Properties

Label 648.2.t.a.253.13
Level $648$
Weight $2$
Character 648.253
Analytic conductor $5.174$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(37,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 14])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.t (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 253.13
Character \(\chi\) \(=\) 648.253
Dual form 648.2.t.a.397.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.495022 - 1.32475i) q^{2} +(-1.50991 + 1.31156i) q^{4} +(0.185555 - 0.221136i) q^{5} +(-2.62731 - 0.956263i) q^{7} +(2.48492 + 1.35099i) q^{8} +(-0.384803 - 0.136346i) q^{10} +(-3.08006 - 3.67067i) q^{11} +(3.17478 + 0.559799i) q^{13} +(0.0337716 + 3.95389i) q^{14} +(0.559631 - 3.96066i) q^{16} +(-2.81522 + 4.87610i) q^{17} +(0.00428975 - 0.00247669i) q^{19} +(0.00986189 + 0.577261i) q^{20} +(-3.33801 + 5.89736i) q^{22} +(-1.84294 + 0.670777i) q^{23} +(0.853770 + 4.84197i) q^{25} +(-0.829994 - 4.48289i) q^{26} +(5.22119 - 2.00200i) q^{28} +(-7.88122 + 1.38967i) q^{29} +(-5.45972 + 1.98718i) q^{31} +(-5.52390 + 1.21924i) q^{32} +(7.85319 + 1.31567i) q^{34} +(-0.698975 + 0.403553i) q^{35} +(-8.20717 - 4.73841i) q^{37} +(-0.00540451 - 0.00445682i) q^{38} +(0.759842 - 0.298821i) q^{40} +(-1.69965 + 9.63917i) q^{41} +(3.57494 + 4.26045i) q^{43} +(9.46489 + 1.50269i) q^{44} +(1.80091 + 2.10938i) q^{46} +(-3.48835 - 1.26966i) q^{47} +(0.626015 + 0.525289i) q^{49} +(5.99175 - 3.52791i) q^{50} +(-5.52782 + 3.31866i) q^{52} +0.865665i q^{53} -1.38324 q^{55} +(-5.23675 - 5.92571i) q^{56} +(5.74234 + 9.75270i) q^{58} +(3.57109 - 4.25586i) q^{59} +(2.43327 - 6.68534i) q^{61} +(5.33519 + 6.24905i) q^{62} +(4.34964 + 6.71421i) q^{64} +(0.712888 - 0.598184i) q^{65} +(-0.224950 - 0.0396647i) q^{67} +(-2.14457 - 11.0548i) q^{68} +(0.880614 + 0.726197i) q^{70} +(-0.429923 + 0.744648i) q^{71} +(-2.02670 - 3.51035i) q^{73} +(-2.21446 + 13.2180i) q^{74} +(-0.00322880 + 0.00936583i) q^{76} +(4.58214 + 12.5893i) q^{77} +(-0.797428 - 4.52244i) q^{79} +(-0.772001 - 0.858675i) q^{80} +(13.6108 - 2.52001i) q^{82} +(4.00250 - 0.705749i) q^{83} +(0.555903 + 1.52733i) q^{85} +(3.87434 - 6.84491i) q^{86} +(-2.69465 - 13.2824i) q^{88} +(1.77889 + 3.08112i) q^{89} +(-7.80581 - 4.50669i) q^{91} +(1.90291 - 3.42994i) q^{92} +(0.0448395 + 5.24969i) q^{94} +(0.000248300 - 0.00140818i) q^{95} +(6.04757 - 5.07452i) q^{97} +(0.385983 - 1.08934i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} - 12 q^{7} + 3 q^{8} - 3 q^{10} + 21 q^{14} - 6 q^{16} + 6 q^{17} - 15 q^{20} - 6 q^{22} + 12 q^{23} - 12 q^{25} + 30 q^{26} - 12 q^{28} - 12 q^{31} + 36 q^{32} + 42 q^{38} - 21 q^{40}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.495022 1.32475i −0.350034 0.936737i
\(3\) 0 0
\(4\) −1.50991 + 1.31156i −0.754953 + 0.655779i
\(5\) 0.185555 0.221136i 0.0829828 0.0988950i −0.722956 0.690895i \(-0.757217\pi\)
0.805938 + 0.592000i \(0.201661\pi\)
\(6\) 0 0
\(7\) −2.62731 0.956263i −0.993030 0.361433i −0.206137 0.978523i \(-0.566089\pi\)
−0.786893 + 0.617090i \(0.788312\pi\)
\(8\) 2.48492 + 1.35099i 0.878551 + 0.477648i
\(9\) 0 0
\(10\) −0.384803 0.136346i −0.121685 0.0431165i
\(11\) −3.08006 3.67067i −0.928672 1.10675i −0.994054 0.108888i \(-0.965271\pi\)
0.0653817 0.997860i \(-0.479174\pi\)
\(12\) 0 0
\(13\) 3.17478 + 0.559799i 0.880525 + 0.155260i 0.595592 0.803287i \(-0.296918\pi\)
0.284933 + 0.958547i \(0.408029\pi\)
\(14\) 0.0337716 + 3.95389i 0.00902584 + 1.05672i
\(15\) 0 0
\(16\) 0.559631 3.96066i 0.139908 0.990165i
\(17\) −2.81522 + 4.87610i −0.682791 + 1.18263i 0.291335 + 0.956621i \(0.405901\pi\)
−0.974126 + 0.226007i \(0.927433\pi\)
\(18\) 0 0
\(19\) 0.00428975 0.00247669i 0.000984137 0.000568192i −0.499508 0.866309i \(-0.666486\pi\)
0.500492 + 0.865741i \(0.333152\pi\)
\(20\) 0.00986189 + 0.577261i 0.00220519 + 0.129079i
\(21\) 0 0
\(22\) −3.33801 + 5.89736i −0.711666 + 1.25732i
\(23\) −1.84294 + 0.670777i −0.384280 + 0.139867i −0.526934 0.849906i \(-0.676659\pi\)
0.142654 + 0.989773i \(0.454436\pi\)
\(24\) 0 0
\(25\) 0.853770 + 4.84197i 0.170754 + 0.968395i
\(26\) −0.829994 4.48289i −0.162775 0.879167i
\(27\) 0 0
\(28\) 5.22119 2.00200i 0.986712 0.378343i
\(29\) −7.88122 + 1.38967i −1.46351 + 0.258056i −0.847966 0.530050i \(-0.822173\pi\)
−0.615540 + 0.788106i \(0.711062\pi\)
\(30\) 0 0
\(31\) −5.45972 + 1.98718i −0.980595 + 0.356907i −0.782071 0.623189i \(-0.785837\pi\)
−0.198523 + 0.980096i \(0.563615\pi\)
\(32\) −5.52390 + 1.21924i −0.976496 + 0.215534i
\(33\) 0 0
\(34\) 7.85319 + 1.31567i 1.34681 + 0.225636i
\(35\) −0.698975 + 0.403553i −0.118148 + 0.0682130i
\(36\) 0 0
\(37\) −8.20717 4.73841i −1.34925 0.778990i −0.361107 0.932524i \(-0.617601\pi\)
−0.988143 + 0.153534i \(0.950934\pi\)
\(38\) −0.00540451 0.00445682i −0.000876727 0.000722991i
\(39\) 0 0
\(40\) 0.759842 0.298821i 0.120142 0.0472478i
\(41\) −1.69965 + 9.63917i −0.265440 + 1.50539i 0.502339 + 0.864671i \(0.332473\pi\)
−0.767779 + 0.640715i \(0.778638\pi\)
\(42\) 0 0
\(43\) 3.57494 + 4.26045i 0.545173 + 0.649712i 0.966339 0.257271i \(-0.0828234\pi\)
−0.421166 + 0.906984i \(0.638379\pi\)
\(44\) 9.46489 + 1.50269i 1.42689 + 0.226539i
\(45\) 0 0
\(46\) 1.80091 + 2.10938i 0.265529 + 0.311012i
\(47\) −3.48835 1.26966i −0.508829 0.185199i 0.0748320 0.997196i \(-0.476158\pi\)
−0.583661 + 0.811998i \(0.698380\pi\)
\(48\) 0 0
\(49\) 0.626015 + 0.525289i 0.0894307 + 0.0750413i
\(50\) 5.99175 3.52791i 0.847362 0.498922i
\(51\) 0 0
\(52\) −5.52782 + 3.31866i −0.766571 + 0.460215i
\(53\) 0.865665i 0.118908i 0.998231 + 0.0594541i \(0.0189360\pi\)
−0.998231 + 0.0594541i \(0.981064\pi\)
\(54\) 0 0
\(55\) −1.38324 −0.186516
\(56\) −5.23675 5.92571i −0.699790 0.791857i
\(57\) 0 0
\(58\) 5.74234 + 9.75270i 0.754007 + 1.28059i
\(59\) 3.57109 4.25586i 0.464916 0.554066i −0.481739 0.876315i \(-0.659995\pi\)
0.946655 + 0.322249i \(0.104439\pi\)
\(60\) 0 0
\(61\) 2.43327 6.68534i 0.311548 0.855970i −0.680797 0.732472i \(-0.738366\pi\)
0.992345 0.123498i \(-0.0394113\pi\)
\(62\) 5.33519 + 6.24905i 0.677569 + 0.793630i
\(63\) 0 0
\(64\) 4.34964 + 6.71421i 0.543705 + 0.839276i
\(65\) 0.712888 0.598184i 0.0884228 0.0741956i
\(66\) 0 0
\(67\) −0.224950 0.0396647i −0.0274820 0.00484582i 0.159890 0.987135i \(-0.448886\pi\)
−0.187372 + 0.982289i \(0.559997\pi\)
\(68\) −2.14457 11.0548i −0.260068 1.34059i
\(69\) 0 0
\(70\) 0.880614 + 0.726197i 0.105254 + 0.0867971i
\(71\) −0.429923 + 0.744648i −0.0510224 + 0.0883735i −0.890409 0.455162i \(-0.849581\pi\)
