Properties

Label 8450.2.a.cx.1.5
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,9,-7,9,0,-7,1,9,8,0,-4,-7,0,1,0,9,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 17x^{6} + 53x^{5} - 69x^{4} - 33x^{3} + 26x^{2} + 8x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1690)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.20982\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -0.666723 q^{3} +1.00000 q^{4} -0.666723 q^{6} +2.41461 q^{7} +1.00000 q^{8} -2.55548 q^{9} +1.46118 q^{11} -0.666723 q^{12} +2.41461 q^{14} +1.00000 q^{16} -6.74749 q^{17} -2.55548 q^{18} -7.41659 q^{19} -1.60988 q^{21} +1.46118 q^{22} +7.48975 q^{23} -0.666723 q^{24} +3.70397 q^{27} +2.41461 q^{28} -0.696556 q^{29} -1.36837 q^{31} +1.00000 q^{32} -0.974200 q^{33} -6.74749 q^{34} -2.55548 q^{36} +9.25191 q^{37} -7.41659 q^{38} -4.24884 q^{41} -1.60988 q^{42} -2.38573 q^{43} +1.46118 q^{44} +7.48975 q^{46} -2.77456 q^{47} -0.666723 q^{48} -1.16965 q^{49} +4.49870 q^{51} -7.04744 q^{53} +3.70397 q^{54} +2.41461 q^{56} +4.94481 q^{57} -0.696556 q^{58} +0.0690364 q^{59} +5.91472 q^{61} -1.36837 q^{62} -6.17050 q^{63} +1.00000 q^{64} -0.974200 q^{66} -10.9958 q^{67} -6.74749 q^{68} -4.99359 q^{69} +3.60919 q^{71} -2.55548 q^{72} -9.30157 q^{73} +9.25191 q^{74} -7.41659 q^{76} +3.52818 q^{77} -0.766732 q^{79} +5.19692 q^{81} -4.24884 q^{82} -16.5800 q^{83} -1.60988 q^{84} -2.38573 q^{86} +0.464410 q^{87} +1.46118 q^{88} -17.7481 q^{89} +7.48975 q^{92} +0.912326 q^{93} -2.77456 q^{94} -0.666723 q^{96} +10.5209 q^{97} -1.16965 q^{98} -3.73401 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{2} - 7 q^{3} + 9 q^{4} - 7 q^{6} + q^{7} + 9 q^{8} + 8 q^{9} - 4 q^{11} - 7 q^{12} + q^{14} + 9 q^{16} - 12 q^{17} + 8 q^{18} - 6 q^{19} - 8 q^{21} - 4 q^{22} - 11 q^{23} - 7 q^{24} - 34 q^{27}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.666723 −0.384933 −0.192466 0.981304i \(-0.561649\pi\)
−0.192466 + 0.981304i \(0.561649\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −0.666723 −0.272188
\(7\) 2.41461 0.912638 0.456319 0.889816i \(-0.349168\pi\)
0.456319 + 0.889816i \(0.349168\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.55548 −0.851827
\(10\) 0 0
\(11\) 1.46118 0.440561 0.220281 0.975437i \(-0.429303\pi\)
0.220281 + 0.975437i \(0.429303\pi\)
\(12\) −0.666723 −0.192466
\(13\) 0 0
\(14\) 2.41461 0.645332
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −6.74749 −1.63651 −0.818253 0.574858i \(-0.805057\pi\)
