\(269\) 7.68651i 0.468655i 0.972158 + 0.234327i \(0.0752887\pi\)
−0.972158 + 0.234327i \(0.924711\pi\)
\(270\) 0 0
\(271\) −21.3410 −1.29637 −0.648187 0.761481i \(-0.724472\pi\)
−0.648187 + 0.761481i \(0.724472\pi\)
\(272\) 0 0
\(273\) −0.557898 + 15.6017i −0.0337655 + 0.944255i
\(274\) 0 0
\(275\) 15.1436 + 18.0475i 0.913195 + 1.08830i
\(276\) 0 0
\(277\) −7.73418 21.2495i −0.464702 1.27676i −0.921912 0.387400i \(-0.873373\pi\)
0.457210 0.889359i \(-0.348849\pi\)
\(278\) 0 0
\(279\) −1.79294 17.3379i −0.107341 1.03799i
\(280\) 0 0
\(281\) −24.7061 20.7308i −1.47384 1.23670i −0.912477 0.409129i \(-0.865833\pi\)
−0.561363 0.827570i \(-0.689723\pi\)
\(282\) 0 0
\(283\) 20.0970 3.54364i 1.19464 0.210648i 0.459261 0.888301i \(-0.348114\pi\)
0.735381 + 0.677653i \(0.237003\pi\)
\(284\) 0 0
\(285\) −0.00229555 0.000929698i −0.000135977 5.50705e-5i
\(286\) 0 0
\(287\) 13.6831 + 23.6998i 0.807687 + 1.39896i
\(288\) 0 0
\(289\) −7.35090 + 12.7321i −0.432406 + 0.748949i
\(290\) 0 0
\(291\) −13.0080 + 4.21453i −0.762545 + 0.247060i
\(292\) 0 0
\(293\) −1.43710 + 3.94839i −0.0839561 + 0.230667i −0.974566 0.224101i \(-0.928056\pi\)
0.890610 + 0.454768i \(0.150278\pi\)
\(294\) 0 0
\(295\) 0.278490 1.57939i 0.0162143 0.0919558i
\(296\) 0 0
\(297\) −17.9539 + 17.2509i −1.04179 + 1.00100i
\(298\) 0 0
\(299\) −6.22644 1.09789i −0.360084 0.0634926i
\(300\) 0 0
\(301\) −5.31837 + 14.6121i −0.306546 + 0.842228i
\(302\) 0 0
\(303\) 31.4621 + 6.71500i 1.80745 + 0.385767i
\(304\) 0 0
\(305\) 1.02686 1.77858i 0.0587981 0.101841i
\(306\) 0 0
\(307\) 16.4700 9.50896i 0.939993 0.542705i 0.0500346 0.998747i \(-0.484067\pi\)
0.889958 + 0.456043i \(0.150734\pi\)
\(308\) 0 0
\(309\) 1.08635 + 7.77702i 0.0618003 + 0.442419i
\(310\) 0 0
\(311\) −3.01498 17.0988i −0.170964 0.969585i −0.942700 0.333642i \(-0.891722\pi\)
0.771736 0.635943i \(-0.219389\pi\)
\(312\) 0 0
\(313\) 0.579959 + 0.486644i 0.0327812 + 0.0275067i 0.659031 0.752116i \(-0.270967\pi\)
−0.626250 + 0.779622i \(0.715411\pi\)
\(314\) 0 0
\(315\) −0.172947 + 2.41514i −0.00974443 + 0.136078i
\(316\) 0 0
\(317\) −6.72476 18.4761i −0.377700 1.03772i −0.972307 0.233706i \(-0.924915\pi\)
0.594607 0.804016i \(-0.297308\pi\)
\(318\) 0 0
\(319\) −29.3756 + 24.6491i −1.64472 + 1.38008i
\(320\) 0 0
\(321\) 5.50395 + 3.44566i 0.307201 + 0.192318i
\(322\) 0 0
\(323\) 0.0278897i 0.00155182i
\(324\) 0 0
\(325\) 15.8501i 0.879207i
\(326\) 0 0
\(327\) 24.7332 + 15.4838i 1.36775 + 0.856256i
\(328\) 0 0
\(329\) −7.95087 + 6.67157i −0.438345 + 0.367815i
\(330\) 0 0
\(331\) 8.42157 + 23.1381i 0.462891 + 1.27178i 0.923301 + 0.384077i \(0.125480\pi\)
−0.460409 + 0.887707i \(0.652297\pi\)
\(332\) 0 0
\(333\) 23.5433 + 15.9376i 1.29016 + 0.873373i
\(334\) 0 0
\(335\) −0.0505119 0.0423845i −0.00275976 0.00231571i
\(336\) 0 0
\(337\) −1.71929 9.75056i −0.0936555 0.531147i −0.995151 0.0983585i \(-0.968641\pi\)
0.901496 0.432788i \(-0.142470\pi\)
\(338\) 0 0
\(339\) 1.46193 + 10.4657i 0.0794012 + 0.568421i
\(340\) 0 0
\(341\) −24.1105 + 13.9202i −1.30566 + 0.753822i
\(342\) 0 0
\(343\) −8.64332 + 14.9707i −0.466695 + 0.808340i
\(344\) 0 0
\(345\) −0.959002 0.204681i −0.0516309 0.0110197i
\(346\) 0 0
\(347\) −7.12971 + 19.5887i −0.382743 + 1.05158i 0.587453 + 0.809258i \(0.300131\pi\)
−0.970196 + 0.242320i \(0.922092\pi\)
\(348\) 0 0
\(349\) −14.8725 2.62242i −0.796107 0.140375i −0.239222 0.970965i \(-0.576892\pi\)
−0.556885 + 0.830590i \(0.688004\pi\)
\(350\) 0 0
\(351\) 16.7132 1.12653i 0.892084 0.0601297i
\(352\) 0 0
\(353\) −0.616217 + 3.49474i −0.0327979 + 0.186006i −0.996805 0.0798689i \(-0.974550\pi\)
0.964007 + 0.265875i \(0.0856609\pi\)
\(354\) 0 0
\(355\) −0.0848941 + 0.233245i −0.00450571 + 0.0123793i
\(356\) 0 0
\(357\) −25.9390 + 8.40408i −1.37284 + 0.444791i
\(358\) 0 0
\(359\) 11.0808 19.1925i 0.584823 1.01294i −0.410074 0.912052i \(-0.634497\pi\)
