Properties

Label 650.2.o.e
Level 650650
Weight 22
Character orbit 650.o
Analytic conductor 5.1905.190
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(399,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.399"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 2, names="a")
 
Level: N N == 650=25213 650 = 2 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 650.o (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,6,2,0,2,-12,0,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.190276131385.19027613138
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ12q2+(ζ122+ζ12+1)q3+ζ122q4+(ζ123+ζ122+ζ12)q6+(ζ123+2ζ122+4)q7+ζ123q8++(ζ1232ζ126)q99+O(q100) q + \zeta_{12} q^{2} + (\zeta_{12}^{2} + \zeta_{12} + 1) q^{3} + \zeta_{12}^{2} q^{4} + (\zeta_{12}^{3} + \zeta_{12}^{2} + \zeta_{12}) q^{6} + (\zeta_{12}^{3} + 2 \zeta_{12}^{2} + \cdots - 4) q^{7} + \zeta_{12}^{3} q^{8}+ \cdots + (\zeta_{12}^{3} - 2 \zeta_{12} - 6) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+6q3+2q4+2q612q7+2q96q134q142q16+6q17+4q1928q216q2212q232q24+8q2612q28+12q29+20q31+24q99+O(q100) 4 q + 6 q^{3} + 2 q^{4} + 2 q^{6} - 12 q^{7} + 2 q^{9} - 6 q^{13} - 4 q^{14} - 2 q^{16} + 6 q^{17} + 4 q^{19} - 28 q^{21} - 6 q^{22} - 12 q^{23} - 2 q^{24} + 8 q^{26} - 12 q^{28} + 12 q^{29} + 20 q^{31}+ \cdots - 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/650Z)×\left(\mathbb{Z}/650\mathbb{Z}\right)^\times.

nn 2727 301301
χ(n)\chi(n) 1-1 ζ122-\zeta_{12}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
399.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i 0.633975 + 0.366025i 0.500000 + 0.866025i 0 −0.366025 0.633975i −2.13397 + 1.23205i 1.00000i −1.23205 2.13397i 0
399.2 0.866025 + 0.500000i 2.36603 + 1.36603i 0.500000 + 0.866025i 0 1.36603 + 2.36603i −3.86603 + 2.23205i 1.00000i 2.23205 + 3.86603i 0
549.1 −0.866025 + 0.500000i 0.633975 0.366025i 0.500000 0.866025i 0 −0.366025 + 0.633975i −2.13397 1.23205i 1.00000i −1.23205 + 2.13397i 0
549.2 0.866025 0.500000i 2.36603 1.36603i 0.500000 0.866025i 0 1.36603 2.36603i −3.86603 2.23205i 1.00000i 2.23205 3.86603i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.n even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.o.e 4
5.b even 2 1 650.2.o.a 4
5.c odd 4 1 130.2.e.d 4
5.c odd 4 1 650.2.e.f 4
13.c even 3 1 650.2.o.a 4
15.e even 4 1 1170.2.i.n 4
20.e even 4 1 1040.2.q.p 4
65.f even 4 1 1690.2.l.d 4
65.h odd 4 1 1690.2.e.k 4
65.k even 4 1 1690.2.l.c 4
65.n even 6 1 inner 650.2.o.e 4
65.o even 12 1 1690.2.d.h 4
65.o even 12 1 1690.2.l.d 4
65.q odd 12 1 130.2.e.d 4
65.q odd 12 1 650.2.e.f 4
65.q odd 12 1 1690.2.a.l 2
65.q odd 12 1 8450.2.a.bg 2
65.r odd 12 1 1690.2.a.o 2
65.r odd 12 1 1690.2.e.k 4
65.r odd 12 1 8450.2.a.z 2
65.t even 12 1 1690.2.d.h 4
65.t even 12 1 1690.2.l.c 4
195.bl even 12 1 1170.2.i.n 4
260.bj even 12 1 1040.2.q.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.e.d 4 5.c odd 4 1
130.2.e.d 4 65.q odd 12 1
650.2.e.f 4 5.c odd 4 1
650.2.e.f 4 65.q odd 12 1
650.2.o.a 4 5.b even 2 1
650.2.o.a 4 13.c even 3 1
650.2.o.e 4 1.a even 1 1 trivial
650.2.o.e 4 65.n even 6 1 inner
1040.2.q.p 4 20.e even 4 1
1040.2.q.p 4 260.bj even 12 1
1170.2.i.n 4 15.e even 4 1
1170.2.i.n 4 195.bl even 12 1
1690.2.a.l 2 65.q odd 12 1
1690.2.a.o 2 65.r odd 12 1
1690.2.d.h 4 65.o even 12 1
1690.2.d.h 4 65.t even 12 1
1690.2.e.k 4 65.h odd 4 1
1690.2.e.k 4 65.r odd 12 1
1690.2.l.c 4 65.k even 4 1
1690.2.l.c 4 65.t even 12 1
1690.2.l.d 4 65.f even 4 1
1690.2.l.d 4 65.o even 12 1
8450.2.a.z 2 65.r odd 12 1
8450.2.a.bg 2 65.q odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(650,[χ])S_{2}^{\mathrm{new}}(650, [\chi]):