−0.818253 + 0.574858i \(0.805057\pi\)
\(18\) −2.55548 −0.602333
\(19\) −7.41659 −1.70148 −0.850741 0.525585i \(-0.823846\pi\)
−0.850741 + 0.525585i \(0.823846\pi\)
\(20\) 0 0
\(21\) −1.60988 −0.351304
\(22\) 1.46118 0.311524
\(23\) 7.48975 1.56172 0.780861 0.624705i \(-0.214781\pi\)
0.780861 + 0.624705i \(0.214781\pi\)
\(24\) −0.666723 −0.136094
\(25\) 0 0
\(26\) 0 0
\(27\) 3.70397 0.712829
\(28\) 2.41461 0.456319
\(29\) −0.696556 −0.129347 −0.0646736 0.997906i \(-0.520601\pi\)
−0.0646736 + 0.997906i \(0.520601\pi\)
\(30\) 0 0
\(31\) −1.36837 −0.245767 −0.122884 0.992421i \(-0.539214\pi\)
−0.122884 + 0.992421i \(0.539214\pi\)
\(32\) 1.00000 0.176777
\(33\) −0.974200 −0.169586
\(34\) −6.74749 −1.15718
\(35\) 0 0
\(36\) −2.55548 −0.425913
\(37\) 9.25191 1.52101 0.760503 0.649335i \(-0.224953\pi\)
0.760503 + 0.649335i \(0.224953\pi\)
\(38\) −7.41659 −1.20313
\(39\) 0 0
\(40\) 0 0
\(41\) −4.24884 −0.663558 −0.331779 0.943357i \(-0.607649\pi\)
−0.331779 + 0.943357i \(0.607649\pi\)
\(42\) −1.60988 −0.248409
\(43\) −2.38573 −0.363821 −0.181910 0.983315i \(-0.558228\pi\)
−0.181910 + 0.983315i \(0.558228\pi\)
\(44\) 1.46118 0.220281
\(45\) 0 0
\(46\) 7.48975 1.10430
\(47\) −2.77456 −0.404711 −0.202356 0.979312i \(-0.564860\pi\)
−0.202356 + 0.979312i \(0.564860\pi\)
\(48\) −0.666723 −0.0962331
\(49\) −1.16965 −0.167092
\(50\) 0 0
\(51\) 4.49870 0.629944
\(52\) 0 0
\(53\) −7.04744 −0.968040 −0.484020 0.875057i \(-0.660824\pi\)
−0.484020 + 0.875057i \(0.660824\pi\)
\(54\) 3.70397 0.504046
\(55\) 0 0
\(56\) 2.41461 0.322666
\(57\) 4.94481 0.654956
\(58\) −0.696556 −0.0914623
\(59\) 0.0690364 0.00898777 0.00449389 0.999990i \(-0.498570\pi\)
0.00449389 + 0.999990i \(0.498570\pi\)
\(60\) 0 0
\(61\) 5.91472 0.757302 0.378651 0.925539i \(-0.376388\pi\)
0.378651 + 0.925539i \(0.376388\pi\)
\(62\) −1.36837 −0.173784
\(63\) −6.17050 −0.777409
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −0.974200 −0.119916
\(67\) −10.9958 −1.34335 −0.671674 0.740847i \(-0.734424\pi\)
−0.671674 + 0.740847i \(0.734424\pi\)
\(68\) −6.74749 −0.818253
\(69\) −4.99359 −0.601157
\(70\) 0 0
\(71\) 3.60919 0.428332 0.214166 0.976797i \(-0.431297\pi\)
0.214166 + 0.976797i \(0.431297\pi\)
\(72\) −2.55548 −0.301166
\(73\) −9.30157 −1.08867 −0.544333 0.838869i \(-0.683217\pi\)
−0.544333 + 0.838869i \(0.683217\pi\)
\(74\) 9.25191 1.07551
\(75\) 0 0
\(76\) −7.41659 −0.850741
\(77\) 3.52818 0.402073
\(78\) 0 0
\(79\) −0.766732 −0.0862641 −0.0431320 0.999069i \(-0.513734\pi\)
