L(s) = 1 | − 2·2-s − 2·3-s + 3·4-s + 4·6-s − 2·7-s − 4·8-s − 6·12-s + 4·14-s + 5·16-s − 6·17-s − 4·19-s + 4·21-s + 8·24-s + 2·27-s − 6·28-s + 12·29-s − 10·31-s − 6·32-s + 12·34-s − 8·37-s + 8·38-s − 8·42-s − 4·43-s − 6·47-s − 10·48-s + 49-s + 12·51-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.15·3-s + 3/2·4-s + 1.63·6-s − 0.755·7-s − 1.41·8-s − 1.73·12-s + 1.06·14-s + 5/4·16-s − 1.45·17-s − 0.917·19-s + 0.872·21-s + 1.63·24-s + 0.384·27-s − 1.13·28-s + 2.22·29-s − 1.79·31-s − 1.06·32-s + 2.05·34-s − 1.31·37-s + 1.29·38-s − 1.23·42-s − 0.609·43-s − 0.875·47-s − 1.44·48-s + 1/7·49-s + 1.68·51-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 71402500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 71402500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.70159763153847020592154794589, −7.06319261241160112653114985900, −6.83729980532016153074889075816, −6.78117615017289791871843434470, −6.26505714252774725469879780777, −6.12751406285905291072317902981, −5.72796370606817822072151105382, −5.31989161292594133480300761325, −4.76421502225714321737705826706, −4.72468306914898848356492210801, −4.00514747075678077807763251912, −3.64807594523875912079169718548, −3.01095910504017499340444119535, −2.92986933555127470065663697791, −2.08367524765446660834179192254, −2.01810840342636357488797104811, −1.36356439308204282095743244696, −0.67308997981099210223202500171, 0, 0,
0.67308997981099210223202500171, 1.36356439308204282095743244696, 2.01810840342636357488797104811, 2.08367524765446660834179192254, 2.92986933555127470065663697791, 3.01095910504017499340444119535, 3.64807594523875912079169718548, 4.00514747075678077807763251912, 4.72468306914898848356492210801, 4.76421502225714321737705826706, 5.31989161292594133480300761325, 5.72796370606817822072151105382, 6.12751406285905291072317902981, 6.26505714252774725469879780777, 6.78117615017289791871843434470, 6.83729980532016153074889075816, 7.06319261241160112653114985900, 7.70159763153847020592154794589