0.839386 + 0.543535i \(0.182915\pi\)
\(72\) 0 0
\(73\) −2.02670 3.51035i −0.237208 0.410856i 0.722704 0.691157i \(-0.242899\pi\)
−0.959912 + 0.280301i \(0.909566\pi\)
\(74\) −2.21446 + 13.2180i −0.257426 + 1.53657i
\(75\) 0 0
\(76\) −0.00322880 + 0.00936583i −0.000370369 + 0.00107433i
\(77\) 4.58214 + 12.5893i 0.522184 + 1.43469i
\(78\) 0 0
\(79\) −0.797428 4.52244i −0.0897176 0.508814i −0.996239 0.0866531i \(-0.972383\pi\)
0.906521 0.422161i \(-0.138728\pi\)
\(80\) −0.772001 0.858675i −0.0863124 0.0960028i
\(81\) 0 0
\(82\) 13.6108 2.52001i 1.50306 0.278288i
\(83\) 4.00250 0.705749i 0.439332 0.0774660i 0.0503925 0.998729i \(-0.483953\pi\)
0.388939 + 0.921263i \(0.372842\pi\)
\(84\) 0 0
\(85\) 0.555903 + 1.52733i 0.0602961 + 0.165662i
\(86\) 3.87434 6.84491i 0.417781 0.738105i
\(87\) 0 0
\(88\) −2.69465 13.2824i −0.287250 1.41591i
\(89\) 1.77889 + 3.08112i 0.188562 + 0.326599i 0.944771 0.327731i \(-0.106284\pi\)
−0.756209 + 0.654330i \(0.772951\pi\)
\(90\) 0 0
\(91\) −7.80581 4.50669i −0.818272 0.472429i
\(92\) 1.90291 3.42994i 0.198392 0.357596i
\(93\) 0 0
\(94\) 0.0448395 + 5.24969i 0.00462484 + 0.541464i
\(95\) 0.000248300 0.00140818i 2.54751e−5 0.000144476i
\(96\) 0 0
\(97\) 6.04757 5.07452i 0.614038 0.515239i −0.281885 0.959448i \(-0.590960\pi\)
0.895923 + 0.444209i \(0.146515\pi\)
\(98\) 0.385983 1.08934i 0.0389902 0.110040i
\(99\) 0 0
\(100\) −7.63964 6.19115i −0.763964 0.619115i
\(101\) 6.35260 17.4536i 0.632107 1.73670i −0.0430976 0.999071i \(-0.513723\pi\)
0.675205 0.737630i \(-0.264055\pi\)
\(102\) 0 0
\(103\) −3.47298 2.91418i −0.342203 0.287143i 0.455447 0.890263i \(-0.349479\pi\)
−0.797650 + 0.603120i \(0.793924\pi\)
\(104\) 7.13278 + 5.68015i 0.699427 + 0.556985i
\(105\) 0 0
\(106\) 1.14679 0.428523i 0.111386 0.0416219i
\(107\) 3.74905i 0.362434i 0.983443 + 0.181217i \(0.0580036\pi\)
−0.983443 + 0.181217i \(0.941996\pi\)
\(108\) 0 0
\(109\) 16.8471i 1.61366i 0.590782 + 0.806831i \(0.298819\pi\)
−0.590782 + 0.806831i \(0.701181\pi\)
\(110\) 0.684733 + 1.83244i 0.0652868 + 0.174716i
\(111\) 0 0
\(112\) −5.25776 + 9.87073i −0.496811 + 0.932696i
\(113\) −4.67369 3.92169i −0.439664 0.368921i 0.395920 0.918285i \(-0.370426\pi\)
−0.835583 + 0.549364i \(0.814870\pi\)
\(114\) 0 0
\(115\) −0.193635 + 0.532007i −0.0180565 + 0.0496099i
\(116\) 10.0773 12.4350i 0.935651 1.15456i
\(117\) 0 0
\(118\) −7.40570 2.62404i −0.681750 0.241563i
\(119\) 12.0593 10.1189i 1.10547 0.927602i
\(120\) 0 0
\(121\) −2.07693 + 11.7789i −0.188812 + 1.07081i
\(122\) −10.0609 + 0.0859337i −0.910871 + 0.00778007i
\(123\) 0 0
\(124\) 5.63737 10.1612i 0.506250 0.912501i
\(125\) 2.47914 + 1.43133i 0.221741 + 0.128022i
\(126\) 0 0
\(127\) −10.6004 18.3604i −0.940632 1.62922i −0.764270 0.644896i \(-0.776901\pi\)
−0.176362 0.984325i \(-0.556433\pi\)
\(128\) 6.74146 9.08586i 0.595866 0.803084i
\(129\) 0 0
\(130\) −1.14534 0.648281i −0.100453 0.0568580i
\(131\) 3.62600 + 9.96234i 0.316805 + 0.870414i 0.991239 + 0.132079i \(0.0421653\pi\)
−0.674435 + 0.738335i \(0.735613\pi\)
\(132\) 0 0
\(133\) −0.0136389 + 0.00240490i −0.00118264 + 0.000208532i
\(134\) 0.0588095 + 0.317636i 0.00508037 + 0.0274396i
\(135\) 0 0
\(136\) −13.5832 + 8.31338i −1.16475 + 0.712866i
\(137\) 2.46640 + 13.9877i 0.210719 + 1.19505i 0.888182 + 0.459491i \(0.151968\pi\)
−0.677463 + 0.735557i \(0.736921\pi\)
\(138\) 0 0
\(139\) −3.33532 9.16372i −0.282898 0.777257i −0.997013 0.0772283i \(-0.975393\pi\)
0.714115 0.700028i \(-0.246829\pi\)
\(140\) 0.526103 1.52607i 0.0444638 0.128977i
\(141\) 0 0
\(142\) 1.19929 + 0.200921i 0.100642 + 0.0168609i
\(143\) −7.72366 13.3778i −0.645885 1.11871i
\(144\) 0 0
\(145\) −1.15509 + 2.00068i −0.0959254 + 0.166148i
\(146\) −3.64707 + 4.42257i −0.301833 + 0.366015i
\(147\) 0 0
\(148\) 18.6068 3.60962i 1.52947 0.296709i
\(149\) −1.13973 0.200964i −0.0933699 0.0164636i 0.126768 0.991932i \(-0.459540\pi\)
−0.220138 + 0.975469i \(0.570651\pi\)
\(150\) 0 0
\(151\) −15.9973 + 13.4234i −1.30184 + 1.09238i −0.312022 + 0.950075i \(0.601006\pi\)
−0.989823 + 0.142303i \(0.954549\pi\)
\(152\) 0.0140057 0.000358952i 0.00113601 2.91149e-5i
\(153\) 0 0
\(154\) 14.4094 12.3022i 1.16114 0.991338i
\(155\) −0.573643 + 1.57607i −0.0460761 + 0.126593i
\(156\) 0 0
\(157\) 12.0447 14.3543i 0.961268 1.14560i −0.0280180 0.999607i \(-0.508920\pi\)
0.989286 0.145988i \(-0.0466360\pi\)
\(158\) −5.59634 + 3.29510i −0.445221 + 0.262144i
\(159\) 0 0
\(160\) −0.755368 + 1.44777i −0.0597171 + 0.114456i
\(161\) 5.48343 0.432155
\(162\) 0 0
\(163\) 11.5772i 0.906795i −0.891308 0.453397i \(-0.850212\pi\)
0.891308 0.453397i \(-0.149788\pi\)
\(164\) −10.0760 16.7834i −0.786806 1.31057i
\(165\) 0 0
\(166\) −2.91627 4.95294i −0.226346 0.384422i
\(167\) −7.59855 6.37594i −0.587994 0.493385i 0.299568 0.954075i \(-0.403158\pi\)
−0.887561 + 0.460690i \(0.847602\pi\)
\(168\) 0 0
\(169\) −2.45017 0.891789i −0.188475 0.0685991i
\(170\) 1.74814 1.49249i 0.134076 0.114469i
\(171\) 0 0
\(172\) −10.9856 1.74413i −0.837648 0.132989i
\(173\) −12.8453 15.3084i −0.976609 1.16388i −0.986473 0.163926i \(-0.947584\pi\)
0.00986338 0.999951i \(-0.496860\pi\)
\(174\) 0 0
\(175\) 2.38708 13.5378i 0.180446 1.02336i
\(176\) −16.2620 + 10.1448i −1.22579 + 0.764696i
\(177\) 0 0
\(178\) 3.20112 3.88180i 0.239934 0.290953i
\(179\) −18.6622 10.7746i −1.39488 0.805335i −0.401030 0.916065i \(-0.631348\pi\)
−0.993851 + 0.110730i \(0.964681\pi\)
\(180\) 0 0
\(181\) −17.9309 + 10.3524i −1.33280 + 0.769490i −0.985727 0.168350i \(-0.946156\pi\)
−0.347068 + 0.937840i \(0.612823\pi\)
\(182\) −2.10617 + 12.5716i −0.156120 + 0.931871i
\(183\) 0 0
\(184\) −5.48578 0.822977i −0.404417 0.0606706i
\(185\) −2.57071 + 0.935664i −0.189003 + 0.0687914i
\(186\) 0 0
\(187\) 26.5696 4.68494i 1.94296 0.342596i
\(188\) 6.93231 2.65812i 0.505591 0.193863i
\(189\) 0 0
\(190\) −0.00198840 0.000368146i −0.000144253 2.67081e-5i
\(191\) 0.173666 + 0.984911i 0.0125661 + 0.0712657i 0.990446 0.137902i \(-0.0440358\pi\)
−0.977880 + 0.209167i \(0.932925\pi\)
\(192\) 0 0
\(193\) 18.6207 6.77739i 1.34035 0.487847i 0.430427 0.902625i \(-0.358363\pi\)
0.909923 + 0.414778i \(0.136141\pi\)
\(194\) −9.71613 5.49950i −0.697577 0.394841i
\(195\) 0 0
\(196\) −1.63417 + 0.0279181i −0.116726 + 0.00199415i
\(197\) 5.14676 2.97148i 0.366691 0.211709i −0.305321 0.952250i \(-0.598764\pi\)
0.672012 + 0.740540i \(0.265430\pi\)
\(198\) 0 0