−0.0431320 + 0.999069i \(0.513734\pi\)
\(80\) 0 0
\(81\) 5.19692 0.577436
\(82\) −4.24884 −0.469206
\(83\) −16.5800 −1.81989 −0.909947 0.414725i \(-0.863878\pi\)
−0.909947 + 0.414725i \(0.863878\pi\)
\(84\) −1.60988 −0.175652
\(85\) 0 0
\(86\) −2.38573 −0.257260
\(87\) 0.464410 0.0497899
\(88\) 1.46118 0.155762
\(89\) −17.7481 −1.88130 −0.940648 0.339384i \(-0.889781\pi\)
−0.940648 + 0.339384i \(0.889781\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 7.48975 0.780861
\(93\) 0.912326 0.0946038
\(94\) −2.77456 −0.286174
\(95\) 0 0
\(96\) −0.666723 −0.0680471
\(97\) 10.5209 1.06824 0.534120 0.845409i \(-0.320643\pi\)
0.534120 + 0.845409i \(0.320643\pi\)
\(98\) −1.16965 −0.118152
\(99\) −3.73401 −0.375282
\(100\) 0 0
\(101\) 14.2473 1.41765 0.708827 0.705382i \(-0.249225\pi\)
0.708827 + 0.705382i \(0.249225\pi\)
\(102\) 4.49870 0.445438
\(103\) −9.72411 −0.958145 −0.479072 0.877775i \(-0.659027\pi\)
−0.479072 + 0.877775i \(0.659027\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −7.04744 −0.684508
\(107\) −6.14900 −0.594446 −0.297223 0.954808i \(-0.596061\pi\)
−0.297223 + 0.954808i \(0.596061\pi\)
\(108\) 3.70397 0.356414
\(109\) 0.319202 0.0305741 0.0152870 0.999883i \(-0.495134\pi\)
0.0152870 + 0.999883i \(0.495134\pi\)
\(110\) 0 0
\(111\) −6.16846 −0.585485
\(112\) 2.41461 0.228159
\(113\) 1.95370 0.183789 0.0918945 0.995769i \(-0.470708\pi\)
0.0918945 + 0.995769i \(0.470708\pi\)
\(114\) 4.94481 0.463124
\(115\) 0 0
\(116\) −0.696556 −0.0646736
\(117\) 0 0
\(118\) 0.0690364 0.00635531
\(119\) −16.2926 −1.49354
\(120\) 0 0
\(121\) −8.86496 −0.805906
\(122\) 5.91472 0.535494
\(123\) 2.83280 0.255425
\(124\) −1.36837 −0.122884
\(125\) 0 0
\(126\) −6.17050 −0.549711
\(127\) −9.73867 −0.864167 −0.432084 0.901834i \(-0.642221\pi\)
−0.432084 + 0.901834i \(0.642221\pi\)
\(128\) 1.00000 0.0883883
\(129\) 1.59062 0.140046
\(130\) 0 0
\(131\) 10.6075 0.926778 0.463389 0.886155i \(-0.346633\pi\)
0.463389 + 0.886155i \(0.346633\pi\)
\(132\) −0.974200 −0.0847932
\(133\) −17.9082 −1.55284
\(134\) −10.9958 −0.949890
\(135\) 0 0
\(136\) −6.74749 −0.578592
\(137\) 6.40586 0.547289 0.273645 0.961831i \(-0.411771\pi\)
0.273645 + 0.961831i \(0.411771\pi\)
\(138\) −4.99359 −0.425082
\(139\) −16.7981 −1.42480 −0.712398 0.701775i \(-0.752391\pi\)
−0.712398 + 0.701775i \(0.752391\pi\)
\(140\) 0 0
\(141\) 1.84986 0.155786
\(142\) 3.60919 0.302877
\(143\) 0 0
\(144\) −2.55548 −0.212957
\(145\) 0 0