0.994897 0.100891i \(-0.0321694\pi\)
\(360\) 0 0
\(361\) −9.49999 16.4545i −0.499999 0.866024i
\(362\) 0 0
\(363\) 19.2013 + 7.77655i 1.00781 + 0.408163i
\(364\) 0 0
\(365\) 1.15233 0.203187i 0.0603158 0.0106353i
\(366\) 0 0
\(367\) −13.2887 11.1505i −0.693664 0.582053i 0.226299 0.974058i \(-0.427337\pi\)
−0.919963 + 0.392005i \(0.871782\pi\)
\(368\) 0 0
\(369\) 23.7845 17.2197i 1.23817 0.896422i
\(370\) 0 0
\(371\) 0.827803 + 2.27437i 0.0429774 + 0.118079i
\(372\) 0 0
\(373\) 10.6639 + 12.7087i 0.552156 + 0.658034i 0.967867 0.251463i \(-0.0809116\pi\)
−0.415711 + 0.909497i \(0.636467\pi\)
\(374\) 0 0
\(375\) 0.177190 4.95512i 0.00915004 0.255881i
\(376\) 0 0
\(377\) 25.7991 1.32872
\(378\) 0 0
\(379\) 9.64915i 0.495644i 0.968806 + 0.247822i \(0.0797148\pi\)
−0.968806 + 0.247822i \(0.920285\pi\)
\(380\) 0 0
\(381\) 17.2122 + 32.4370i 0.881809 + 1.66180i
\(382\) 0 0
\(383\) 9.22574 7.74132i 0.471414 0.395563i −0.375896 0.926662i \(-0.622665\pi\)
0.847310 + 0.531099i \(0.178221\pi\)
\(384\) 0 0
\(385\) 3.63420 1.32274i 0.185216 0.0674130i
\(386\) 0 0
\(387\) 16.1825 + 4.06353i 0.822601 + 0.206561i
\(388\) 0 0
\(389\) −1.86623 + 2.22408i −0.0946216 + 0.112766i −0.811277 0.584661i \(-0.801227\pi\)
0.716656 + 0.697427i \(0.245672\pi\)
\(390\) 0 0
\(391\) −1.91751 10.8748i −0.0969729 0.549960i
\(392\) 0 0
\(393\) 11.2931 + 14.4795i 0.569661 + 0.730392i
\(394\) 0 0
\(395\) −1.14804 + 0.662821i −0.0577642 + 0.0333502i
\(396\) 0 0
\(397\) 3.53148 + 2.03890i 0.177240 + 0.102330i 0.585995 0.810314i \(-0.300704\pi\)
−0.408755 + 0.912644i \(0.634037\pi\)
\(398\) 0 0
\(399\) 0.0160658 0.0178129i 0.000804296 0.000891759i
\(400\) 0 0
\(401\) 2.09322 + 0.761870i 0.104530 + 0.0380460i 0.393756 0.919215i \(-0.371176\pi\)
−0.289226 + 0.957261i \(0.593398\pi\)
\(402\) 0 0
\(403\) 18.4458 + 3.25249i 0.918851 + 0.162018i
\(404\) 0 0
\(405\) 2.59676 0.0819761i 0.129034 0.00407343i
\(406\) 0 0
\(407\) 7.88541 44.7204i 0.390865 2.21671i
\(408\) 0 0
\(409\) 17.7345 + 6.45483i 0.876914 + 0.319171i 0.740964 0.671545i \(-0.234369\pi\)
0.135950 + 0.990716i \(0.456591\pi\)
\(410\) 0 0
\(411\) −18.2684 16.4767i −0.901114 0.812733i
\(412\) 0 0
\(413\) 13.4521 + 7.76657i 0.661934 + 0.382168i
\(414\) 0 0
\(415\) −0.586618 1.01605i −0.0287959 0.0498760i
\(416\) 0 0
\(417\) 10.3878 + 13.3187i 0.508692 + 0.652221i
\(418\) 0 0
\(419\) −13.5715 + 2.39303i −0.663013 + 0.116907i −0.495021 0.868881i \(-0.664839\pi\)
−0.167992 + 0.985788i \(0.553728\pi\)
\(420\) 0 0
\(421\) −23.8985 + 28.4811i −1.16474 + 1.38809i −0.258135 + 0.966109i \(0.583108\pi\)
−0.906607 + 0.421977i \(0.861336\pi\)
\(422\) 0 0
\(423\) 7.99810 + 7.74959i 0.388881 + 0.376798i
\(424\) 0 0
\(425\) 26.0135 9.46814i 1.26184 0.459272i
\(426\) 0 0
\(427\) 12.7859 + 15.2376i 0.618753 + 0.737401i
\(428\) 0 0
\(429\) −12.5412 23.6342i −0.605494 1.14107i
\(430\) 0 0
\(431\) −11.4089 −0.549548 −0.274774 0.961509i \(-0.588603\pi\)
−0.274774 + 0.961509i \(0.588603\pi\)
\(432\) 0 0
\(433\) −7.51420 −0.361109 −0.180555 0.983565i \(-0.557789\pi\)
−0.180555 + 0.983565i \(0.557789\pi\)
\(434\) 0 0
\(435\) 3.99881 + 0.142993i 0.191728 + 0.00685599i
\(436\) 0 0
\(437\) 0.00624447 + 0.00744187i 0.000298713 + 0.000355993i
\(438\) 0 0
\(439\) 19.2063 6.99052i 0.916667 0.333639i 0.159755 0.987157i \(-0.448930\pi\)
0.756912 + 0.653517i \(0.226707\pi\)
\(440\) 0 0
\(441\) −2.23799 1.00091i −0.106571 0.0476624i
\(442\) 0 0
\(443\) 18.1395 21.6178i 0.861832 1.02709i −0.137498 0.990502i \(-0.543906\pi\)
0.999330 0.0365893i \(-0.0116493\pi\)
\(444\) 0 0
\(445\) 1.01143 0.178342i 0.0479463 0.00845423i
\(446\) 0 0
\(447\) −0.752460 + 1.85793i −0.0355901 + 0.0878768i
\(448\) 0 0
\(449\) −5.65025 9.78653i −0.266652 0.461855i 0.701343 0.712824i \(-0.252584\pi\)
−0.967995 + 0.250969i \(0.919251\pi\)
\(450\) 0 0
\(451\) −40.6172 23.4504i −1.91259 1.10423i
\(452\) 0 0
