Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [864,2,Mod(49,864)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(864, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 9, 14]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("864.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 864 = 2^{5} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 864.bf (of order \(18\), degree \(6\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.89907473464\) |
Analytic rank: | \(0\) |
Dimension: | \(204\) |
Relative dimension: | \(34\) over \(\Q(\zeta_{18})\) |
Twist minimal: | no (minimal twist has level 216) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 | 0 | −1.73005 | − | 0.0831268i | 0 | −0.689006 | − | 1.89303i | 0 | 0.247544 | + | 1.40389i | 0 | 2.98618 | + | 0.287628i | 0 | ||||||||||
49.2 | 0 | −1.69237 | + | 0.368629i | 0 | 1.30726 | + | 3.59167i | 0 | 0.406982 | + | 2.30811i | 0 | 2.72823 | − | 1.24771i | 0 | ||||||||||
49.3 | 0 | −1.67311 | − | 0.447985i | 0 | 0.141945 | + | 0.389992i | 0 | −0.275847 | − | 1.56441i | 0 | 2.59862 | + | 1.49906i | 0 | ||||||||||
49.4 | 0 | −1.59613 | + | 0.672593i | 0 | −0.882298 | − | 2.42409i | 0 | −0.818935 | − | 4.64441i | 0 | 2.09524 | − | 2.14709i | 0 | ||||||||||
49.5 | 0 | −1.59491 | + | 0.675483i | 0 | −0.545265 | − | 1.49810i | 0 | 0.575033 | + | 3.26118i | 0 | 2.08744 | − | 2.15466i | 0 | ||||||||||
49.6 | 0 | −1.50226 | − | 0.862098i | 0 | 0.890128 | + | 2.44561i | 0 | 0.478063 | + | 2.71123i | 0 | 1.51358 | + | 2.59019i | 0 | ||||||||||
49.7 | 0 | −1.40645 | − | 1.01088i | 0 | −1.34230 | − | 3.68793i | 0 | 0.499959 | + | 2.83541i | 0 | 0.956226 | + | 2.84352i | 0 | ||||||||||
49.8 | 0 | −1.34903 | + | 1.08633i | 0 | 1.01754 | + | 2.79566i | 0 | −0.349397 | − | 1.98153i | 0 | 0.639780 | − | 2.93099i | 0 | ||||||||||
49.9 | 0 | −1.21028 | + | 1.23904i | 0 | −0.405536 | − | 1.11420i | 0 | −0.0413952 | − | 0.234764i | 0 | −0.0704471 | − | 2.99917i | 0 | ||||||||||
49.10 | 0 | −1.09709 | − | 1.34029i | 0 | 0.0373388 | + | 0.102588i | 0 | −0.639213 | − | 3.62515i | 0 | −0.592777 | + | 2.94085i | 0 | ||||||||||
49.11 | 0 | −1.07385 | − | 1.35898i | 0 | −0.0465753 | − | 0.127965i | 0 | 0.252128 | + | 1.42989i | 0 | −0.693675 | + | 2.91870i | 0 | ||||||||||
49.12 | 0 | −0.759610 | + | 1.55660i | 0 | 0.857221 | + | 2.35519i | 0 | −0.442985 | − | 2.51229i | 0 | −1.84598 | − | 2.36481i | 0 | ||||||||||
49.13 | 0 | −0.684682 | − | 1.59098i | 0 | −1.15428 | − | 3.17134i | 0 | −0.593321 | − | 3.36489i | 0 | −2.06242 | + | 2.17863i | 0 | ||||||||||
49.14 | 0 | −0.375176 | + | 1.69093i | 0 | 0.429535 | + | 1.18014i | 0 | 0.899466 | + | 5.10113i | 0 | −2.71849 | − | 1.26879i | 0 | ||||||||||
49.15 | 0 | −0.368292 | + | 1.69244i | 0 | −0.355965 | − | 0.978005i | 0 | 0.272085 | + | 1.54307i | 0 | −2.72872 | − | 1.24663i | 0 | ||||||||||
49.16 | 0 | −0.195652 | − | 1.72096i | 0 | 1.34802 | + | 3.70366i | 0 | −0.00177522 | − | 0.0100678i | 0 | −2.92344 | + | 0.673422i | 0 | ||||||||||
49.17 | 0 | −0.123826 | − | 1.72762i | 0 | 0.608623 | + | 1.67218i | 0 | −0.408085 | − | 2.31436i | 0 | −2.96933 | + | 0.427848i | 0 | ||||||||||
49.18 | 0 | 0.123826 | + | 1.72762i | 0 | −0.608623 | − | 1.67218i | 0 | −0.408085 | − | 2.31436i | 0 | −2.96933 | + | 0.427848i | 0 | ||||||||||
49.19 | 0 | 0.195652 | + | 1.72096i | 0 | −1.34802 | − | 3.70366i | 0 | −0.00177522 | − | 0.0100678i | 0 | −2.92344 | + | 0.673422i | 0 | ||||||||||
49.20 | 0 | 0.368292 | − | 1.69244i | 0 | 0.355965 | + | 0.978005i | 0 | 0.272085 | + | 1.54307i | 0 | −2.72872 | − | 1.24663i | 0 | ||||||||||
See next 80 embeddings (of 204 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
27.e | even | 9 | 1 | inner |
216.t | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 864.2.bf.a | 204 | |
4.b | odd | 2 | 1 | 216.2.t.a | ✓ | 204 | |
8.b | even | 2 | 1 | inner | 864.2.bf.a | 204 | |
8.d | odd | 2 | 1 | 216.2.t.a | ✓ | 204 | |
12.b | even | 2 | 1 | 648.2.t.a | 204 | ||
24.f | even | 2 | 1 | 648.2.t.a | 204 | ||
27.e | even | 9 | 1 | inner | 864.2.bf.a | 204 | |
108.j | odd | 18 | 1 | 216.2.t.a | ✓ | 204 | |
108.l | even | 18 | 1 | 648.2.t.a | 204 | ||
216.r | odd | 18 | 1 | 216.2.t.a | ✓ | 204 | |
216.t | even | 18 | 1 | inner | 864.2.bf.a | 204 | |
216.v | even | 18 | 1 | 648.2.t.a | 204 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
216.2.t.a | ✓ | 204 | 4.b | odd | 2 | 1 | |
216.2.t.a | ✓ | 204 | 8.d | odd | 2 | 1 | |
216.2.t.a | ✓ | 204 | 108.j | odd | 18 | 1 | |
216.2.t.a | ✓ | 204 | 216.r | odd | 18 | 1 | |
648.2.t.a | 204 | 12.b | even | 2 | 1 | ||
648.2.t.a | 204 | 24.f | even | 2 | 1 | ||
648.2.t.a | 204 | 108.l | even | 18 | 1 | ||
648.2.t.a | 204 | 216.v | even | 18 | 1 | ||
864.2.bf.a | 204 | 1.a | even | 1 | 1 | trivial | |
864.2.bf.a | 204 | 8.b | even | 2 | 1 | inner | |
864.2.bf.a | 204 | 27.e | even | 9 | 1 | inner | |
864.2.bf.a | 204 | 216.t | even | 18 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(864, [\chi])\).