\(146\) −9.30157 −0.769804
\(147\) 0.779830 0.0643193
\(148\) 9.25191 0.760503
\(149\) 8.90415 0.729456 0.364728 0.931114i \(-0.381162\pi\)
0.364728 + 0.931114i \(0.381162\pi\)
\(150\) 0 0
\(151\) −17.1722 −1.39745 −0.698726 0.715389i \(-0.746249\pi\)
−0.698726 + 0.715389i \(0.746249\pi\)
\(152\) −7.41659 −0.601565
\(153\) 17.2431 1.39402
\(154\) 3.52818 0.284308
\(155\) 0 0
\(156\) 0 0
\(157\) −11.0649 −0.883073 −0.441537 0.897243i \(-0.645566\pi\)
−0.441537 + 0.897243i \(0.645566\pi\)
\(158\) −0.766732 −0.0609979
\(159\) 4.69869 0.372630
\(160\) 0 0
\(161\) 18.0848 1.42529
\(162\) 5.19692 0.408309
\(163\) 15.2437 1.19398 0.596988 0.802250i \(-0.296364\pi\)
0.596988 + 0.802250i \(0.296364\pi\)
\(164\) −4.24884 −0.331779
\(165\) 0 0
\(166\) −16.5800 −1.28686
\(167\) −8.69198 −0.672605 −0.336303 0.941754i \(-0.609177\pi\)
−0.336303 + 0.941754i \(0.609177\pi\)
\(168\) −1.60988 −0.124205
\(169\) 0 0
\(170\) 0 0
\(171\) 18.9529 1.44937
\(172\) −2.38573 −0.181910
\(173\) 3.39226 0.257909 0.128954 0.991651i \(-0.458838\pi\)
0.128954 + 0.991651i \(0.458838\pi\)
\(174\) 0.464410 0.0352068
\(175\) 0 0
\(176\) 1.46118 0.110140
\(177\) −0.0460281 −0.00345969
\(178\) −17.7481 −1.33028
\(179\) 13.2996 0.994057 0.497029 0.867734i \(-0.334424\pi\)
0.497029 + 0.867734i \(0.334424\pi\)
\(180\) 0 0
\(181\) −14.0010 −1.04068 −0.520341 0.853958i \(-0.674195\pi\)
−0.520341 + 0.853958i \(0.674195\pi\)
\(182\) 0 0
\(183\) −3.94348 −0.291510
\(184\) 7.48975 0.552152
\(185\) 0 0
\(186\) 0.912326 0.0668950
\(187\) −9.85927 −0.720981
\(188\) −2.77456 −0.202356
\(189\) 8.94364 0.650554
\(190\) 0 0
\(191\) −18.7576 −1.35725 −0.678627 0.734483i \(-0.737425\pi\)
−0.678627 + 0.734483i \(0.737425\pi\)
\(192\) −0.666723 −0.0481166
\(193\) 24.3855 1.75530 0.877652 0.479299i \(-0.159109\pi\)
0.877652 + 0.479299i \(0.159109\pi\)
\(194\) 10.5209 0.755360
\(195\) 0 0
\(196\) −1.16965 −0.0835462
\(197\) −2.73133 −0.194599 −0.0972997 0.995255i \(-0.531021\pi\)
−0.0972997 + 0.995255i \(0.531021\pi\)
\(198\) −3.73401 −0.265364
\(199\) 11.2116 0.794771 0.397385 0.917652i \(-0.369918\pi\)
0.397385 + 0.917652i \(0.369918\pi\)
\(200\) 0 0
\(201\) 7.33113 0.517098
\(202\) 14.2473 1.00243
\(203\) −1.68191 −0.118047
\(204\) 4.49870 0.314972
\(205\) 0 0
\(206\) −9.72411 −0.677511
\(207\) −19.1399 −1.33032
\(208\) 0 0
\(209\) −10.8369 −0.749607
\(210\) 0 0
\(211\) 13.7163 0.944266 0.472133 0.881527i \(-0.343484\pi\)
0.472133 + 0.881527i \(0.343484\pi\)