\(453\) −34.4095 + 11.1485i −1.61670 + 0.523802i
\(454\) 0 0
\(455\) −2.44500 0.889907i −0.114623 0.0417195i
\(456\) 0 0
\(457\) −6.59891 + 37.4243i −0.308684 + 1.75063i 0.296952 + 0.954892i \(0.404030\pi\)
−0.605636 + 0.795742i \(0.707081\pi\)
\(458\) 0 0
\(459\) 11.8326 + 26.7570i 0.552297 + 1.24891i
\(460\) 0 0
\(461\) −7.55207 1.33163i −0.351735 0.0620204i −0.00501063 0.999987i \(-0.501595\pi\)
−0.346724 + 0.937967i \(0.612706\pi\)
\(462\) 0 0
\(463\) 20.5953 + 7.49607i 0.957144 + 0.348372i 0.772914 0.634511i \(-0.218798\pi\)
0.184231 + 0.982883i \(0.441021\pi\)
\(464\) 0 0
\(465\) 2.84104 + 0.606368i 0.131750 + 0.0281196i
\(466\) 0 0
\(467\) −2.10941 1.21787i −0.0976119 0.0563563i 0.450399 0.892827i \(-0.351282\pi\)
−0.548011 + 0.836471i \(0.684615\pi\)
\(468\) 0 0
\(469\) 0.553083 0.319323i 0.0255390 0.0147450i
\(470\) 0 0
\(471\) −32.1434 + 4.49002i −1.48109 + 0.206889i
\(472\) 0 0
\(473\) −4.62768 26.2449i −0.212781 1.20674i
\(474\) 0 0
\(475\) −0.0156545 + 0.0186563i −0.000718279 + 0.000856012i
\(476\) 0 0
\(477\) 2.33607 1.13454i 0.106961 0.0519469i
\(478\) 0 0
\(479\) −13.6689 + 4.97509i −0.624550 + 0.227318i −0.634857 0.772629i \(-0.718941\pi\)
0.0103076 + 0.999947i \(0.496719\pi\)
\(480\) 0 0
\(481\) −23.4034 + 19.6378i −1.06710 + 0.895405i
\(482\) 0 0
\(483\) 5.03969 8.05018i 0.229314 0.366296i
\(484\) 0 0
\(485\) 2.27894i 0.103481i
\(486\) 0 0
\(487\) −2.54679 −0.115406 −0.0577031 0.998334i \(-0.518378\pi\)
−0.0577031 + 0.998334i \(0.518378\pi\)
\(488\) 0 0
\(489\) 16.9964 + 10.6403i 0.768603 + 0.481172i
\(490\) 0 0
\(491\) 11.6939 + 13.9362i 0.527738 + 0.628933i 0.962392 0.271664i \(-0.0875739\pi\)
−0.434654 + 0.900597i \(0.643129\pi\)
\(492\) 0 0
\(493\) 15.4112 + 42.3419i 0.694085 + 1.90698i
\(494\) 0 0
\(495\) −1.81287 3.73278i −0.0814823 0.167776i
\(496\) 0 0
\(497\) −1.84162 1.54530i −0.0826080 0.0693163i
\(498\) 0 0
\(499\) −2.03309 + 0.358488i −0.0910134 + 0.0160481i −0.218969 0.975732i \(-0.570269\pi\)
0.127956 + 0.991780i \(0.459158\pi\)
\(500\) 0 0
\(501\) −2.37683 17.0154i −0.106189 0.760190i
\(502\) 0 0
\(503\) −15.5785 26.9828i −0.694613 1.20310i −0.970311 0.241860i \(-0.922242\pi\)
0.275699 0.961244i \(-0.411091\pi\)
\(504\) 0 0
\(505\) −2.68087 + 4.64340i −0.119297 + 0.206628i
\(506\) 0 0
\(507\) 0.942664 4.41670i 0.0418652 0.196153i
\(508\) 0 0
\(509\) −0.653669 + 1.79594i −0.0289734 + 0.0796037i −0.953336 0.301911i \(-0.902375\pi\)
0.924363 + 0.381515i \(0.124598\pi\)
\(510\) 0 0
\(511\) −1.96796 + 11.1609i −0.0870574 + 0.493727i
\(512\) 0 0
\(513\) −0.0207848 0.0151810i −0.000917673 0.000670256i
\(514\) 0 0
\(515\) −1.28886 0.227261i −0.0567939 0.0100143i
\(516\) 0 0
\(517\) 6.08384 16.7152i 0.267567 0.735134i
\(518\) 0 0
\(519\) 10.6684 + 32.9277i 0.468290 + 1.44537i
\(520\) 0 0
\(521\) 4.36155 7.55442i 0.191083 0.330965i −0.754527 0.656269i \(-0.772133\pi\)
0.945609 + 0.325304i \(0.105467\pi\)
\(522\) 0 0
\(523\) −17.9490 + 10.3629i −0.784855 + 0.453136i −0.838148 0.545443i \(-0.816362\pi\)
0.0532932 + 0.998579i \(0.483028\pi\)
\(524\) 0 0
\(525\) 22.0687 + 8.93782i 0.963156 + 0.390078i
\(526\) 0 0
\(527\) 5.68063 + 32.2165i 0.247452 + 1.40337i
\(528\) 0 0
\(529\) −14.6725 12.3117i −0.637936 0.535292i
\(530\) 0 0
\(531\) 6.80452 15.2146i 0.295291 0.660257i
\(532\) 0 0
\(533\) 10.7920 + 29.6508i 0.467453 + 1.28432i
\(534\) 0 0
\(535\) −0.829049 + 0.695655i −0.0358429 + 0.0300758i
\(536\) 0 0
\(537\) 1.33383 37.3006i 0.0575590 1.60964i
\(538\) 0 0
\(539\) 3.91581i 0.168666i
\(540\) 0 0
\(541\) 3.63212i 0.156157i 0.996947 + 0.0780785i \(0.0248785\pi\)
−0.996947 + 0.0780785i \(0.975122\pi\)
\(542\) 0 0
\(543\) 31.6782 16.8096i 1.35944 0.721369i
\(544\) 0 0
\(545\) −3.72551 + 3.12607i −0.159583 + 0.133906i
\(546\) 0 0
\(547\) 3.43081 + 9.42608i 0.146691 + 0.403030i 0.991177 0.132548i \(-0.0423159\pi\)
−0.844486 + 0.535578i \(0.820094\pi\)
\(548\) 0 0
