Defining parameters
Level: | \( N \) | = | \( 864 = 2^{5} \cdot 3^{3} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 18 \) | ||
Newform subspaces: | \( 48 \) | ||
Sturm bound: | \(82944\) | ||
Trace bound: | \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(864))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 21696 | 9376 | 12320 |
Cusp forms | 19777 | 9056 | 10721 |
Eisenstein series | 1919 | 320 | 1599 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(864))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(864))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(864)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(108))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(144))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(216))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(288))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(432))\)\(^{\oplus 2}\)