\(212\) −7.04744 −0.484020
\(213\) −2.40633 −0.164879
\(214\) −6.14900 −0.420337
\(215\) 0 0
\(216\) 3.70397 0.252023
\(217\) −3.30409 −0.224296
\(218\) 0.319202 0.0216191
\(219\) 6.20157 0.419063
\(220\) 0 0
\(221\) 0 0
\(222\) −6.16846 −0.414000
\(223\) −9.84353 −0.659172 −0.329586 0.944126i \(-0.606909\pi\)
−0.329586 + 0.944126i \(0.606909\pi\)
\(224\) 2.41461 0.161333
\(225\) 0 0
\(226\) 1.95370 0.129959
\(227\) −19.4038 −1.28788 −0.643939 0.765077i \(-0.722701\pi\)
−0.643939 + 0.765077i \(0.722701\pi\)
\(228\) 4.94481 0.327478
\(229\) −16.7503 −1.10689 −0.553447 0.832885i \(-0.686688\pi\)
−0.553447 + 0.832885i \(0.686688\pi\)
\(230\) 0 0
\(231\) −2.35231 −0.154771
\(232\) −0.696556 −0.0457311
\(233\) −16.7974 −1.10043 −0.550217 0.835022i \(-0.685455\pi\)
−0.550217 + 0.835022i \(0.685455\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.0690364 0.00449389
\(237\) 0.511198 0.0332059
\(238\) −16.2926 −1.05609
\(239\) 18.2819 1.18256 0.591278 0.806467i \(-0.298623\pi\)
0.591278 + 0.806467i \(0.298623\pi\)
\(240\) 0 0
\(241\) −7.86172 −0.506418 −0.253209 0.967412i \(-0.581486\pi\)
−0.253209 + 0.967412i \(0.581486\pi\)
\(242\) −8.86496 −0.569861
\(243\) −14.5768 −0.935102
\(244\) 5.91472 0.378651
\(245\) 0 0
\(246\) 2.83280 0.180613
\(247\) 0 0
\(248\) −1.36837 −0.0868918
\(249\) 11.0543 0.700536
\(250\) 0 0
\(251\) 8.97087 0.566236 0.283118 0.959085i \(-0.408631\pi\)
0.283118 + 0.959085i \(0.408631\pi\)
\(252\) −6.17050 −0.388705
\(253\) 10.9439 0.688034
\(254\) −9.73867 −0.611059
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 24.2725 1.51408 0.757040 0.653369i \(-0.226645\pi\)
0.757040 + 0.653369i \(0.226645\pi\)
\(258\) 1.59062 0.0990278
\(259\) 22.3398 1.38813
\(260\) 0 0
\(261\) 1.78004 0.110181
\(262\) 10.6075 0.655331
\(263\) −28.7755 −1.77438 −0.887188 0.461408i \(-0.847344\pi\)
−0.887188 + 0.461408i \(0.847344\pi\)
\(264\) −0.974200 −0.0599578
\(265\) 0 0
\(266\) −17.9082 −1.09802
\(267\) 11.8331 0.724172
\(268\) −10.9958 −0.671674
\(269\) −26.2808 −1.60237 −0.801185 0.598417i \(-0.795797\pi\)
−0.801185 + 0.598417i \(0.795797\pi\)
\(270\) 0 0
\(271\) 14.3647 0.872594 0.436297 0.899803i \(-0.356290\pi\)
0.436297 + 0.899803i \(0.356290\pi\)
\(272\) −6.74749 −0.409126
\(273\) 0 0
\(274\) 6.40586 0.386992
\(275\) 0 0
\(276\) −4.99359 −0.300579
\(277\) 9.92492 0.596331 0.298165 0.954514i \(-0.403625\pi\)
0.298165 + 0.954514i \(0.403625\pi\)
\(278\) −16.7981 −1.00748
\(279\) 3.49685 0.209351
\(280\) 0 0