\(549\) 14.8519 15.3282i 0.633864 0.654190i
\(550\) 0 0
\(551\) −0.0303667 0.0254807i −0.00129367 0.00108551i
\(552\) 0 0
\(553\) −2.22955 12.6444i −0.0948101 0.537695i
\(554\) 0 0
\(555\) −3.73633 + 2.91410i −0.158598 + 0.123697i
\(556\) 0 0
\(557\) 9.46379 5.46392i 0.400994 0.231514i −0.285919 0.958254i \(-0.592299\pi\)
0.686913 + 0.726740i \(0.258966\pi\)
\(558\) 0 0
\(559\) −8.96465 + 15.5272i −0.379164 + 0.656732i
\(560\) 0 0
\(561\) 31.2974 34.7008i 1.32138 1.46507i
\(562\) 0 0
\(563\) −9.70697 + 26.6697i −0.409100 + 1.12399i 0.548565 + 0.836108i \(0.315174\pi\)
−0.957665 + 0.287885i \(0.907048\pi\)
\(564\) 0 0
\(565\) −1.73445 0.305831i −0.0729690 0.0128664i
\(566\) 0 0
\(567\) −7.85599 + 23.9056i −0.329921 + 1.00394i
\(568\) 0 0
\(569\) −2.42865 + 13.7735i −0.101814 + 0.577417i 0.890631 + 0.454727i \(0.150263\pi\)
−0.992445 + 0.122690i \(0.960848\pi\)
\(570\) 0 0
\(571\) 5.30577 14.5775i 0.222040 0.610049i −0.777790 0.628525i \(-0.783659\pi\)
0.999829 + 0.0184759i \(0.00588139\pi\)
\(572\) 0 0
\(573\) 1.28633 + 1.16017i 0.0537372 + 0.0484667i
\(574\) 0 0
\(575\) −4.82133 + 8.35080i −0.201064 + 0.348252i
\(576\) 0 0
\(577\) −0.198083 0.343090i −0.00824632 0.0142830i 0.861873 0.507125i \(-0.169292\pi\)
−0.870119 + 0.492841i \(0.835958\pi\)
\(578\) 0 0
\(579\) −27.0637 + 21.1080i −1.12473 + 0.877220i
\(580\) 0 0
\(581\) 11.1907 1.97322i 0.464268 0.0818630i
\(582\) 0 0
\(583\) −3.17757 2.66630i −0.131602 0.110427i
\(584\) 0 0
\(585\) −0.679938 + 2.70776i −0.0281120 + 0.111952i
\(586\) 0 0
\(587\) 4.01994 + 11.0447i 0.165921 + 0.455864i 0.994590 0.103874i \(-0.0331240\pi\)
−0.828670 + 0.559738i \(0.810902\pi\)
\(588\) 0 0
\(589\) −0.0184992 0.0220465i −0.000762247 0.000908411i
\(590\) 0 0
\(591\) 9.09268 4.82490i 0.374023 0.198470i
\(592\) 0 0
\(593\) −14.1087 −0.579377 −0.289688 0.957121i \(-0.593552\pi\)
−0.289688 + 0.957121i \(0.593552\pi\)
\(594\) 0 0
\(595\) 4.54436i 0.186301i
\(596\) 0 0
\(597\) −14.6290 0.523116i −0.598724 0.0214097i
\(598\) 0 0
\(599\) 28.5436 23.9509i 1.16626 0.978607i 0.166286 0.986077i \(-0.446822\pi\)
0.999972 + 0.00747033i \(0.00237790\pi\)
\(600\) 0 0
\(601\) −11.4635 + 4.17236i −0.467605 + 0.170194i −0.565067 0.825045i \(-0.691150\pi\)
0.0974622 + 0.995239i \(0.468927\pi\)
\(602\) 0 0
\(603\) −0.401857 0.555061i −0.0163649 0.0226038i
\(604\) 0 0
\(605\) −2.21934 + 2.64491i −0.0902292 + 0.107531i
\(606\) 0 0
\(607\) −7.57443 42.9567i −0.307436 1.74356i −0.611809 0.791006i \(-0.709558\pi\)
0.304372 0.952553i \(-0.401553\pi\)
\(608\) 0 0
\(609\) −14.5480 + 35.9209i −0.589514 + 1.45559i
\(610\) 0 0
\(611\) −10.3640 + 5.98365i −0.419282 + 0.242073i
\(612\) 0 0
\(613\) 24.6408 + 14.2264i 0.995233 + 0.574598i 0.906834 0.421487i \(-0.138492\pi\)
0.0883987 + 0.996085i \(0.471825\pi\)
\(614\) 0 0
\(615\) 1.50840 + 4.65563i 0.0608245 + 0.187733i
\(616\) 0 0
\(617\) −6.84389 2.49097i −0.275525 0.100283i 0.200562 0.979681i \(-0.435723\pi\)
−0.476087 + 0.879398i \(0.657945\pi\)
\(618\) 0 0
\(619\) 4.70638 + 0.829861i 0.189165 + 0.0333549i 0.267428 0.963578i \(-0.413826\pi\)
−0.0782628 + 0.996933i \(0.524937\pi\)
\(620\) 0 0
\(621\) −9.14818 4.49034i −0.367104 0.180191i
\(622\) 0 0
\(623\) −1.72733 + 9.79616i −0.0692039 + 0.392475i
\(624\) 0 0
\(625\) −22.3242 8.12536i −0.892970 0.325014i
\(626\) 0 0
\(627\) −0.00858103 + 0.0402050i −0.000342693 + 0.00160563i
\(628\) 0 0
\(629\) −46.2099 26.6793i −1.84251 1.06377i
\(630\) 0 0
\(631\) 10.2228 + 17.7064i 0.406964 + 0.704882i 0.994548 0.104281i \(-0.0332543\pi\)
−0.587584 + 0.809163i \(0.699921\pi\)
\(632\) 0 0
\(633\) −7.14521 + 0.998094i −0.283996 + 0.0396707i
\(634\) 0 0
\(635\) −6.02710 + 1.06274i −0.239178 + 0.0421736i
\(636\) 0 0
\(637\) 1.69340 2.01812i 0.0670950 0.0799607i
\(638\) 0 0
\(639\) −1.44604 + 2.13611i −0.0572043 + 0.0845034i
\(640\) 0 0
\(641\) 17.9357 6.52806i 0.708417 0.257843i 0.0374167 0.999300i \(-0.488087\pi\)