\(199\) −4.22572 + 7.31916i −0.299553 + 0.518842i −0.976034 0.217619i \(-0.930171\pi\)
0.676480 + 0.736461i \(0.263504\pi\)
\(200\) −4.41992 + 13.1853i −0.312535 + 0.932345i
\(201\) 0 0
\(202\) −26.2663 + 0.224350i −1.84809 + 0.0157852i
\(203\) 22.0353 + 3.88542i 1.54658 + 0.272703i
\(204\) 0 0
\(205\) 1.81619 + 2.16445i 0.126848 + 0.151172i
\(206\) −2.14134 + 6.04341i −0.149194 + 0.421064i
\(207\) 0 0
\(208\) 3.99388 12.2609i 0.276926 0.850142i
\(209\) −0.0223038 0.00811792i −0.00154279 0.000561528i
\(210\) 0 0
\(211\) −2.67743 + 3.19083i −0.184322 + 0.219666i −0.850291 0.526313i \(-0.823574\pi\)
0.665969 + 0.745980i \(0.268018\pi\)
\(212\) −1.13537 1.30707i −0.0779775 0.0897701i
\(213\) 0 0
\(214\) 4.96654 1.85586i 0.339505 0.126864i
\(215\) 1.60549 0.109493
\(216\) 0 0
\(217\) 16.2446 1.10276
\(218\) 22.3182 8.33971i 1.51158 0.564836i
\(219\) 0 0
\(220\) 2.08856 1.81420i 0.140811 0.122313i
\(221\) −11.6673 + 13.9046i −0.784829 + 0.935323i
\(222\) 0 0
\(223\) 13.7266 + 4.99606i 0.919198 + 0.334561i 0.757919 0.652348i \(-0.226216\pi\)
0.161279 + 0.986909i \(0.448438\pi\)
\(224\) 15.6789 + 2.07896i 1.04759 + 0.138907i
\(225\) 0 0
\(226\) −2.88166 + 8.13277i −0.191685 + 0.540984i
\(227\) 13.2187 + 15.7535i 0.877359 + 1.04560i 0.998596 + 0.0529722i \(0.0168695\pi\)
−0.121237 + 0.992624i \(0.538686\pi\)
\(228\) 0 0
\(229\) 11.3156 + 1.99525i 0.747759 + 0.131850i 0.534527 0.845151i \(-0.320490\pi\)
0.213232 + 0.977002i \(0.431601\pi\)
\(230\) 0.800628 0.00683845i 0.0527919 0.000450914i
\(231\) 0 0
\(232\) −21.4616 7.19424i −1.40903 0.472325i
\(233\) 2.16566 3.75103i 0.141877 0.245738i −0.786326 0.617811i \(-0.788020\pi\)
0.928203 + 0.372073i \(0.121353\pi\)
\(234\) 0 0
\(235\) −0.928049 + 0.535809i −0.0605392 + 0.0349523i
\(236\) 0.189797 + 11.1096i 0.0123547 + 0.723176i
\(237\) 0 0
\(238\) −19.3747 10.9664i −1.25587 0.710846i
\(239\) 13.2703 4.82998i 0.858382 0.312426i 0.124929 0.992166i \(-0.460130\pi\)
0.733453 + 0.679740i \(0.237907\pi\)
\(240\) 0 0
\(241\) 2.60609 + 14.7799i 0.167873 + 0.952056i 0.946052 + 0.324014i \(0.105032\pi\)
−0.778179 + 0.628042i \(0.783856\pi\)
\(242\) 16.6321 3.07939i 1.06915 0.197951i
\(243\) 0 0
\(244\) 5.09421 + 13.2856i 0.326124 + 0.850524i
\(245\) 0.232321 0.0409644i 0.0148424 0.00261712i
\(246\) 0 0
\(247\) 0.0150055 0.00546154i 0.000954774 0.000347509i
\(248\) −16.2516 2.43807i −1.03198 0.154817i
\(249\) 0 0
\(250\) 0.668924 3.99278i 0.0423064 0.252526i
\(251\) −26.0768 + 15.0554i −1.64595 + 0.950290i −0.667293 + 0.744795i \(0.732547\pi\)
−0.978658 + 0.205495i \(0.934120\pi\)
\(252\) 0 0
\(253\) 8.13857 + 4.69881i 0.511668 + 0.295412i
\(254\) −19.0754 + 23.1316i −1.19690 + 1.45141i
\(255\) 0 0
\(256\) −15.3736 4.43302i −0.960852 0.277064i
\(257\) 0.685637 3.88844i 0.0427688 0.242554i −0.955927 0.293603i \(-0.905145\pi\)
0.998696 + 0.0510494i \(0.0162566\pi\)
\(258\) 0 0
\(259\) 17.0316 + 20.2975i 1.05829 + 1.26123i
\(260\) −0.291841 + 1.83819i −0.0180992 + 0.114000i
\(261\) 0 0
\(262\) 11.4026 9.73510i 0.704457 0.601437i
\(263\) −12.3951 4.51144i −0.764313 0.278187i −0.0696970 0.997568i \(-0.522203\pi\)
−0.694616 + 0.719381i \(0.744425\pi\)
\(264\) 0 0
\(265\) 0.191430 + 0.160629i 0.0117594 + 0.00986733i
\(266\) 0.00993744 + 0.0168776i 0.000609303 + 0.00103483i
\(267\) 0 0
\(268\) 0.391676 0.235145i 0.0239254 0.0143638i
\(269\) 7.68651i 0.468655i 0.972158 + 0.234327i \(0.0752887\pi\)
−0.972158 + 0.234327i \(0.924711\pi\)
\(270\) 0 0
\(271\) 21.3410 1.29637 0.648187 0.761481i \(-0.275528\pi\)
0.648187 + 0.761481i \(0.275528\pi\)
\(272\) 17.7371 + 13.8789i 1.07547 + 0.841534i
\(273\) 0 0
\(274\) 17.3092 10.1916i 1.04569 0.615695i
\(275\) 15.1436 18.0475i 0.913195 1.08830i
\(276\) 0 0
\(277\) −7.73418 + 21.2495i −0.464702 + 1.27676i 0.457210 + 0.889359i \(0.348849\pi\)
−0.921912 + 0.387400i \(0.873373\pi\)
\(278\) −10.4885 + 8.95470i −0.629061 + 0.537067i
\(279\) 0 0
\(280\) −2.28209 + 0.0584879i −0.136381 + 0.00349532i
\(281\) 24.7061 20.7308i 1.47384 1.23670i 0.561363 0.827570i \(-0.310277\pi\)
0.912477 0.409129i \(-0.134167\pi\)
\(282\) 0 0
\(283\) −20.0970 3.54364i −1.19464 0.210648i −0.459261 0.888301i \(-0.651886\pi\)
−0.735381 + 0.677653i \(0.762997\pi\)
\(284\) −0.327506 1.68822i −0.0194339 0.100177i
\(285\) 0 0
\(286\) −13.8988 + 16.8542i −0.821851 + 0.996609i
\(287\) 13.6831 23.6998i 0.807687 1.39896i
\(288\) 0 0
\(289\) −7.35090 12.7321i −0.432406 0.748949i
\(290\) 3.22219 + 0.539825i 0.189214 + 0.0316996i
\(291\) 0 0
\(292\) 7.66417 + 2.64217i 0.448511 + 0.154621i
\(293\) 1.43710 + 3.94839i 0.0839561 + 0.230667i 0.974566 0.224101i \(-0.0719444\pi\)
−0.890610 + 0.454768i \(0.849722\pi\)
\(294\) 0 0
\(295\) −0.278490 1.57939i −0.0162143 0.0919558i
\(296\) −13.9926 22.8624i −0.813303 1.32885i
\(297\) 0 0
\(298\) 0.297963 + 1.60933i 0.0172605 + 0.0932259i
\(299\) −6.22644 + 1.09789i −0.360084 + 0.0634926i
\(300\) 0 0
\(301\) −5.31837 14.6121i −0.306546 0.842228i
\(302\) 25.7016 + 14.5476i 1.47896 + 0.837118i
\(303\) 0 0
\(304\) −0.00740864 0.0183763i −0.000424915 0.00105395i
\(305\) −1.02686 1.77858i −0.0587981 0.101841i
\(306\) 0 0
\(307\) −16.4700 9.50896i −0.939993 0.542705i −0.0500346 0.998747i \(-0.515933\pi\)
−0.889958 + 0.456043i \(0.849266\pi\)
\(308\) −23.4303 12.9990i −1.33506 0.740685i
\(309\) 0 0
\(310\) 2.37186 0.0202589i 0.134713 0.00115063i
\(311\) −3.01498 + 17.0988i −0.170964 + 0.969585i 0.771736 + 0.635943i \(0.219389\pi\)
−0.942700 + 0.333642i \(0.891722\pi\)
\(312\) 0 0
\(313\) 0.579959 0.486644i 0.0327812 0.0275067i −0.626250 0.779622i \(-0.715411\pi\)
0.659031 + 0.752116i \(0.270967\pi\)
\(314\) −24.9781 8.85044i −1.40960 0.499459i
\(315\) 0 0
\(316\) 7.13548 + 5.78258i 0.401402 + 0.325296i
\(317\) 6.72476 18.4761i 0.377700 1.03772i −0.594607 0.804016i \(-0.702692\pi\)
0.972307 0.233706i \(-0.0750853\pi\)
\(318\) 0 0
\(319\) 29.3756 + 24.6491i 1.64472 + 1.38008i
\(320\) 2.29185 + 0.283994i 0.128118 + 0.0158757i
\(321\) 0 0
\(322\) −2.71442 7.26415i −0.151269 0.404815i
\(323\) 0.0278897i 0.00155182i
\(324\) 0 0
\(325\) 15.8501i 0.879207i
\(326\) −15.3368 + 5.73096i −0.849428 + 0.317409i
\(327\) 0 0
\(328\) −17.2459 + 21.6564i −0.952247 + 1.19577i
\(329\) 7.95087 + 6.67157i 0.438345 + 0.367815i
\(330\) 0 0
\(331\) −8.42157 + 23.1381i −0.462891 + 1.27178i 0.460409 + 0.887707i \(0.347703\pi\)
−0.923301 + 0.384077i \(0.874520\pi\)
\(332\) −5.11777 + 6.31513i −0.280874 + 0.346588i
\(333\) 0 0
\(334\) −4.68505 + 13.2224i −0.256355 + 0.723497i