\(281\) 11.7992 0.703880 0.351940 0.936023i \(-0.385522\pi\)
0.351940 + 0.936023i \(0.385522\pi\)
\(282\) 1.84986 0.110158
\(283\) −13.0538 −0.775968 −0.387984 0.921666i \(-0.626828\pi\)
−0.387984 + 0.921666i \(0.626828\pi\)
\(284\) 3.60919 0.214166
\(285\) 0 0
\(286\) 0 0
\(287\) −10.2593 −0.605588
\(288\) −2.55548 −0.150583
\(289\) 28.5286 1.67815
\(290\) 0 0
\(291\) −7.01455 −0.411200
\(292\) −9.30157 −0.544333
\(293\) 16.2358 0.948506 0.474253 0.880389i \(-0.342718\pi\)
0.474253 + 0.880389i \(0.342718\pi\)
\(294\) 0.779830 0.0454806
\(295\) 0 0
\(296\) 9.25191 0.537757
\(297\) 5.41215 0.314045
\(298\) 8.90415 0.515803
\(299\) 0 0
\(300\) 0 0
\(301\) −5.76062 −0.332036
\(302\) −17.1722 −0.988148
\(303\) −9.49897 −0.545701
\(304\) −7.41659 −0.425370
\(305\) 0 0
\(306\) 17.2431 0.985721
\(307\) 5.66589 0.323370 0.161685 0.986842i \(-0.448307\pi\)
0.161685 + 0.986842i \(0.448307\pi\)
\(308\) 3.52818 0.201036
\(309\) 6.48328 0.368821
\(310\) 0 0
\(311\) 20.5465 1.16508 0.582542 0.812801i \(-0.302058\pi\)
0.582542 + 0.812801i \(0.302058\pi\)
\(312\) 0 0
\(313\) 11.0354 0.623756 0.311878 0.950122i \(-0.399042\pi\)
0.311878 + 0.950122i \(0.399042\pi\)
\(314\) −11.0649 −0.624427
\(315\) 0 0
\(316\) −0.766732 −0.0431320
\(317\) −17.0656 −0.958501 −0.479251 0.877678i \(-0.659091\pi\)
−0.479251 + 0.877678i \(0.659091\pi\)
\(318\) 4.69869 0.263489
\(319\) −1.01779 −0.0569854
\(320\) 0 0
\(321\) 4.09968 0.228822
\(322\) 18.0848 1.00783
\(323\) 50.0433 2.78448
\(324\) 5.19692 0.288718
\(325\) 0 0
\(326\) 15.2437 0.844269
\(327\) −0.212820 −0.0117689
\(328\) −4.24884 −0.234603
\(329\) −6.69949 −0.369355
\(330\) 0 0
\(331\) 29.6977 1.63233 0.816167 0.577817i \(-0.196095\pi\)
0.816167 + 0.577817i \(0.196095\pi\)
\(332\) −16.5800 −0.909947
\(333\) −23.6431 −1.29563
\(334\) −8.69198 −0.475604
\(335\) 0 0
\(336\) −1.60988 −0.0878260
\(337\) −11.1216 −0.605833 −0.302917 0.953017i \(-0.597960\pi\)
−0.302917 + 0.953017i \(0.597960\pi\)
\(338\) 0 0
\(339\) −1.30258 −0.0707464
\(340\) 0 0
\(341\) −1.99944 −0.108275
\(342\) 18.9529 1.02486
\(343\) −19.7265 −1.06513
\(344\) −2.38573 −0.128630
\(345\) 0 0
\(346\) 3.39226 0.182369
\(347\) −19.1698 −1.02909 −0.514545 0.857463i \(-0.672039\pi\)
−0.514545 + 0.857463i \(0.672039\pi\)
\(348\) 0.464410 0.0248950
\(349\) 2.07169 0.110895 0.0554474 0.998462i \(-0.482341\pi\)
0.0554474 + 0.998462i \(0.482341\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.46118 0.0778810