0.671000 + 0.741457i \(0.265865\pi\)
\(642\) 0 0
\(643\) 11.9937 + 14.2935i 0.472984 + 0.563680i 0.948805 0.315862i \(-0.102294\pi\)
−0.475821 + 0.879542i \(0.657849\pi\)
\(644\) 0 0
\(645\) −1.47556 + 2.35700i −0.0581003 + 0.0928070i
\(646\) 0 0
\(647\) −1.28685 −0.0505911 −0.0252955 0.999680i \(-0.508053\pi\)
−0.0252955 + 0.999680i \(0.508053\pi\)
\(648\) 0 0
\(649\) −26.6210 −1.04497
\(650\) 0 0
\(651\) −14.9301 + 23.8487i −0.585156 + 0.934703i
\(652\) 0 0
\(653\) 4.80662 + 5.72830i 0.188097 + 0.224166i 0.851849 0.523787i \(-0.175481\pi\)
−0.663752 + 0.747953i \(0.731037\pi\)
\(654\) 0 0
\(655\) −2.87585 + 1.04672i −0.112369 + 0.0408989i
\(656\) 0 0
\(657\) 12.1292 + 0.868563i 0.473204 + 0.0338859i
\(658\) 0 0
\(659\) 15.2256 18.1451i 0.593104 0.706834i −0.383095 0.923709i \(-0.625142\pi\)
0.976199 + 0.216875i \(0.0695864\pi\)
\(660\) 0 0
\(661\) 4.78633 0.843960i 0.186167 0.0328262i −0.0797873 0.996812i \(-0.525424\pi\)
0.265954 + 0.963986i \(0.414313\pi\)
\(662\) 0 0
\(663\) −31.1364 + 4.34936i −1.20924 + 0.168915i
\(664\) 0 0
\(665\) 0.00199895 + 0.00346229i 7.75161e−5 + 0.000134262i
\(666\) 0 0
\(667\) −13.5925 7.84763i −0.526303 0.303861i
\(668\) 0 0
\(669\) 5.28107 24.7436i 0.204178 0.956644i
\(670\) 0 0
\(671\) −32.0343 11.6595i −1.23667 0.450111i
\(672\) 0 0
\(673\) −6.24184 + 35.3992i −0.240605 + 1.36454i 0.589876 + 0.807494i \(0.299176\pi\)
−0.830482 + 0.557046i \(0.811935\pi\)
\(674\) 0 0
\(675\) 7.10357 24.5403i 0.273416 0.944557i
\(676\) 0 0
\(677\) 17.6982 + 3.12068i 0.680199 + 0.119937i 0.503064 0.864249i \(-0.332206\pi\)
0.177135 + 0.984187i \(0.443317\pi\)
\(678\) 0 0
\(679\) 20.7414 + 7.54926i 0.795983 + 0.289714i
\(680\) 0 0
\(681\) 10.9786 + 33.8850i 0.420699 + 1.29848i
\(682\) 0 0
\(683\) 5.01354 + 2.89457i 0.191838 + 0.110758i 0.592843 0.805318i \(-0.298006\pi\)
−0.401005 + 0.916076i \(0.631339\pi\)
\(684\) 0 0
\(685\) 3.55083 2.05007i 0.135670 0.0783293i
\(686\) 0 0
\(687\) −7.47072 + 18.4462i −0.285026 + 0.703767i
\(688\) 0 0
\(689\) 0.484598 + 2.74829i 0.0184617 + 0.104702i
\(690\) 0 0
\(691\) 8.42802 10.0441i 0.320617 0.382097i −0.581530 0.813525i \(-0.697546\pi\)
0.902147 + 0.431428i \(0.141990\pi\)
\(692\) 0 0
\(693\) 39.9787 4.13427i 1.51866 0.157048i
\(694\) 0 0
\(695\) −2.64531 + 0.962815i −0.100342 + 0.0365217i
\(696\) 0 0
\(697\) −42.2167 + 35.4240i −1.59907 + 1.34178i
\(698\) 0 0
\(699\) 7.49727 + 0.268094i 0.283573 + 0.0101403i
\(700\) 0 0
\(701\) 3.89204i 0.147000i −0.997295 0.0735002i \(-0.976583\pi\)
0.997295 0.0735002i \(-0.0234170\pi\)
\(702\) 0 0
\(703\) 0.0469423 0.00177046
\(704\) 0 0
\(705\) −1.63957 + 0.870013i −0.0617496 + 0.0327666i
\(706\) 0 0
\(707\) −33.3805 39.7814i −1.25540 1.49613i
\(708\) 0 0
\(709\) −10.4928 28.8286i −0.394064 1.08268i −0.965128 0.261777i \(-0.915692\pi\)
0.571065 0.820905i \(-0.306531\pi\)
\(710\) 0 0
\(711\) −13.2493 + 3.77517i −0.496886 + 0.141580i
\(712\) 0 0
\(713\) −8.72901 7.32451i −0.326904 0.274305i
\(714\) 0 0
\(715\) 4.39147 0.774335i 0.164232 0.0289585i
\(716\) 0 0
\(717\) −19.2873 + 15.0429i −0.720296 + 0.561786i
\(718\) 0 0
\(719\) −10.3301 17.8922i −0.385246 0.667266i 0.606557 0.795040i \(-0.292550\pi\)
−0.991803 + 0.127774i \(0.959217\pi\)
\(720\) 0 0
\(721\) 6.33789 10.9775i 0.236035 0.408825i
\(722\) 0 0
\(723\) 19.3031 + 17.4098i 0.717889 + 0.647479i
\(724\) 0 0
\(725\) 13.4575 36.9742i 0.499799 1.37319i
\(726\) 0 0
\(727\) −5.27477 + 29.9147i −0.195630 + 1.10947i 0.715888 + 0.698215i \(0.246022\pi\)
−0.911518 + 0.411259i \(0.865089\pi\)
\(728\) 0 0
\(729\) 26.3815 + 5.74619i 0.977091 + 0.212822i
\(730\) 0 0
\(731\) −30.8386 5.43768i −1.14061 0.201120i
\(732\) 0 0
\(733\) 12.3847 34.0267i 0.457439 1.25680i −0.469946 0.882695i \(-0.655727\pi\)
0.927385 0.374108i \(-0.122051\pi\)
\(734\) 0 0
\(735\) 0.273660 0.303419i 0.0100941 0.0111918i
