Properties

Label 8450.2.a.z
Level $8450$
Weight $2$
Character orbit 8450.a
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,-2,2,0,2,-2,-2,2,0,0,-2,0,2,0,2,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + (\beta - 1) q^{3} + q^{4} + ( - \beta + 1) q^{6} + (2 \beta - 1) q^{7} - q^{8} + ( - 2 \beta + 1) q^{9} + \beta q^{11} + (\beta - 1) q^{12} + ( - 2 \beta + 1) q^{14} + q^{16} + (\beta - 3) q^{17}+ \cdots + (\beta - 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{6} - 2 q^{7} - 2 q^{8} + 2 q^{9} - 2 q^{12} + 2 q^{14} + 2 q^{16} - 6 q^{17} - 2 q^{18} - 4 q^{19} + 14 q^{21} + 2 q^{24} - 8 q^{27} - 2 q^{28} + 12 q^{29} - 10 q^{31}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−1.00000 −2.73205 1.00000 0 2.73205 −4.46410 −1.00000 4.46410 0
1.2 −1.00000 0.732051 1.00000 0 −0.732051 2.46410 −1.00000 −2.46410 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8450.2.a.z 2
5.b even 2 1 1690.2.a.o 2
13.b even 2 1 8450.2.a.bg 2
13.e even 6 2 650.2.e.f 4
65.d even 2 1 1690.2.a.l 2
65.g odd 4 2 1690.2.d.h 4
65.l even 6 2 130.2.e.d 4
65.n even 6 2 1690.2.e.k 4
65.r odd 12 2 650.2.o.a 4
65.r odd 12 2 650.2.o.e 4
65.s odd 12 2 1690.2.l.c 4
65.s odd 12 2 1690.2.l.d 4
195.y odd 6 2 1170.2.i.n 4
260.w odd 6 2 1040.2.q.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.e.d 4 65.l even 6 2
650.2.e.f 4 13.e even 6 2
650.2.o.a 4 65.r odd 12 2
650.2.o.e 4 65.r odd 12 2
1040.2.q.p 4 260.w odd 6 2
1170.2.i.n 4 195.y odd 6 2
1690.2.a.l 2 65.d even 2 1
1690.2.a.o 2 5.b even 2 1
1690.2.d.h 4 65.g odd 4 2
1690.2.e.k 4 65.n even 6 2
1690.2.l.c 4 65.s odd 12 2
1690.2.l.d 4 65.s odd 12 2
8450.2.a.z 2 1.a even 1 1 trivial
8450.2.a.bg 2 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8450))\):

\( T_{3}^{2} + 2T_{3} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} - 11 \) Copy content Toggle raw display
\( T_{11}^{2} - 3 \) Copy content Toggle raw display
\( T_{17}^{2} + 6T_{17} + 6 \) Copy content Toggle raw display
\( T_{31}^{2} + 10T_{31} + 22 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T - 2 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 11 \) Copy content Toggle raw display
$11$ \( T^{2} - 3 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$19$ \( T^{2} + 4T - 23 \) Copy content Toggle raw display
$23$ \( T^{2} - 12 \) Copy content Toggle raw display
$29$ \( T^{2} - 12T + 24 \) Copy content Toggle raw display
$31$ \( T^{2} + 10T + 22 \) Copy content Toggle raw display
$37$ \( T^{2} + 8T - 11 \) Copy content Toggle raw display
$41$ \( T^{2} - 48 \) Copy content Toggle raw display
$43$ \( T^{2} + 4T - 44 \) Copy content Toggle raw display
$47$ \( T^{2} + 6T - 3 \) Copy content Toggle raw display
$53$ \( T^{2} - 3 \) Copy content Toggle raw display
$59$ \( T^{2} + 12T + 24 \) Copy content Toggle raw display
$61$ \( T^{2} - 10T + 22 \) Copy content Toggle raw display
$67$ \( T^{2} - 4T - 104 \) Copy content Toggle raw display
$71$ \( T^{2} + 24T + 132 \) Copy content Toggle raw display
$73$ \( T^{2} + 2T - 2 \) Copy content Toggle raw display
$79$ \( T^{2} - 10T + 22 \) Copy content Toggle raw display
$83$ \( T^{2} - 6T - 66 \) Copy content Toggle raw display
$89$ \( (T - 9)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 14T + 46 \) Copy content Toggle raw display
show more
show less