gp: [N,k,chi] = [650,2,Mod(399,650)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("650.399");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(650, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 4]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [4,0,6,2,0,2,-12,0,2,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 12 \zeta_{12} ζ 1 2 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 650 Z ) × \left(\mathbb{Z}/650\mathbb{Z}\right)^\times ( Z / 6 5 0 Z ) × .
n n n
27 27 2 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− ζ 12 2 -\zeta_{12}^{2} − ζ 1 2 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 650 , [ χ ] ) S_{2}^{\mathrm{new}}(650, [\chi]) S 2 n e w ( 6 5 0 , [ χ ] ) :
T 3 4 − 6 T 3 3 + 14 T 3 2 − 12 T 3 + 4 T_{3}^{4} - 6T_{3}^{3} + 14T_{3}^{2} - 12T_{3} + 4 T 3 4 − 6 T 3 3 + 1 4 T 3 2 − 1 2 T 3 + 4
T3^4 - 6*T3^3 + 14*T3^2 - 12*T3 + 4
T 7 4 + 12 T 7 3 + 59 T 7 2 + 132 T 7 + 121 T_{7}^{4} + 12T_{7}^{3} + 59T_{7}^{2} + 132T_{7} + 121 T 7 4 + 1 2 T 7 3 + 5 9 T 7 2 + 1 3 2 T 7 + 1 2 1
T7^4 + 12*T7^3 + 59*T7^2 + 132*T7 + 121
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 − T 2 + 1 T^{4} - T^{2} + 1 T 4 − T 2 + 1
T^4 - T^2 + 1
3 3 3
T 4 − 6 T 3 + ⋯ + 4 T^{4} - 6 T^{3} + \cdots + 4 T 4 − 6 T 3 + ⋯ + 4
T^4 - 6*T^3 + 14*T^2 - 12*T + 4
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 + 12 T 3 + ⋯ + 121 T^{4} + 12 T^{3} + \cdots + 121 T 4 + 1 2 T 3 + ⋯ + 1 2 1
T^4 + 12*T^3 + 59*T^2 + 132*T + 121
11 11 1 1
T 4 + 3 T 2 + 9 T^{4} + 3T^{2} + 9 T 4 + 3 T 2 + 9
T^4 + 3*T^2 + 9
13 13 1 3
T 4 + 6 T 3 + ⋯ + 169 T^{4} + 6 T^{3} + \cdots + 169 T 4 + 6 T 3 + ⋯ + 1 6 9
T^4 + 6*T^3 + 23*T^2 + 78*T + 169
17 17 1 7
T 4 − 6 T 3 + ⋯ + 36 T^{4} - 6 T^{3} + \cdots + 36 T 4 − 6 T 3 + ⋯ + 3 6
T^4 - 6*T^3 + 6*T^2 + 36*T + 36
19 19 1 9
T 4 − 4 T 3 + ⋯ + 529 T^{4} - 4 T^{3} + \cdots + 529 T 4 − 4 T 3 + ⋯ + 5 2 9
T^4 - 4*T^3 + 39*T^2 + 92*T + 529
23 23 2 3
( T 2 + 6 T + 12 ) 2 (T^{2} + 6 T + 12)^{2} ( T 2 + 6 T + 1 2 ) 2
(T^2 + 6*T + 12)^2
29 29 2 9
T 4 − 12 T 3 + ⋯ + 576 T^{4} - 12 T^{3} + \cdots + 576 T 4 − 1 2 T 3 + ⋯ + 5 7 6
T^4 - 12*T^3 + 120*T^2 - 288*T + 576
31 31 3 1
( T 2 − 10 T + 22 ) 2 (T^{2} - 10 T + 22)^{2} ( T 2 − 1 0 T + 2 2 ) 2
(T^2 - 10*T + 22)^2
37 37 3 7
T 4 + 18 T 3 + ⋯ + 121 T^{4} + 18 T^{3} + \cdots + 121 T 4 + 1 8 T 3 + ⋯ + 1 2 1
T^4 + 18*T^3 + 119*T^2 + 198*T + 121
41 41 4 1
T 4 + 48 T 2 + 2304 T^{4} + 48T^{2} + 2304 T 4 + 4 8 T 2 + 2 3 0 4
T^4 + 48*T^2 + 2304
43 43 4 3
T 4 − 24 T 3 + ⋯ + 1936 T^{4} - 24 T^{3} + \cdots + 1936 T 4 − 2 4 T 3 + ⋯ + 1 9 3 6
T^4 - 24*T^3 + 236*T^2 - 1056*T + 1936
47 47 4 7
T 4 + 42 T 2 + 9 T^{4} + 42T^{2} + 9 T 4 + 4 2 T 2 + 9
T^4 + 42*T^2 + 9
53 53 5 3
( T 2 + 3 ) 2 (T^{2} + 3)^{2} ( T 2 + 3 ) 2
(T^2 + 3)^2
59 59 5 9
T 4 − 12 T 3 + ⋯ + 576 T^{4} - 12 T^{3} + \cdots + 576 T 4 − 1 2 T 3 + ⋯ + 5 7 6
T^4 - 12*T^3 + 120*T^2 - 288*T + 576
61 61 6 1
T 4 + 10 T 3 + ⋯ + 484 T^{4} + 10 T^{3} + \cdots + 484 T 4 + 1 0 T 3 + ⋯ + 4 8 4
T^4 + 10*T^3 + 78*T^2 + 220*T + 484
67 67 6 7
T 4 + 36 T 3 + ⋯ + 10816 T^{4} + 36 T^{3} + \cdots + 10816 T 4 + 3 6 T 3 + ⋯ + 1 0 8 1 6
T^4 + 36*T^3 + 536*T^2 + 3744*T + 10816
71 71 7 1
T 4 + 24 T 3 + ⋯ + 17424 T^{4} + 24 T^{3} + \cdots + 17424 T 4 + 2 4 T 3 + ⋯ + 1 7 4 2 4
T^4 + 24*T^3 + 444*T^2 + 3168*T + 17424
73 73 7 3
T 4 + 8 T 2 + 4 T^{4} + 8T^{2} + 4 T 4 + 8 T 2 + 4
T^4 + 8*T^2 + 4
79 79 7 9
( T 2 + 10 T + 22 ) 2 (T^{2} + 10 T + 22)^{2} ( T 2 + 1 0 T + 2 2 ) 2
(T^2 + 10*T + 22)^2
83 83 8 3
T 4 + 168 T 2 + 4356 T^{4} + 168T^{2} + 4356 T 4 + 1 6 8 T 2 + 4 3 5 6
T^4 + 168*T^2 + 4356
89 89 8 9
( T 2 + 9 T + 81 ) 2 (T^{2} + 9 T + 81)^{2} ( T 2 + 9 T + 8 1 ) 2
(T^2 + 9*T + 81)^2
97 97 9 7
T 4 + 6 T 3 + ⋯ + 2116 T^{4} + 6 T^{3} + \cdots + 2116 T 4 + 6 T 3 + ⋯ + 2 1 1 6
T^4 + 6*T^3 - 34*T^2 - 276*T + 2116
show more
show less