\(736\) 0 0
\(737\) −0.547262 + 0.947886i −0.0201587 + 0.0349158i
\(738\) 0 0
\(739\) −4.81815 + 2.78176i −0.177239 + 0.102329i −0.585995 0.810315i \(-0.699296\pi\)
0.408756 + 0.912644i \(0.365963\pi\)
\(740\) 0 0
\(741\) 0.0218092 0.0170098i 0.000801181 0.000624872i
\(742\) 0 0
\(743\) −6.80955 38.6189i −0.249818 1.41679i −0.809032 0.587765i \(-0.800008\pi\)
0.559214 0.829024i \(-0.311103\pi\)
\(744\) 0 0
\(745\) −0.255922 0.214744i −0.00937627 0.00786762i
\(746\) 0 0
\(747\) −3.34115 11.7260i −0.122246 0.429033i
\(748\) 0 0
\(749\) −3.58507 9.84991i −0.130996 0.359908i
\(750\) 0 0
\(751\) −20.3773 + 17.0986i −0.743579 + 0.623937i −0.933796 0.357805i \(-0.883525\pi\)
0.190217 + 0.981742i \(0.439081\pi\)
\(752\) 0 0
\(753\) 46.0693 24.4460i 1.67886 0.890863i
\(754\) 0 0
\(755\) 6.02836i 0.219394i
\(756\) 0 0
\(757\) 9.99796i 0.363382i 0.983356 + 0.181691i \(0.0581571\pi\)
−0.983356 + 0.181691i \(0.941843\pi\)
\(758\) 0 0
\(759\) −0.581682 + 16.2668i −0.0211137 + 0.590446i
\(760\) 0 0
\(761\) 36.4687 30.6009i 1.32199 1.10928i 0.336112 0.941822i \(-0.390888\pi\)
0.985879 0.167460i \(-0.0535564\pi\)
\(762\) 0 0
\(763\) −16.1103 44.2627i −0.583232 1.60242i
\(764\) 0 0
\(765\) −4.85019 + 0.501567i −0.175359 + 0.0181342i
\(766\) 0 0
\(767\) 13.7198 + 11.5123i 0.495395 + 0.415685i
\(768\) 0 0
\(769\) −7.87549 44.6641i −0.283998 1.61063i −0.708844 0.705365i \(-0.750783\pi\)
0.424847 0.905265i \(-0.360328\pi\)
\(770\) 0 0
\(771\) 6.33874 + 2.56719i 0.228284 + 0.0924552i
\(772\) 0 0
\(773\) −7.37741 + 4.25935i −0.265347 + 0.153198i −0.626771 0.779203i \(-0.715624\pi\)
0.361424 + 0.932401i \(0.382291\pi\)
\(774\) 0 0
\(775\) 14.2832 24.7392i 0.513068 0.888659i
\(776\) 0 0
\(777\) −14.1453 43.6590i −0.507458 1.56626i
\(778\) 0 0
\(779\) 0.0165822 0.0455592i 0.000594118 0.00163233i
\(780\) 0 0
\(781\) 4.05754 + 0.715454i 0.145190 + 0.0256010i
\(782\) 0 0
\(783\) 39.9440 + 11.5624i 1.42748 + 0.413206i
\(784\) 0 0
\(785\) 0.939296 5.32701i 0.0335249 0.190129i
\(786\) 0 0
\(787\) −6.01089 + 16.5148i −0.214265 + 0.588688i −0.999536 0.0304642i \(-0.990301\pi\)
0.785271 + 0.619152i \(0.212524\pi\)
\(788\) 0 0
\(789\) 4.76880 22.3435i 0.169774 0.795449i
\(790\) 0 0
\(791\) 8.52906 14.7728i 0.303259 0.525259i
\(792\) 0 0
\(793\) 11.4675 + 19.8623i 0.407224 + 0.705332i
\(794\) 0 0
\(795\) 0.0598793 + 0.428666i 0.00212370 + 0.0152032i
\(796\) 0 0
\(797\) −14.0527 + 2.47787i −0.497773 + 0.0877708i −0.416898 0.908953i \(-0.636883\pi\)
−0.0808752 + 0.996724i \(0.525772\pi\)
\(798\) 0 0
\(799\) −16.0115 13.4352i −0.566444 0.475303i
\(800\) 0 0
\(801\) 10.6461 + 0.762359i 0.376160 + 0.0269366i
\(802\) 0 0
\(803\) −6.64299 18.2515i −0.234426 0.644080i
\(804\) 0 0
\(805\) 1.01748 + 1.21258i 0.0358614 + 0.0427379i
\(806\) 0 0
\(807\) −11.2845 7.06449i −0.397234 0.248682i
\(808\) 0 0
\(809\) −41.9742 −1.47573 −0.737867 0.674946i \(-0.764167\pi\)
−0.737867 + 0.674946i \(0.764167\pi\)
\(810\) 0 0
\(811\) 34.8911i 1.22519i −0.790397 0.612595i \(-0.790125\pi\)
0.790397 0.612595i \(-0.209875\pi\)
\(812\) 0 0
\(813\) 19.6140 31.3306i 0.687893 1.09881i
\(814\) 0 0
\(815\) −2.56013 + 2.14820i −0.0896775 + 0.0752483i
\(816\) 0 0
\(817\) 0.0258874 0.00942225i 0.000905686 0.000329643i
\(818\) 0 0
\(819\) −22.3919 15.1582i −0.782438 0.529669i
\(820\) 0 0
\(821\) 2.36456 2.81797i 0.0825236 0.0983478i −0.723203 0.690636i \(-0.757331\pi\)
0.805726 + 0.592288i \(0.201775\pi\)
\(822\) 0 0
\(823\) 4.05525 + 22.9985i 0.141357 + 0.801676i 0.970220 + 0.242225i \(0.0778771\pi\)
−0.828863 + 0.559452i \(0.811012\pi\)
\(824\) 0 0
\(825\) −40.4135 + 5.64525i −1.40702 + 0.196543i
\(826\) 0 0
\(827\) 17.6991 10.2186i 0.615456 0.355334i −0.159642 0.987175i \(-0.551034\pi\)
0.775098 + 0.631841i \(0.217701\pi\)
\(828\) 0 0
\(829\) −18.2976 10.5641i −0.635503 0.366908i 0.147377 0.989080i \(-0.452917\pi\)
−0.782880 + 0.622173i \(0.786250\pi\)