\(353\) −14.2889 −0.760522 −0.380261 0.924879i \(-0.624166\pi\)
−0.380261 + 0.924879i \(0.624166\pi\)
\(354\) −0.0460281 −0.00244637
\(355\) 0 0
\(356\) −17.7481 −0.940648
\(357\) 10.8626 0.574911
\(358\) 13.2996 0.702905
\(359\) 12.4966 0.659543 0.329772 0.944061i \(-0.393028\pi\)
0.329772 + 0.944061i \(0.393028\pi\)
\(360\) 0 0
\(361\) 36.0058 1.89504
\(362\) −14.0010 −0.735874
\(363\) 5.91047 0.310219
\(364\) 0 0
\(365\) 0 0
\(366\) −3.94348 −0.206129
\(367\) −20.7194 −1.08154 −0.540772 0.841170i \(-0.681868\pi\)
−0.540772 + 0.841170i \(0.681868\pi\)
\(368\) 7.48975 0.390430
\(369\) 10.8578 0.565236
\(370\) 0 0
\(371\) −17.0168 −0.883470
\(372\) 0.912326 0.0473019
\(373\) −31.4926 −1.63063 −0.815313 0.579020i \(-0.803435\pi\)
−0.815313 + 0.579020i \(0.803435\pi\)
\(374\) −9.85927 −0.509811
\(375\) 0 0
\(376\) −2.77456 −0.143087
\(377\) 0 0
\(378\) 8.94364 0.460011
\(379\) −7.87442 −0.404482 −0.202241 0.979336i \(-0.564822\pi\)
−0.202241 + 0.979336i \(0.564822\pi\)
\(380\) 0 0
\(381\) 6.49299 0.332646
\(382\) −18.7576 −0.959723
\(383\) 8.03386 0.410511 0.205256 0.978708i \(-0.434197\pi\)
0.205256 + 0.978708i \(0.434197\pi\)
\(384\) −0.666723 −0.0340236
\(385\) 0 0
\(386\) 24.3855 1.24119
\(387\) 6.09669 0.309912
\(388\) 10.5209 0.534120
\(389\) −21.5917 −1.09474 −0.547371 0.836890i \(-0.684371\pi\)
−0.547371 + 0.836890i \(0.684371\pi\)
\(390\) 0 0
\(391\) −50.5370 −2.55577
\(392\) −1.16965 −0.0590761
\(393\) −7.07224 −0.356747
\(394\) −2.73133 −0.137603
\(395\) 0 0
\(396\) −3.73401 −0.187641
\(397\) −36.8751 −1.85071 −0.925355 0.379102i \(-0.876233\pi\)
−0.925355 + 0.379102i \(0.876233\pi\)
\(398\) 11.2116 0.561988
\(399\) 11.9398 0.597737
\(400\) 0 0
\(401\) −8.26837 −0.412902 −0.206451 0.978457i \(-0.566191\pi\)
−0.206451 + 0.978457i \(0.566191\pi\)
\(402\) 7.33113 0.365644
\(403\) 0 0
\(404\) 14.2473 0.708827
\(405\) 0 0
\(406\) −1.68191 −0.0834719
\(407\) 13.5187 0.670096
\(408\) 4.49870 0.222719
\(409\) −3.02146 −0.149402 −0.0747008 0.997206i \(-0.523800\pi\)
−0.0747008 + 0.997206i \(0.523800\pi\)
\(410\) 0 0
\(411\) −4.27093 −0.210669
\(412\) −9.72411 −0.479072
\(413\) 0.166696 0.00820258
\(414\) −19.1399 −0.940676
\(415\) 0 0
\(416\) 0 0
\(417\) 11.1997 0.548451
\(418\) −10.8369 −0.530052
\(419\) −35.0376 −1.71170 −0.855850 0.517223i \(-0.826966\pi\)
−0.855850 + 0.517223i \(0.826966\pi\)
\(420\) 0 0
\(421\) 9.81291 0.478252 0.239126 0.970989i \(-0.423139\pi\)
0.239126 + 0.970989i \(0.423139\pi\)
\(422\) 13.7163 0.667697