\(335\) −0.0505119 + 0.0423845i −0.00275976 + 0.00231571i
\(336\) 0 0
\(337\) −1.71929 + 9.75056i −0.0936555 + 0.531147i 0.901496 + 0.432788i \(0.142470\pi\)
−0.995151 + 0.0983585i \(0.968641\pi\)
\(338\) 0.0314946 + 3.68731i 0.00171308 + 0.200563i
\(339\) 0 0
\(340\) −2.84254 1.57703i −0.154159 0.0855263i
\(341\) 24.1105 + 13.9202i 1.30566 + 0.753822i
\(342\) 0 0
\(343\) 8.64332 + 14.9707i 0.466695 + 0.808340i
\(344\) 3.12761 + 15.4166i 0.168629 + 0.831207i
\(345\) 0 0
\(346\) −13.9211 + 24.5948i −0.748401 + 1.32222i
\(347\) −7.12971 19.5887i −0.382743 1.05158i −0.970196 0.242320i \(-0.922092\pi\)
0.587453 0.809258i \(-0.300131\pi\)
\(348\) 0 0
\(349\) −14.8725 + 2.62242i −0.796107 + 0.140375i −0.556885 0.830590i \(-0.688004\pi\)
−0.239222 + 0.970965i \(0.576892\pi\)
\(350\) −19.1158 + 3.53924i −1.02178 + 0.189180i
\(351\) 0 0
\(352\) 21.4894 + 16.5211i 1.14539 + 0.880575i
\(353\) 0.616217 + 3.49474i 0.0327979 + 0.186006i 0.996805 0.0798689i \(-0.0254502\pi\)
−0.964007 + 0.265875i \(0.914339\pi\)
\(354\) 0 0
\(355\) 0.0848941 + 0.233245i 0.00450571 + 0.0123793i
\(356\) −6.72703 2.31909i −0.356532 0.122912i
\(357\) 0 0
\(358\) −5.03545 + 30.0564i −0.266132 + 1.58853i
\(359\) 11.0808 + 19.1925i 0.584823 + 1.01294i 0.994897 + 0.100891i \(0.0321694\pi\)
−0.410074 + 0.912052i \(0.634497\pi\)
\(360\) 0 0
\(361\) −9.49999 + 16.4545i −0.499999 + 0.866024i
\(362\) 22.5905 + 18.6292i 1.18733 + 0.979131i
\(363\) 0 0
\(364\) 17.6968 3.43310i 0.927566 0.179943i
\(365\) −1.15233 0.203187i −0.0603158 0.0106353i
\(366\) 0 0
\(367\) 13.2887 11.1505i 0.693664 0.582053i −0.226299 0.974058i \(-0.572663\pi\)
0.919963 + 0.392005i \(0.128218\pi\)
\(368\) 1.62535 + 7.67466i 0.0847271 + 0.400069i
\(369\) 0 0
\(370\) 2.51208 + 2.94237i 0.130597 + 0.152967i
\(371\) 0.827803 2.27437i 0.0429774 0.118079i
\(372\) 0 0
\(373\) 10.6639 12.7087i 0.552156 0.658034i −0.415711 0.909497i \(-0.636467\pi\)
0.967867 + 0.251463i \(0.0809116\pi\)
\(374\) −19.3589 32.8788i −1.00102 1.70012i
\(375\) 0 0
\(376\) −6.95298 7.86773i −0.358573 0.405747i
\(377\) −25.7991 −1.32872
\(378\) 0 0
\(379\) 9.64915i 0.495644i 0.968806 + 0.247822i \(0.0797148\pi\)
−0.968806 + 0.247822i \(0.920285\pi\)
\(380\) 0.00147200 + 0.00245188i 7.55120e−5 + 0.000125779i
\(381\) 0 0
\(382\) 1.21879 0.717617i 0.0623586 0.0367165i
\(383\) 9.22574 + 7.74132i 0.471414 + 0.395563i 0.847310 0.531099i \(-0.178221\pi\)
−0.375896 + 0.926662i \(0.622665\pi\)
\(384\) 0 0
\(385\) 3.63420 + 1.32274i 0.185216 + 0.0674130i
\(386\) −18.1960 21.3128i −0.926152 1.08479i
\(387\) 0 0
\(388\) −2.47574 + 15.5938i −0.125687 + 0.791654i
\(389\) 1.86623 + 2.22408i 0.0946216 + 0.112766i 0.811277 0.584661i \(-0.198773\pi\)
−0.716656 + 0.697427i \(0.754328\pi\)
\(390\) 0 0
\(391\) 1.91751 10.8748i 0.0969729 0.549960i
\(392\) 0.845935 + 2.15104i 0.0427262 + 0.108644i
\(393\) 0 0
\(394\) −6.48422 5.34720i −0.326670 0.269388i
\(395\) −1.14804 0.662821i −0.0577642 0.0333502i
\(396\) 0 0
\(397\) 3.53148 2.03890i 0.177240 0.102330i −0.408755 0.912644i \(-0.634037\pi\)
0.585995 + 0.810314i \(0.300704\pi\)
\(398\) 11.7879 + 1.97486i 0.590872 + 0.0989907i
\(399\) 0 0
\(400\) 19.6552 0.671773i 0.982760 0.0335886i
\(401\) −2.09322 + 0.761870i −0.104530 + 0.0380460i −0.393756 0.919215i \(-0.628824\pi\)
0.289226 + 0.957261i \(0.406602\pi\)
\(402\) 0 0
\(403\) −18.4458 + 3.25249i −0.918851 + 0.162018i
\(404\) 13.2996 + 34.6851i 0.661681 + 1.72565i
\(405\) 0 0
\(406\) −5.76078 31.1146i −0.285903 1.54419i
\(407\) 7.88541 + 44.7204i 0.390865 + 2.21671i
\(408\) 0 0
\(409\) 17.7345 6.45483i 0.876914 0.319171i 0.135950 0.990716i \(-0.456591\pi\)
0.740964 + 0.671545i \(0.234369\pi\)
\(410\) 1.96829 3.47744i 0.0972071 0.171739i
\(411\) 0 0
\(412\) 9.06599 0.154883i 0.446649 0.00763054i
\(413\) −13.4521 + 7.76657i −0.661934 + 0.382168i
\(414\) 0 0
\(415\) 0.586618 1.01605i 0.0287959 0.0498760i
\(416\) −18.2197 + 0.778558i −0.893293 + 0.0381719i
\(417\) 0 0
\(418\) 0.000286694 0.0335654i 1.40227e−5 0.00164174i
\(419\) −13.5715 2.39303i −0.663013 0.116907i −0.167992 0.985788i \(-0.553728\pi\)
−0.495021 + 0.868881i \(0.664839\pi\)
\(420\) 0 0
\(421\) −23.8985 28.4811i −1.16474 1.38809i −0.906607 0.421977i \(-0.861336\pi\)
−0.258135 0.966109i \(-0.583108\pi\)
\(422\) 5.55243 + 1.96738i 0.270288 + 0.0957705i
\(423\) 0 0
\(424\) −1.16951 + 2.15111i −0.0567962 + 0.104467i
\(425\) −26.0135 9.46814i −1.26184 0.459272i
\(426\) 0 0
\(427\) −12.7859 + 15.2376i −0.618753 + 0.737401i
\(428\) −4.91709 5.66071i −0.237677 0.273621i
\(429\) 0 0
\(430\) −0.794752 2.12686i −0.0383263 0.102566i
\(431\) −11.4089 −0.549548 −0.274774 0.961509i \(-0.588603\pi\)
−0.274774 + 0.961509i \(0.588603\pi\)
\(432\) 0 0
\(433\) −7.51420 −0.361109 −0.180555 0.983565i \(-0.557789\pi\)
−0.180555 + 0.983565i \(0.557789\pi\)
\(434\) −8.04146 21.5200i −0.386003 1.03299i
\(435\) 0 0
\(436\) −22.0960 25.4376i −1.05821 1.21824i
\(437\) −0.00624447 + 0.00744187i −0.000298713 + 0.000355993i
\(438\) 0 0
\(439\) −19.2063 6.99052i −0.916667 0.333639i −0.159755 0.987157i \(-0.551070\pi\)
−0.756912 + 0.653517i \(0.773293\pi\)
\(440\) −3.43723 1.86874i −0.163864 0.0890888i
\(441\) 0 0
\(442\) 24.1956 + 8.57317i 1.15087 + 0.407784i
\(443\) 18.1395 + 21.6178i 0.861832 + 1.02709i 0.999330 + 0.0365893i \(0.0116493\pi\)
−0.137498 + 0.990502i \(0.543906\pi\)
\(444\) 0 0
\(445\) 1.01143 + 0.178342i 0.0479463 + 0.00845423i
\(446\) −0.176442 20.6574i −0.00835476 0.978154i
\(447\) 0 0
\(448\) −5.00731 21.7997i −0.236573 1.02994i
\(449\) 5.65025 9.78653i 0.266652 0.461855i −0.701343 0.712824i \(-0.747416\pi\)
0.967995 + 0.250969i \(0.0807492\pi\)
\(450\) 0 0
\(451\) 40.6172 23.4504i 1.91259 1.10423i
\(452\) 12.2004 0.208430i 0.573856 0.00980373i
\(453\) 0 0
\(454\) 14.3258 25.3098i 0.672343 1.18785i
\(455\) −2.44500 + 0.889907i −0.114623 + 0.0417195i
\(456\) 0 0
\(457\) −6.59891 37.4243i −0.308684 1.75063i −0.605636 0.795742i \(-0.707081\pi\)
0.296952 0.954892i \(-0.404030\pi\)
\(458\) −2.95829 15.9781i −0.138232 0.746606i
\(459\) 0 0
\(460\) −0.405388 1.05724i −0.0189013 0.0492943i
\(461\) 7.55207 1.33163i 0.351735 0.0620204i 0.00501063 0.999987i \(-0.498405\pi\)
0.346724 + 0.937967i \(0.387294\pi\)
\(462\) 0 0
\(463\) −20.5953 + 7.49607i −0.957144 + 0.348372i −0.772914 0.634511i \(-0.781202\pi\)
−0.184231 + 0.982883i \(0.558979\pi\)
\(464\) 1.09344 + 31.9925i 0.0507615 + 1.48522i
\(465\) 0 0
\(466\) −6.04121 1.01210i −0.279854 0.0468848i