\(830\) 0 0
\(831\) 38.3046 + 8.17540i 1.32877 + 0.283602i
\(832\) 0 0
\(833\) 4.32373 + 1.57371i 0.149808 + 0.0545258i
\(834\) 0 0
\(835\) 2.81990 + 0.497224i 0.0975866 + 0.0172072i
\(836\) 0 0
\(837\) 27.1015 + 13.3026i 0.936764 + 0.459806i
\(838\) 0 0
\(839\) 5.53919 31.4143i 0.191234 1.08454i −0.726446 0.687223i \(-0.758829\pi\)
0.917680 0.397320i \(-0.130060\pi\)
\(840\) 0 0
\(841\) 32.9314 + 11.9860i 1.13557 + 0.413312i
\(842\) 0 0
\(843\) 53.1416 17.2176i 1.83029 0.593005i
\(844\) 0 0
\(845\) 0.651848 + 0.376345i 0.0224242 + 0.0129466i
\(846\) 0 0
\(847\) −16.7204 28.9607i −0.574521 0.995100i
\(848\) 0 0
\(849\) −13.2683 + 32.7612i −0.455366 + 1.12436i
\(850\) 0 0
\(851\) 18.3038 3.22745i 0.627445 0.110636i
\(852\) 0 0
\(853\) −10.1055 + 12.0433i −0.346006 + 0.412354i −0.910780 0.412891i \(-0.864519\pi\)
0.564774 + 0.825246i \(0.308963\pi\)
\(854\) 0 0
\(855\) 0.00347467 0.00251562i 0.000118831 8.60323e-5i
\(856\) 0 0
\(857\) 30.3992 11.0644i 1.03842 0.377953i 0.234138 0.972203i \(-0.424773\pi\)
0.804280 + 0.594250i \(0.202551\pi\)
\(858\) 0 0
\(859\) −7.62842 9.09120i −0.260278 0.310188i 0.620041 0.784570i \(-0.287116\pi\)
−0.880319 + 0.474382i \(0.842672\pi\)
\(860\) 0 0
\(861\) −47.3693 1.69388i −1.61434 0.0577271i
\(862\) 0 0
\(863\) 25.9229 0.882426 0.441213 0.897402i \(-0.354548\pi\)
0.441213 + 0.897402i \(0.354548\pi\)
\(864\) 0 0
\(865\) −5.76875 −0.196143
\(866\) 0 0
\(867\) −11.9359 22.4936i −0.405365 0.763923i
\(868\) 0 0
\(869\) 14.1443 + 16.8565i 0.479811 + 0.571816i
\(870\) 0 0
\(871\) 0.691961 0.251853i 0.0234462 0.00853373i
\(872\) 0 0
\(873\) 5.76806 22.9705i 0.195219 0.777434i
\(874\) 0 0
\(875\) −5.14475 + 6.13128i −0.173924 + 0.207275i
\(876\) 0 0
\(877\) −23.4419 + 4.13345i −0.791578 + 0.139577i −0.554796 0.831986i \(-0.687204\pi\)
−0.236782 + 0.971563i \(0.576093\pi\)
\(878\) 0 0
\(879\) −4.47580 5.73866i −0.150965 0.193560i
\(880\) 0 0
\(881\) 19.7098 + 34.1384i 0.664040 + 1.15015i 0.979545 + 0.201227i \(0.0644930\pi\)
−0.315504 + 0.948924i \(0.602174\pi\)
\(882\) 0 0
\(883\) 39.3493 + 22.7183i 1.32421 + 0.764533i 0.984397 0.175960i \(-0.0563031\pi\)
0.339812 + 0.940493i \(0.389636\pi\)
\(884\) 0 0
\(885\) 2.06274 + 1.86043i 0.0693383 + 0.0625377i
\(886\) 0 0
\(887\) 3.61326 + 1.31512i 0.121321 + 0.0441573i 0.401967 0.915654i \(-0.368327\pi\)
−0.280646 + 0.959811i \(0.590549\pi\)
\(888\) 0 0
\(889\) 10.2931 58.3752i 0.345220 1.95784i
\(890\) 0 0
\(891\) −8.82499 42.2129i −0.295648 1.41418i
\(892\) 0 0
\(893\) 0.0181087 + 0.00319306i 0.000605985 + 0.000106852i
\(894\) 0 0
\(895\) 5.84553 + 2.12760i 0.195395 + 0.0711178i
\(896\) 0 0
\(897\) 7.33437 8.13195i 0.244888 0.271518i
\(898\) 0 0
\(899\) 40.2677 + 23.2486i 1.34300 + 0.775384i
\(900\) 0 0
\(901\) −4.22107 + 2.43704i −0.140624 + 0.0811894i
\(902\) 0 0
\(903\) −16.5640 21.2375i −0.551214 0.706740i
\(904\) 0 0
\(905\) 1.03788 + 5.88612i 0.0345003 + 0.195661i
\(906\) 0 0
\(907\) −6.16891 + 7.35182i −0.204835 + 0.244113i −0.858676 0.512519i \(-0.828712\pi\)
0.653840 + 0.756632i \(0.273157\pi\)
\(908\) 0 0
\(909\) −38.7743 + 40.0177i −1.28606 + 1.32730i
\(910\) 0 0
\(911\) −27.8833 + 10.1487i −0.923814 + 0.336241i −0.759755 0.650210i \(-0.774681\pi\)
−0.164059 + 0.986451i \(0.552459\pi\)
\(912\) 0 0
\(913\) −14.9185 + 12.5181i −0.493730 + 0.414289i
\(914\) 0 0
\(915\) 1.66736 + 3.14219i 0.0551211 + 0.103877i
\(916\) 0 0
\(917\) 29.6416i 0.978851i
\(918\) 0 0
\(919\) 18.2259 0.601217 0.300608 0.953748i \(-0.402810\pi\)
0.300608 + 0.953748i \(0.402810\pi\)
\(920\) 0 0
\(921\) −1.17715 + 32.9190i −0.0387883 + 1.08472i
\(922\) 0 0
\(923\) −1.78176 2.12342i −0.0586474 0.0698933i
\(924\) 0 0
\(925\) 15.9362 + 43.7844i 0.523980 + 1.43962i
\(926\) 0 0
\(927\) −12.4158 5.55281i −0.407789 0.182378i
\(928\) 0 0
\(929\) −1.32347 1.11052i −0.0434216 0.0364351i 0.620819 0.783954i \(-0.286800\pi\)