T346T33+14T3212T3+4 T_{3}^{4} - 6T_{3}^{3} + 14T_{3}^{2} - 12T_{3} + 4 Copy content Toggle raw display
T74+12T73+59T72+132T7+121 T_{7}^{4} + 12T_{7}^{3} + 59T_{7}^{2} + 132T_{7} + 121 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
33 T46T3++4 T^{4} - 6 T^{3} + \cdots + 4 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+12T3++121 T^{4} + 12 T^{3} + \cdots + 121 Copy content Toggle raw display
1111 T4+3T2+9 T^{4} + 3T^{2} + 9 Copy content Toggle raw display
1313 T4+6T3++169 T^{4} + 6 T^{3} + \cdots + 169 Copy content Toggle raw display
1717 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
1919 T44T3++529 T^{4} - 4 T^{3} + \cdots + 529 Copy content Toggle raw display
2323 (T2+6T+12)2 (T^{2} + 6 T + 12)^{2} Copy content Toggle raw display
2929 T412T3++576 T^{4} - 12 T^{3} + \cdots + 576 Copy content Toggle raw display
3131 (T210T+22)2 (T^{2} - 10 T + 22)^{2} Copy content Toggle raw display
3737 T4+18T3++121 T^{4} + 18 T^{3} + \cdots + 121 Copy content Toggle raw display
4141 T4+48T2+2304 T^{4} + 48T^{2} + 2304 Copy content Toggle raw display
4343 T424T3++1936 T^{4} - 24 T^{3} + \cdots + 1936 Copy content Toggle raw display
4747 T4+42T2+9 T^{4} + 42T^{2} + 9 Copy content Toggle raw display
5353 (T2+3)2 (T^{2} + 3)^{2} Copy content Toggle raw display
5959 T412T3++576 T^{4} - 12 T^{3} + \cdots + 576 Copy content Toggle raw display
6161 T4+10T3++484 T^{4} + 10 T^{3} + \cdots + 484 Copy content Toggle raw display
6767 T4+36T3++10816 T^{4} + 36 T^{3} + \cdots + 10816 Copy content Toggle raw display
7171 T4+24T3++17424 T^{4} + 24 T^{3} + \cdots + 17424 Copy content Toggle raw display
7373 T4+8T2+4 T^{4} + 8T^{2} + 4 Copy content Toggle raw display
7979 (T2+10T+22)2 (T^{2} + 10 T + 22)^{2} Copy content Toggle raw display
8383 T4+168T2+4356 T^{4} + 168T^{2} + 4356 Copy content Toggle raw display
8989 (T2+9T+81)2 (T^{2} + 9 T + 81)^{2} Copy content Toggle raw display
9797 T4+6T3++2116 T^{4} + 6 T^{3} + \cdots + 2116 Copy content Toggle raw display
show more
show less