\(467\) −2.10941 + 1.21787i −0.0976119 + 0.0563563i −0.548011 0.836471i \(-0.684615\pi\)
0.450399 + 0.892827i \(0.351282\pi\)
\(468\) 0 0
\(469\) 0.553083 + 0.319323i 0.0255390 + 0.0147450i
\(470\) 1.16922 + 0.964192i 0.0539319 + 0.0444748i
\(471\) 0 0
\(472\) 14.6235 5.75095i 0.673101 0.264709i
\(473\) 4.62768 26.2449i 0.212781 1.20674i
\(474\) 0 0
\(475\) 0.0156545 + 0.0186563i 0.000718279 + 0.000856012i
\(476\) −4.93681 + 31.0951i −0.226278 + 1.42524i
\(477\) 0 0
\(478\) −12.9676 15.1888i −0.593123 0.694719i
\(479\) −13.6689 4.97509i −0.624550 0.227318i 0.0103076 0.999947i \(-0.496719\pi\)
−0.634857 + 0.772629i \(0.718941\pi\)
\(480\) 0 0
\(481\) −23.4034 19.6378i −1.06710 0.895405i
\(482\) 18.2895 10.7688i 0.833065 0.490505i
\(483\) 0 0
\(484\) −12.3127 20.5090i −0.559668 0.932227i
\(485\) 2.27894i 0.103481i
\(486\) 0 0
\(487\) 2.54679 0.115406 0.0577031 0.998334i \(-0.481622\pi\)
0.0577031 + 0.998334i \(0.481622\pi\)
\(488\) 15.0783 13.3252i 0.682563 0.603204i
\(489\) 0 0
\(490\) −0.169271 0.287487i −0.00764690 0.0129874i
\(491\) 11.6939 13.9362i 0.527738 0.628933i −0.434654 0.900597i \(-0.643129\pi\)
0.962392 + 0.271664i \(0.0875739\pi\)
\(492\) 0 0
\(493\) 15.4112 42.3419i 0.694085 1.90698i
\(494\) −0.0146632 0.0171748i −0.000659728 0.000772733i
\(495\) 0 0
\(496\) 4.81509 + 22.7362i 0.216204 + 1.02088i
\(497\) 1.84162 1.54530i 0.0826080 0.0693163i
\(498\) 0 0
\(499\) 2.03309 + 0.358488i 0.0910134 + 0.0160481i 0.218969 0.975732i \(-0.429731\pi\)
−0.127956 + 0.991780i \(0.540842\pi\)
\(500\) −5.62055 + 1.09036i −0.251359 + 0.0487624i
\(501\) 0 0
\(502\) 32.8532 + 27.0923i 1.46631 + 1.20919i
\(503\) −15.5785 + 26.9828i −0.694613 + 1.20310i 0.275699 + 0.961244i \(0.411091\pi\)
−0.970311 + 0.241860i \(0.922242\pi\)
\(504\) 0 0
\(505\) −2.68087 4.64340i −0.119297 0.206628i
\(506\) 2.19595 13.1076i 0.0976220 0.582702i
\(507\) 0 0
\(508\) 40.0863 + 13.8195i 1.77854 + 0.613139i
\(509\) 0.653669 + 1.79594i 0.0289734 + 0.0796037i 0.953336 0.301911i \(-0.0976247\pi\)
−0.924363 + 0.381515i \(0.875402\pi\)
\(510\) 0 0
\(511\) 1.96796 + 11.1609i 0.0870574 + 0.493727i
\(512\) 1.73766 + 22.5606i 0.0767946 + 0.997047i
\(513\) 0 0
\(514\) −5.49060 + 1.01657i −0.242180 + 0.0448389i
\(515\) −1.28886 + 0.227261i −0.0567939 + 0.0100143i
\(516\) 0 0
\(517\) 6.08384 + 16.7152i 0.267567 + 0.735134i
\(518\) 18.4580 32.6103i 0.810998 1.43281i
\(519\) 0 0
\(520\) 2.57961 0.523333i 0.113123 0.0229497i
\(521\) −4.36155 7.55442i −0.191083 0.330965i 0.754527 0.656269i \(-0.227867\pi\)
−0.945609 + 0.325304i \(0.894533\pi\)
\(522\) 0 0
\(523\) 17.9490 + 10.3629i 0.784855 + 0.453136i 0.838148 0.545443i \(-0.183638\pi\)
−0.0532932 + 0.998579i \(0.516972\pi\)
\(524\) −18.5411 10.2865i −0.809972 0.449367i
\(525\) 0 0
\(526\) 0.159327 + 18.6536i 0.00694698 + 0.813335i
\(527\) 5.68063 32.2165i 0.247452 1.40337i
\(528\) 0 0
\(529\) −14.6725 + 12.3117i −0.637936 + 0.535292i
\(530\) 0.118030 0.333110i 0.00512690 0.0144694i
\(531\) 0 0
\(532\) 0.0174393 0.0215194i 0.000756088 0.000932983i
\(533\) −10.7920 + 29.6508i −0.467453 + 1.28432i
\(534\) 0 0
\(535\) 0.829049 + 0.695655i 0.0358429 + 0.0300758i
\(536\) −0.505395 0.402469i −0.0218298 0.0173840i
\(537\) 0 0
\(538\) 10.1827 3.80499i 0.439006 0.164045i
\(539\) 3.91581i 0.168666i
\(540\) 0 0
\(541\) 3.63212i 0.156157i −0.996947 0.0780785i \(-0.975122\pi\)
0.996947 0.0780785i \(-0.0248785\pi\)
\(542\) −10.5643 28.2714i −0.453774 1.21436i
\(543\) 0 0
\(544\) 9.60582 30.3675i 0.411846 1.30200i
\(545\) 3.72551 + 3.12607i 0.159583 + 0.133906i
\(546\) 0 0
\(547\) −3.43081 + 9.42608i −0.146691 + 0.403030i −0.991177 0.132548i \(-0.957684\pi\)
0.844486 + 0.535578i \(0.179906\pi\)
\(548\) −22.0697 17.8852i −0.942770 0.764019i
\(549\) 0 0
\(550\) −31.4047 11.1276i −1.33910 0.474481i
\(551\) −0.0303667 + 0.0254807i −0.00129367 + 0.00108551i
\(552\) 0 0
\(553\) −2.22955 + 12.6444i −0.0948101 + 0.537695i
\(554\) 31.9788 0.273142i 1.35865 0.0116047i
\(555\) 0 0
\(556\) 17.0548 + 9.46189i 0.723283 + 0.401273i
\(557\) −9.46379 5.46392i −0.400994 0.231514i 0.285919 0.958254i \(-0.407701\pi\)
−0.686913 + 0.726740i \(0.741034\pi\)
\(558\) 0 0
\(559\) 8.96465 + 15.5272i 0.379164 + 0.656732i
\(560\) 1.20717 + 2.99424i 0.0510122 + 0.126530i
\(561\) 0 0
\(562\) −39.6932 22.4670i −1.67435 0.947714i
\(563\) −9.70697 26.6697i −0.409100 1.12399i −0.957665 0.287885i \(-0.907048\pi\)
0.548565 0.836108i \(-0.315174\pi\)
\(564\) 0 0
\(565\) −1.73445 + 0.305831i −0.0729690 + 0.0128664i
\(566\) 5.25403 + 28.3776i 0.220844 + 1.19280i
\(567\) 0 0
\(568\) −2.07434 + 1.26957i −0.0870372 + 0.0532699i
\(569\) 2.42865 + 13.7735i 0.101814 + 0.577417i 0.992445 + 0.122690i \(0.0391521\pi\)
−0.890631 + 0.454727i \(0.849737\pi\)
\(570\) 0 0
\(571\) −5.30577 14.5775i −0.222040 0.610049i 0.777790 0.628525i \(-0.216341\pi\)
−0.999829 + 0.0184759i \(0.994119\pi\)
\(572\) 29.2077 + 10.0691i 1.22124 + 0.421012i
\(573\) 0 0
\(574\) −38.1697 6.39469i −1.59317 0.266909i
\(575\) −4.82133 8.35080i −0.201064 0.348252i
\(576\) 0 0
\(577\) −0.198083 + 0.343090i −0.00824632 + 0.0142830i −0.870119 0.492841i \(-0.835958\pi\)
0.861873 + 0.507125i \(0.169292\pi\)
\(578\) −13.2280 + 16.0408i −0.550212 + 0.667208i
\(579\) 0 0
\(580\) −0.879927 4.53581i −0.0365370 0.188339i
\(581\) −11.1907 1.97322i −0.464268 0.0818630i
\(582\) 0 0
\(583\) 3.17757 2.66630i 0.131602 0.110427i
\(584\) −0.293735 11.4610i −0.0121548 0.474260i
\(585\) 0 0
\(586\) 4.51922 3.85833i 0.186687 0.159386i
\(587\) 4.01994 11.0447i 0.165921 0.455864i −0.828670 0.559738i \(-0.810902\pi\)
0.994590 + 0.103874i \(0.0331240\pi\)
\(588\) 0 0
\(589\) −0.0184992 + 0.0220465i −0.000762247 + 0.000908411i
\(590\) −1.95444 + 1.15076i −0.0804629 + 0.0473761i
\(591\) 0 0
\(592\) −23.3602 + 29.8540i −0.960099 + 1.22699i
\(593\) 14.1087 0.579377 0.289688 0.957121i \(-0.406448\pi\)
0.289688 + 0.957121i \(0.406448\pi\)
\(594\) 0 0
\(595\) 4.54436i 0.186301i
\(596\) 1.98445 1.19138i 0.0812864 0.0488008i
\(597\) 0 0
\(598\) 4.53665 + 7.70497i 0.185517 + 0.315080i
\(599\) 28.5436 + 23.9509i 1.16626 + 0.978607i 0.999972 0.00747033i \(-0.00237790\pi\)
0.166286 + 0.986077i \(0.446822\pi\)
\(600\) 0 0
\(601\) −11.4635 4.17236i −0.467605 0.170194i 0.0974622 0.995239i \(-0.468927\pi\)
−0.565067 + 0.825045i \(0.691150\pi\)
\(602\) −16.7246 + 14.2788i −0.681645 + 0.581961i
\(603\) 0 0
\(604\) 6.54896 41.2494i 0.266473 1.67842i
\(605\) 2.21934 + 2.64491i 0.0902292 + 0.107531i