−0.664240 + 0.747519i \(0.731245\pi\)
\(930\) 0 0
\(931\) −0.00398643 0.000702915i −0.000130650 2.30371e-5i
\(932\) 0 0
\(933\) 27.8737 + 11.2888i 0.912543 + 0.369580i
\(934\) 0 0
\(935\) 3.89411 + 6.74480i 0.127351 + 0.220579i
\(936\) 0 0
\(937\) −3.54099 + 6.13317i −0.115679 + 0.200362i −0.918051 0.396462i \(-0.870238\pi\)
0.802372 + 0.596824i \(0.203571\pi\)
\(938\) 0 0
\(939\) −1.24747 + 0.404172i −0.0407095 + 0.0131897i
\(940\) 0 0
\(941\) −3.52638 + 9.68865i −0.114957 + 0.315841i −0.983806 0.179235i \(-0.942638\pi\)
0.868850 + 0.495076i \(0.164860\pi\)
\(942\) 0 0
\(943\) 3.33338 18.9045i 0.108550 0.615617i
\(944\) 0 0
\(945\) −3.38670 2.47360i −0.110169 0.0804661i
\(946\) 0 0
\(947\) 10.4361 + 1.84016i 0.339127 + 0.0597973i 0.340618 0.940202i \(-0.389364\pi\)
−0.00149128 + 0.999999i \(0.500475\pi\)
\(948\) 0 0
\(949\) −4.46924 + 12.2791i −0.145078 + 0.398598i
\(950\) 0 0
\(951\) 33.3052 + 7.10839i 1.08000 + 0.230505i
\(952\) 0 0
\(953\) −3.01897 + 5.22901i −0.0977940 + 0.169384i −0.910771 0.412911i \(-0.864512\pi\)
0.812977 + 0.582295i \(0.197845\pi\)
\(954\) 0 0
\(955\) −0.250024 + 0.144351i −0.00809058 + 0.00467110i
\(956\) 0 0
\(957\) −9.18871 65.7806i −0.297029 2.12638i
\(958\) 0 0
\(959\) 6.89588 + 39.1085i 0.222680 + 1.26288i
\(960\) 0 0
\(961\) 2.11229 + 1.77242i 0.0681384 + 0.0571749i
\(962\) 0 0
\(963\) −10.1171 + 4.91349i −0.326019 + 0.158335i
\(964\) 0 0
\(965\) −1.95645 5.37529i −0.0629802 0.173037i
\(966\) 0 0
\(967\) −15.4521 + 12.9658i −0.496906 + 0.416954i −0.856494 0.516158i \(-0.827362\pi\)
0.359588 + 0.933111i \(0.382917\pi\)
\(968\) 0 0
\(969\) 0.0409447 + 0.0256328i 0.00131533 + 0.000823443i
\(970\) 0 0
\(971\) 31.1328i 0.999100i 0.866285 + 0.499550i \(0.166501\pi\)
−0.866285 + 0.499550i \(0.833499\pi\)
\(972\) 0 0
\(973\) 27.2654i 0.874088i
\(974\) 0 0
\(975\) 23.2695 + 14.5675i 0.745219 + 0.466533i
\(976\) 0 0
\(977\) −14.4476 + 12.1229i −0.462219 + 0.387848i −0.843947 0.536427i \(-0.819774\pi\)
0.381728 + 0.924275i \(0.375329\pi\)
\(978\) 0 0
\(979\) −5.83071 16.0198i −0.186350 0.511993i
\(980\) 0 0
\(981\) −45.4633 + 22.0798i −1.45153 + 0.704954i
\(982\) 0 0
\(983\) −24.2461 20.3449i −0.773330 0.648901i 0.168229 0.985748i \(-0.446195\pi\)
−0.941559 + 0.336847i \(0.890639\pi\)
\(984\) 0 0
\(985\) 0.297906 + 1.68951i 0.00949206 + 0.0538322i
\(986\) 0 0
\(987\) −2.48703 17.8043i −0.0791632 0.566717i
\(988\) 0 0
\(989\) 9.44623 5.45378i 0.300373 0.173420i
\(990\) 0 0
\(991\) −22.5906 + 39.1281i −0.717614 + 1.24294i 0.244328 + 0.969693i \(0.421433\pi\)
−0.961942 + 0.273252i \(0.911901\pi\)
\(992\) 0 0
\(993\) −41.7089 8.90201i −1.32359 0.282497i
\(994\) 0 0
\(995\) 0.834426 2.29257i 0.0264531 0.0726792i
\(996\) 0 0
\(997\) −20.6197 3.63580i −0.653031 0.115147i −0.162689 0.986677i \(-0.552017\pi\)
−0.490342 + 0.871530i \(0.663128\pi\)
\(998\) 0 0
\(999\) −45.0359 + 19.9159i −1.42487 + 0.630111i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.2.bf.a.241.11 204
4.3 odd 2 216.2.t.a.133.22 yes 204
8.3 odd 2 216.2.t.a.133.17 yes 204
8.5 even 2 inner 864.2.bf.a.241.24 204
12.11 even 2 648.2.t.a.397.13 204
24.11 even 2 648.2.t.a.397.18 204
27.13 even 9 inner 864.2.bf.a.337.24 204
108.67 odd 18 216.2.t.a.13.17 204
108.95 even 18 648.2.t.a.253.18 204
216.13 even 18 inner 864.2.bf.a.337.11 204
216.67 odd 18 216.2.t.a.13.22 yes 204
216.203 even 18 648.2.t.a.253.13 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.17 204 108.67 odd 18
216.2.t.a.13.22 yes 204 216.67 odd 18
216.2.t.a.133.17 yes 204 8.3 odd 2
216.2.t.a.133.22 yes 204 4.3 odd 2
648.2.t.a.253.13 204 216.203 even 18
648.2.t.a.253.18 204 108.95 even 18
648.2.t.a.397.13 204 12.11 even 2
648.2.t.a.397.18 204 24.11 even 2
864.2.bf.a.241.11 204 1.1 even 1 trivial
864.2.bf.a.241.24 204 8.5 even 2 inner
864.2.bf.a.337.11 204 216.13 even 18 inner
864.2.bf.a.337.24 204 27.13 even 9 inner