\(606\) 0 0
\(607\) 7.57443 42.9567i 0.307436 1.74356i −0.304372 0.952553i \(-0.598447\pi\)
0.611809 0.791006i \(-0.290442\pi\)
\(608\) −0.0206765 + 0.0189112i −0.000838541 + 0.000766952i
\(609\) 0 0
\(610\) −1.84785 + 2.24077i −0.0748172 + 0.0907262i
\(611\) −10.3640 5.98365i −0.419282 0.242073i
\(612\) 0 0
\(613\) 24.6408 14.2264i 0.995233 0.574598i 0.0883987 0.996085i \(-0.471825\pi\)
0.906834 + 0.421487i \(0.138492\pi\)
\(614\) −4.44394 + 26.5257i −0.179343 + 1.07049i
\(615\) 0 0
\(616\) −5.62184 + 37.4739i −0.226510 + 1.50987i
\(617\) 6.84389 2.49097i 0.275525 0.100283i −0.200562 0.979681i \(-0.564277\pi\)
0.476087 + 0.879398i \(0.342055\pi\)
\(618\) 0 0
\(619\) −4.70638 + 0.829861i −0.189165 + 0.0333549i −0.267428 0.963578i \(-0.586174\pi\)
0.0782628 + 0.996933i \(0.475063\pi\)
\(620\) −1.20096 3.13208i −0.0482318 0.125788i
\(621\) 0 0
\(622\) 24.1441 4.47021i 0.968089 0.179239i
\(623\) −1.72733 9.79616i −0.0692039 0.392475i
\(624\) 0 0
\(625\) −22.3242 + 8.12536i −0.892970 + 0.325014i
\(626\) −0.931772 0.527400i −0.0372411 0.0210791i
\(627\) 0 0
\(628\) 0.640150 + 37.4709i 0.0255448 + 1.49525i
\(629\) 46.2099 26.6793i 1.84251 1.06377i
\(630\) 0 0
\(631\) −10.2228 + 17.7064i −0.406964 + 0.704882i −0.994548 0.104281i \(-0.966746\pi\)
0.587584 + 0.809163i \(0.300079\pi\)
\(632\) 4.12823 12.3152i 0.164212 0.489873i
\(633\) 0 0
\(634\) −27.8051 + 0.237493i −1.10428 + 0.00943205i
\(635\) −6.02710 1.06274i −0.239178 0.0421736i
\(636\) 0 0
\(637\) 1.69340 + 2.01812i 0.0670950 + 0.0799607i
\(638\) 18.1122 51.1171i 0.717069 2.02375i
\(639\) 0 0
\(640\) −0.758298 3.17670i −0.0299744 0.125570i
\(641\) −17.9357 6.52806i −0.708417 0.257843i −0.0374167 0.999300i \(-0.511913\pi\)
−0.671000 + 0.741457i \(0.734135\pi\)
\(642\) 0 0
\(643\) −11.9937 + 14.2935i −0.472984 + 0.563680i −0.948805 0.315862i \(-0.897706\pi\)
0.475821 + 0.879542i \(0.342151\pi\)
\(644\) −8.27946 + 7.19183i −0.326256 + 0.283398i
\(645\) 0 0
\(646\) 0.0369468 0.0138060i 0.00145365 0.000543190i
\(647\) −1.28685 −0.0505911 −0.0252955 0.999680i \(-0.508053\pi\)
−0.0252955 + 0.999680i \(0.508053\pi\)
\(648\) 0 0
\(649\) −26.6210 −1.04497
\(650\) 20.9974 7.84617i 0.823586 0.307752i
\(651\) 0 0
\(652\) 15.1841 + 17.4805i 0.594657 + 0.684587i
\(653\) −4.80662 + 5.72830i −0.188097 + 0.224166i −0.851849 0.523787i \(-0.824519\pi\)
0.663752 + 0.747953i \(0.268963\pi\)
\(654\) 0 0
\(655\) 2.87585 + 1.04672i 0.112369 + 0.0408989i
\(656\) 37.2263 + 12.1261i 1.45344 + 0.473445i
\(657\) 0 0
\(658\) 4.90228 13.8355i 0.191111 0.539362i
\(659\) 15.2256 + 18.1451i 0.593104 + 0.706834i 0.976199 0.216875i \(-0.0695864\pi\)
−0.383095 + 0.923709i \(0.625142\pi\)
\(660\) 0 0
\(661\) 4.78633 + 0.843960i 0.186167 + 0.0328262i 0.265954 0.963986i \(-0.414313\pi\)
−0.0797873 + 0.996812i \(0.525424\pi\)
\(662\) 34.8210 0.297418i 1.35335 0.0115595i
\(663\) 0 0
\(664\) 10.8994 + 3.65362i 0.422977 + 0.141788i
\(665\) −0.00199895 + 0.00346229i −7.75161e−5 + 0.000134262i
\(666\) 0 0
\(667\) 13.5925 7.84763i 0.526303 0.303861i
\(668\) 19.8355 0.338869i 0.767459 0.0131112i
\(669\) 0 0
\(670\) 0.0811532 + 0.0459342i 0.00313522 + 0.00177459i
\(671\) −32.0343 + 11.6595i −1.23667 + 0.450111i
\(672\) 0 0
\(673\) −6.24184 35.3992i −0.240605 1.36454i −0.830482 0.557046i \(-0.811935\pi\)
0.589876 0.807494i \(-0.299176\pi\)
\(674\) 13.7681 2.54913i 0.530328 0.0981887i
\(675\) 0 0
\(676\) 4.86916 1.86702i 0.187275 0.0718085i
\(677\) −17.6982 + 3.12068i −0.680199 + 0.119937i −0.503064 0.864249i \(-0.667794\pi\)
−0.177135 + 0.984187i \(0.556683\pi\)
\(678\) 0 0
\(679\) −20.7414 + 7.54926i −0.795983 + 0.289714i
\(680\) −0.682038 + 4.54631i −0.0261550 + 0.174343i
\(681\) 0 0
\(682\) 6.50551 38.8311i 0.249109 1.48692i
\(683\) 5.01354 2.89457i 0.191838 0.110758i −0.401005 0.916076i \(-0.631339\pi\)
0.592843 + 0.805318i \(0.298006\pi\)
\(684\) 0 0
\(685\) 3.55083 + 2.05007i 0.135670 + 0.0783293i
\(686\) 15.5537 18.8610i 0.593843 0.720117i
\(687\) 0 0
\(688\) 18.8748 11.7748i 0.719596 0.448911i
\(689\) −0.484598 + 2.74829i −0.0184617 + 0.104702i
\(690\) 0 0
\(691\) −8.42802 10.0441i −0.320617 0.382097i 0.581530 0.813525i \(-0.302454\pi\)
−0.902147 + 0.431428i \(0.858010\pi\)
\(692\) 39.4731 + 6.26693i 1.50054 + 0.238233i
\(693\) 0 0
\(694\) −22.4207 + 19.1419i −0.851079 + 0.726617i
\(695\) −2.64531 0.962815i −0.100342 0.0365217i
\(696\) 0 0
\(697\) −42.2167 35.4240i −1.59907 1.34178i
\(698\) 10.8363 + 18.4041i 0.410159 + 0.696607i
\(699\) 0 0
\(700\) 14.1513 + 23.5716i 0.534871 + 0.890923i
\(701\) 3.89204i 0.147000i −0.997295 0.0735002i \(-0.976583\pi\)
0.997295 0.0735002i \(-0.0234170\pi\)
\(702\) 0 0
\(703\) −0.0469423 −0.00177046
\(704\) 11.2485 36.6463i 0.423944 1.38116i
\(705\) 0 0
\(706\) 4.32461 2.54631i 0.162759 0.0958315i
\(707\) −33.3805 + 39.7814i −1.25540 + 1.49613i
\(708\) 0 0
\(709\) −10.4928 + 28.8286i −0.394064 + 1.08268i 0.571065 + 0.820905i \(0.306531\pi\)
−0.965128 + 0.261777i \(0.915692\pi\)
\(710\) 0.266965 0.227924i 0.0100190 0.00855385i
\(711\) 0 0
\(712\) 0.257818 + 10.0596i 0.00966214 + 0.377000i
\(713\) 8.72901 7.32451i 0.326904 0.274305i
\(714\) 0 0
\(715\) −4.39147 0.774335i −0.164232 0.0289585i
\(716\) 42.3098 8.20790i 1.58119 0.306744i
\(717\) 0 0
\(718\) 19.9400 24.1800i 0.744154 0.902390i
\(719\) −10.3301 + 17.8922i −0.385246 + 0.667266i −0.991803 0.127774i \(-0.959217\pi\)
0.606557 + 0.795040i \(0.292550\pi\)
\(720\) 0 0
\(721\) 6.33789 + 10.9775i 0.236035 + 0.408825i
\(722\) 26.5007 + 4.43975i 0.986254 + 0.165230i
\(723\) 0 0
\(724\) 13.4962 39.1486i 0.501582 1.45495i
\(725\) −13.4575 36.9742i −0.499799 1.37319i
\(726\) 0 0
\(727\) 5.27477 + 29.9147i 0.195630 + 1.10947i 0.911518 + 0.411259i \(0.134911\pi\)
−0.715888 + 0.698215i \(0.753978\pi\)
\(728\) −13.3083 21.7443i −0.493239 0.805899i
\(729\) 0 0
\(730\) 0.301258 + 1.62713i 0.0111501 + 0.0602227i
\(731\) −30.8386 + 5.43768i −1.14061 + 0.201120i
\(732\) 0 0
\(733\) 12.3847 + 34.0267i 0.457439 + 1.25680i 0.927385 + 0.374108i \(0.122051\pi\)
−0.469946 + 0.882695i \(0.655727\pi\)
\(734\) −21.3498 12.0844i −0.788036 0.446042i
\(735\) 0 0
\(736\) 9.36239 5.95230i 0.345102 0.219405i
\(737\) 0.547262 + 0.947886i 0.0201587 + 0.0349158i
\(738\) 0 0
\(739\) 4.81815 + 2.78176i 0.177239 + 0.102329i 0.585995 0.810315i \(-0.300704\pi\)
−0.408756 + 0.912644i \(0.634037\pi\)
\(740\) 2.65436 4.78441i 0.0975762 0.175878i
\(741\) 0 0
\(742\) −3.42275 + 0.0292349i −0.125653 + 0.00107325i
\(743\) −6.80955 + 38.6189i −0.249818 + 1.41679i 0.559214 + 0.829024i \(0.311103\pi\)
−0.809032 + 0.587765i \(0.800008\pi\)
\(744\) 0 0
\(745\) −0.255922 + 0.214744i −0.00937627 + 0.00786762i
\(746\) −22.1147 7.83586i −0.809678 0.286891i
\(747\) 0 0
\(748\) −33.9730 + 41.9214i −1.24218 + 1.53280i
\(749\) 3.58507 9.84991i 0.130996 0.359908i
\(750\) 0 0
\(751\) 20.3773 + 17.0986i 0.743579 + 0.623937i 0.933796 0.357805i \(-0.116475\pi\)
−0.190217 + 0.981742i \(0.560919\pi\)
\(752\) −6.98087 + 13.1056i −0.254566 + 0.477913i
\(753\) 0 0
\(754\) 12.7711 + 34.1772i 0.465096 + 1.24466i
\(755\) 6.02836i 0.219394i
\(756\) 0 0
\(757\) 9.99796i 0.363382i −0.983356 0.181691i \(-0.941843\pi\)
0.983356 0.181691i \(-0.0581571\pi\)
\(758\) 12.7827 4.77655i 0.464288 0.173492i
\(759\) 0 0
\(760\) 0.00251945 0.00316376i 9.13899e−5 0.000114762i
\(761\) −36.4687 30.6009i −1.32199 1.10928i −0.985879 0.167460i \(-0.946444\pi\)
−0.336112 0.941822i \(-0.609112\pi\)
\(762\) 0 0
\(763\) 16.1103 44.2627i 0.583232 1.60242i
\(764\) −1.55399 1.25935i −0.0562213 0.0455617i
\(765\) 0 0
\(766\) 5.68833 16.0539i 0.205528 0.580051i
\(767\) 13.7198 11.5123i 0.495395 0.415685i
\(768\) 0 0
\(769\) −7.87549 + 44.6641i −0.283998 + 1.61063i 0.424847 + 0.905265i \(0.360328\pi\)
−0.708844 + 0.705365i \(0.750783\pi\)
\(770\) −0.0467141 5.46917i −0.00168346 0.197095i
\(771\) 0 0
\(772\) −19.2266 + 34.6554i −0.691981 + 1.24728i
\(773\) 7.37741 + 4.25935i 0.265347 + 0.153198i 0.626771 0.779203i \(-0.284376\pi\)
−0.361424 + 0.932401i \(0.617709\pi\)
\(774\) 0 0
\(775\) −14.2832 24.7392i −0.513068 0.888659i
\(776\) 21.8834 4.43954i 0.785567 0.159370i
\(777\) 0 0
\(778\) 2.02252 3.57325i 0.0725110 0.128107i
\(779\) 0.0165822 + 0.0455592i 0.000594118 + 0.00163233i
\(780\) 0 0
\(781\) 4.05754 0.715454i 0.145190 0.0256010i
\(782\) −15.3555 + 2.84303i −0.549112 + 0.101667i
\(783\) 0 0
\(784\) 2.43083 2.18546i 0.0868153 0.0780523i
\(785\) −0.939296 5.32701i −0.0335249 0.190129i
\(786\) 0 0
\(787\) 6.01089 + 16.5148i 0.214265 + 0.588688i 0.999536 0.0304642i \(-0.00969856\pi\)
−0.785271 + 0.619152i \(0.787476\pi\)
\(788\) −3.87385 + 11.2369i −0.138000 + 0.400299i
\(789\) 0 0
\(790\) −0.309765 + 1.84897i −0.0110209 + 0.0657835i
\(791\) 8.52906 + 14.7728i 0.303259 + 0.525259i
\(792\) 0 0
\(793\) 11.4675 19.8623i 0.407224 0.705332i
\(794\) −4.44919 3.66902i −0.157896 0.130208i
\(795\) 0 0
\(796\) −3.21907 16.5935i −0.114097 0.588142i
\(797\) 14.0527 + 2.47787i 0.497773 + 0.0877708i 0.416898 0.908953i \(-0.363117\pi\)
0.0808752 + 0.996724i \(0.474228\pi\)
\(798\) 0 0
\(799\) 16.0115 13.4352i 0.566444 0.475303i
\(800\) −10.6197 25.7056i −0.375463 0.908830i
\(801\) 0 0
\(802\) 2.04547 + 2.39584i 0.0722282 + 0.0846001i
\(803\) −6.64299 + 18.2515i −0.234426 + 0.644080i
\(804\) 0 0
\(805\) 1.01748 1.21258i 0.0358614 0.0427379i
\(806\) 13.4398 + 22.8260i 0.473397 + 0.804010i
\(807\) 0 0
\(808\) 39.3654 34.7885i 1.38487 1.22386i
\(809\) 41.9742 1.47573 0.737867 0.674946i \(-0.235833\pi\)
0.737867 + 0.674946i \(0.235833\pi\)
\(810\) 0 0
\(811\) 34.8911i 1.22519i −0.790397 0.612595i \(-0.790125\pi\)
0.790397 0.612595i \(-0.209875\pi\)
\(812\) −38.3672 + 23.0340i −1.34643 + 0.808334i
\(813\) 0 0
\(814\) 55.3397 32.5838i 1.93966 1.14206i
\(815\) −2.56013 2.14820i −0.0896775 0.0752483i
\(816\) 0 0
\(817\) 0.0258874 + 0.00942225i 0.000905686 + 0.000329643i
\(818\) −17.3300 20.2984i −0.605928 0.709718i
\(819\) 0 0
\(820\) −5.58108 0.886079i −0.194900 0.0309432i
\(821\) −2.36456 2.81797i −0.0825236 0.0983478i 0.723203 0.690636i \(-0.242669\pi\)
−0.805726 + 0.592288i \(0.798225\pi\)
\(822\) 0 0
\(823\) −4.05525 + 22.9985i −0.141357 + 0.801676i 0.828863 + 0.559452i \(0.188988\pi\)
−0.970220 + 0.242225i \(0.922123\pi\)
\(824\) −4.69305 11.9335i −0.163490 0.415722i
\(825\) 0 0
\(826\) 16.9478 + 13.9760i 0.589690 + 0.486287i
\(827\) 17.6991 + 10.2186i 0.615456 + 0.355334i 0.775098 0.631841i \(-0.217701\pi\)
−0.159642 + 0.987175i \(0.551034\pi\)
\(828\) 0 0
\(829\) −18.2976 + 10.5641i −0.635503 + 0.366908i −0.782880 0.622173i \(-0.786250\pi\)
0.147377 + 0.989080i \(0.452917\pi\)
\(830\) −1.63640 0.274152i −0.0568003 0.00951594i
\(831\) 0 0
\(832\) 10.0505 + 23.7510i 0.348440 + 0.823419i
\(833\) −4.32373 + 1.57371i −0.149808 + 0.0545258i
\(834\) 0 0
\(835\) −2.81990 + 0.497224i −0.0975866 + 0.0172072i
\(836\) 0.0443238 0.0169954i 0.00153297 0.000587799i
\(837\) 0 0
\(838\) 3.54806 + 19.1634i 0.122566 + 0.661990i
\(839\) 5.53919 + 31.4143i 0.191234 + 1.08454i 0.917680 + 0.397320i \(0.130060\pi\)
−0.726446 + 0.687223i \(0.758829\pi\)
\(840\) 0 0
\(841\) 32.9314 11.9860i 1.13557 0.413312i
\(842\) −25.9000 + 45.7583i −0.892572 + 1.57693i
\(843\) 0 0
\(844\) −0.142300 8.32946i −0.00489817 0.286712i
\(845\) −0.651848 + 0.376345i −0.0224242 + 0.0129466i
\(846\) 0 0
\(847\) 16.7204 28.9607i 0.574521 0.995100i
\(848\) 3.42860 + 0.484453i 0.117739 + 0.0166362i
\(849\) 0 0
\(850\) 0.334379 + 39.1482i 0.0114691 + 1.34277i
\(851\) 18.3038 + 3.22745i 0.627445 + 0.110636i
\(852\) 0 0
\(853\) −10.1055 12.0433i −0.346006 0.412354i 0.564774 0.825246i \(-0.308963\pi\)
−0.910780 + 0.412891i \(0.864519\pi\)
\(854\) 26.5153 + 9.39510i 0.907335 + 0.321494i
\(855\) 0 0
\(856\) −5.06493 + 9.31608i −0.173116 + 0.318417i
\(857\) −30.3992 11.0644i −1.03842 0.377953i −0.234138 0.972203i \(-0.575227\pi\)
−0.804280 + 0.594250i \(0.797449\pi\)
\(858\) 0 0
\(859\) 7.62842 9.09120i 0.260278 0.310188i −0.620041 0.784570i \(-0.712884\pi\)
0.880319 + 0.474382i \(0.157328\pi\)
\(860\) −2.42413 + 2.10569i −0.0826623 + 0.0718034i
\(861\) 0 0
\(862\) 5.64766 + 15.1139i 0.192360 + 0.514782i
\(863\) 25.9229 0.882426 0.441213 0.897402i \(-0.354548\pi\)
0.441213 + 0.897402i \(0.354548\pi\)
\(864\) 0 0
\(865\) −5.76875 −0.196143
\(866\) 3.71970 + 9.95441i 0.126400 + 0.338265i
\(867\) 0 0
\(868\) −24.5279 + 21.3058i −0.832531 + 0.723166i
\(869\) −14.1443 + 16.8565i −0.479811 + 0.571816i
\(870\) 0 0
\(871\) −0.691961 0.251853i −0.0234462 0.00853373i
\(872\) −22.7603 + 41.8637i −0.770762 + 1.41769i
\(873\) 0 0
\(874\) 0.0129497 + 0.00458845i 0.000438031 + 0.000155207i
\(875\) −5.14475 6.13128i −0.173924 0.207275i
\(876\) 0 0
\(877\) −23.4419 4.13345i −0.791578 0.139577i −0.236782 0.971563i \(-0.576093\pi\)
−0.554796 + 0.831986i \(0.687204\pi\)
\(878\) 0.246879 + 28.9039i 0.00833175 + 0.975461i
\(879\) 0 0
\(880\) −0.774103 + 5.47853i −0.0260950 + 0.184681i
\(881\) −19.7098 + 34.1384i −0.664040 + 1.15015i 0.315504 + 0.948924i \(0.397826\pi\)
−0.979545 + 0.201227i \(0.935507\pi\)
\(882\) 0 0
\(883\) −39.3493 + 22.7183i −1.32421 + 0.764533i −0.984397 0.175960i \(-0.943697\pi\)
−0.339812 + 0.940493i \(0.610364\pi\)
\(884\) −0.620096 36.2970i −0.0208561 1.22080i
\(885\) 0 0
\(886\) 19.6586 34.7315i 0.660444 1.16683i
\(887\) 3.61326 1.31512i 0.121321 0.0441573i −0.280646 0.959811i \(-0.590549\pi\)
0.401967 + 0.915654i \(0.368327\pi\)
\(888\) 0 0
\(889\) 10.2931 + 58.3752i 0.345220 + 1.95784i
\(890\) −0.264422 1.42817i −0.00886344 0.0478724i
\(891\) 0 0
\(892\) −27.2784 + 10.4596i −0.913349 + 0.350213i
\(893\) −0.0181087 + 0.00319306i −0.000605985 + 0.000106852i
\(894\) 0 0
\(895\) −5.84553 + 2.12760i −0.195395 + 0.0711178i
\(896\) −26.4004 + 17.4248i −0.881975 + 0.582121i
\(897\) 0 0
\(898\) −15.7617 2.64060i −0.525974 0.0881181i
\(899\) 40.2677 23.2486i 1.34300 0.775384i
\(900\) 0 0
\(901\) −4.22107 2.43704i −0.140624 0.0811894i
\(902\) −51.1722 42.1991i −1.70385 1.40508i
\(903\) 0 0
\(904\) −6.31556 16.0592i −0.210052 0.534121i
\(905\) −1.03788 + 5.88612i −0.0345003 + 0.195661i
\(906\) 0 0
\(907\) 6.16891 + 7.35182i 0.204835 + 0.244113i 0.858676 0.512519i \(-0.171288\pi\)
−0.653840 + 0.756632i \(0.726843\pi\)
\(908\) −40.6207 6.44913i −1.34804 0.214022i
\(909\) 0 0
\(910\) 2.38923 + 2.79848i 0.0792022 + 0.0927687i
\(911\) −27.8833 10.1487i −0.923814 0.336241i −0.164059 0.986451i \(-0.552459\pi\)
−0.759755 + 0.650210i \(0.774681\pi\)
\(912\) 0 0
\(913\) −14.9185 12.5181i −0.493730 0.414289i
\(914\) −46.3111 + 27.2677i −1.53183 + 0.901936i
\(915\) 0 0
\(916\) −19.7025 + 11.8285i −0.650987 + 0.390824i
\(917\) 29.6416i 0.978851i
\(918\) 0 0
\(919\) −18.2259 −0.601217 −0.300608 0.953748i \(-0.597190\pi\)
−0.300608 + 0.953748i \(0.597190\pi\)
\(920\) −1.19990 + 1.06040i −0.0395597 + 0.0349602i
\(921\) 0 0
\(922\) −5.50252 9.34539i −0.181216 0.307774i
\(923\) −1.78176 + 2.12342i −0.0586474 + 0.0698933i
\(924\) 0 0
\(925\) 15.9362 43.7844i 0.523980 1.43962i
\(926\) 20.1255 + 23.5728i 0.661366 + 0.774651i
\(927\) 0 0
\(928\) 41.8407 17.2855i 1.37349 0.567426i
\(929\) 1.32347 1.11052i 0.0434216 0.0364351i −0.620819 0.783954i \(-0.713200\pi\)
0.664240 + 0.747519i \(0.268755\pi\)
\(930\) 0 0
\(931\) 0.00398643 0.000702915i 0.000130650 2.30371e-5i
\(932\) 1.64975 + 8.50409i 0.0540395 + 0.278561i
\(933\) 0 0
\(934\) 2.65757 + 2.19156i 0.0869585 + 0.0717101i
\(935\) 3.89411 6.74480i 0.127351 0.220579i
\(936\) 0 0
\(937\) −3.54099 6.13317i −0.115679 0.200362i 0.802372 0.596824i \(-0.203571\pi\)
−0.918051 + 0.396462i \(0.870238\pi\)
\(938\) 0.149233 0.890767i 0.00487264 0.0290846i
\(939\) 0 0
\(940\) 0.698521 2.02621i 0.0227833 0.0660877i
\(941\) 3.52638 + 9.68865i 0.114957 + 0.315841i 0.983806 0.179235i \(-0.0573624\pi\)
−0.868850 + 0.495076i \(0.835140\pi\)
\(942\) 0 0
\(943\) −3.33338 18.9045i −0.108550 0.615617i
\(944\) −14.8575 16.5256i −0.483571 0.537862i
\(945\) 0 0
\(946\) −37.0586 + 6.86129i −1.20488 + 0.223080i
\(947\) 10.4361 1.84016i 0.339127 0.0597973i −0.00149128 0.999999i \(-0.500475\pi\)
0.340618 + 0.940202i \(0.389364\pi\)
\(948\) 0 0
\(949\) −4.46924 12.2791i −0.145078 0.398598i
\(950\) 0.0169656 0.0299736i 0.000550436 0.000972472i
\(951\) 0 0
\(952\) 43.6370 8.85275i 1.41428 0.286919i
\(953\) 3.01897 + 5.22901i 0.0977940 + 0.169384i 0.910771 0.412911i \(-0.135488\pi\)
−0.812977 + 0.582295i \(0.802155\pi\)
\(954\) 0 0
\(955\) 0.250024 + 0.144351i 0.00809058 + 0.00467110i
\(956\) −13.7021 + 24.6975i −0.443156 + 0.798776i
\(957\) 0 0
\(958\) 0.175701 + 20.5707i 0.00567665 + 0.664608i
\(959\) 6.89588 39.1085i 0.222680 1.26288i
\(960\) 0 0
\(961\) 2.11229 1.77242i 0.0681384 0.0571749i
\(962\) −14.4299 + 40.7247i −0.465237 + 1.31302i
\(963\) 0 0
\(964\) −23.3196 18.8982i −0.751075 0.608670i
\(965\) 1.95645 5.37529i 0.0629802 0.173037i
\(966\) 0 0
\(967\) 15.4521 + 12.9658i 0.496906 + 0.416954i 0.856494 0.516158i \(-0.172638\pi\)
−0.359588 + 0.933111i \(0.617083\pi\)
\(968\) −21.0742 + 26.4636i −0.677349 + 0.850572i
\(969\) 0 0
\(970\) −3.01901 + 1.12812i −0.0969347 + 0.0362219i
\(971\) 31.1328i 0.999100i −0.866285 0.499550i \(-0.833499\pi\)
0.866285 0.499550i \(-0.166501\pi\)
\(972\) 0 0
\(973\) 27.2654i 0.874088i
\(974\) −1.26072 3.37385i −0.0403961 0.108105i
\(975\) 0 0
\(976\) −25.1166 13.3787i −0.803964 0.428240i
\(977\) 14.4476 + 12.1229i 0.462219 + 0.387848i 0.843947 0.536427i \(-0.180226\pi\)
−0.381728 + 0.924275i \(0.624671\pi\)
\(978\) 0 0
\(979\) 5.83071 16.0198i 0.186350 0.511993i
\(980\) −0.297055 + 0.366554i −0.00948907 + 0.0117091i
\(981\) 0 0
\(982\) −24.2507 8.59269i −0.773871 0.274204i
\(983\) −24.2461 + 20.3449i −0.773330 + 0.648901i −0.941559 0.336847i \(-0.890639\pi\)
0.168229 + 0.985748i \(0.446195\pi\)
\(984\) 0 0
\(985\) 0.297906 1.68951i 0.00949206 0.0538322i
\(986\) −63.7211 + 0.544264i −2.02929 + 0.0173329i
\(987\) 0 0
\(988\) −0.0154937 + 0.0279269i −0.000492920 + 0.000888474i
\(989\) −9.44623 5.45378i −0.300373 0.173420i
\(990\) 0 0
\(991\) 22.5906 + 39.1281i 0.717614 + 1.24294i 0.961942 + 0.273252i \(0.0880993\pi\)
−0.244328 + 0.969693i \(0.578567\pi\)
\(992\) 27.7361 17.6337i 0.880621 0.559870i
\(993\) 0 0
\(994\) −2.95878 1.67472i −0.0938467 0.0531189i
\(995\) 0.834426 + 2.29257i 0.0264531 + 0.0726792i
\(996\) 0 0
\(997\) −20.6197 + 3.63580i −0.653031 + 0.115147i −0.490342 0.871530i \(-0.663128\pi\)
−0.162689 + 0.986677i \(0.552017\pi\)
\(998\) −0.531517 2.87078i −0.0168249 0.0908730i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.t.a.253.13 204
3.2 odd 2 216.2.t.a.13.22 yes 204
8.5 even 2 inner 648.2.t.a.253.18 204
12.11 even 2 864.2.bf.a.337.11 204
24.5 odd 2 216.2.t.a.13.17 204
24.11 even 2 864.2.bf.a.337.24 204
27.2 odd 18 216.2.t.a.133.17 yes 204
27.25 even 9 inner 648.2.t.a.397.18 204
108.83 even 18 864.2.bf.a.241.24 204
216.29 odd 18 216.2.t.a.133.22 yes 204
216.83 even 18 864.2.bf.a.241.11 204
216.133 even 18 inner 648.2.t.a.397.13 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.t.a.13.17 204 24.5 odd 2
216.2.t.a.13.22 yes 204 3.2 odd 2
216.2.t.a.133.17 yes 204 27.2 odd 18
216.2.t.a.133.22 yes 204 216.29 odd 18
648.2.t.a.253.13 204 1.1 even 1 trivial
648.2.t.a.253.18 204 8.5 even 2 inner
648.2.t.a.397.13 204 216.133 even 18 inner
648.2.t.a.397.18 204 27.25 even 9 inner
864.2.bf.a.241.11 204 216.83 even 18
864.2.bf.a.241.24 204 108.83 even 18
864.2.bf.a.337.11 204 12.11 even 2
864.2.bf.a.337.24 204 24.11 even 2