\(423\) 7.09033 0.344744
\(424\) −7.04744 −0.342254
\(425\) 0 0
\(426\) −2.40633 −0.116587
\(427\) 14.2818 0.691143
\(428\) −6.14900 −0.297223
\(429\) 0 0
\(430\) 0 0
\(431\) −5.88552 −0.283495 −0.141748 0.989903i \(-0.545272\pi\)
−0.141748 + 0.989903i \(0.545272\pi\)
\(432\) 3.70397 0.178207
\(433\) −31.1096 −1.49503 −0.747516 0.664244i \(-0.768754\pi\)
−0.747516 + 0.664244i \(0.768754\pi\)
\(434\) −3.30409 −0.158601
\(435\) 0 0
\(436\) 0.319202 0.0152870
\(437\) −55.5484 −2.65724
\(438\) 6.20157 0.296322
\(439\) −2.69710 −0.128726 −0.0643629 0.997927i \(-0.520502\pi\)
−0.0643629 + 0.997927i \(0.520502\pi\)
\(440\) 0 0
\(441\) 2.98901 0.142334
\(442\) 0 0
\(443\) 19.0859 0.906799 0.453399 0.891308i \(-0.350211\pi\)
0.453399 + 0.891308i \(0.350211\pi\)
\(444\) −6.16846 −0.292742
\(445\) 0 0
\(446\) −9.84353 −0.466105
\(447\) −5.93660 −0.280791
\(448\) 2.41461 0.114080
\(449\) −18.3579 −0.866363 −0.433182 0.901307i \(-0.642609\pi\)
−0.433182 + 0.901307i \(0.642609\pi\)
\(450\) 0 0
\(451\) −6.20831 −0.292338
\(452\) 1.95370 0.0918945
\(453\) 11.4491 0.537925
\(454\) −19.4038 −0.910668
\(455\) 0 0
\(456\) 4.94481 0.231562
\(457\) 25.3873 1.18757 0.593785 0.804624i \(-0.297633\pi\)
0.593785 + 0.804624i \(0.297633\pi\)
\(458\) −16.7503 −0.782692
\(459\) −24.9925 −1.16655
\(460\) 0 0
\(461\) −1.12031 −0.0521782 −0.0260891 0.999660i \(-0.508305\pi\)
−0.0260891 + 0.999660i \(0.508305\pi\)
\(462\) −2.35231 −0.109440
\(463\) −30.6952 −1.42653 −0.713264 0.700895i \(-0.752784\pi\)
−0.713264 + 0.700895i \(0.752784\pi\)
\(464\) −0.696556 −0.0323368
\(465\) 0 0
\(466\) −16.7974 −0.778124
\(467\) 5.88670 0.272404 0.136202 0.990681i \(-0.456510\pi\)
0.136202 + 0.990681i \(0.456510\pi\)
\(468\) 0 0
\(469\) −26.5505 −1.22599
\(470\) 0 0
\(471\) 7.37720 0.339924
\(472\) 0.0690364 0.00317766
\(473\) −3.48597 −0.160285
\(474\) 0.511198 0.0234801
\(475\) 0 0
\(476\) −16.2926 −0.746768
\(477\) 18.0096 0.824602
\(478\) 18.2819 0.836194
\(479\) 24.6962 1.12840 0.564200 0.825638i \(-0.309185\pi\)
0.564200 + 0.825638i \(0.309185\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −7.86172 −0.358091
\(483\) −12.0576 −0.548639
\(484\) −8.86496 −0.402953
\(485\) 0 0
\(486\) −14.5768 −0.661217
\(487\) −6.85817 −0.310774 −0.155387 0.987854i \(-0.549662\pi\)
−0.155387 + 0.987854i \(0.549662\pi\)
\(488\) 5.91472 0.267747
\(489\) −10.1633 −0.459600
\(490\) 0 0
\(491\) −32.0421 −1.44604 −0.723021 0.690826i \(-0.757247\pi\)
−0.723021 + 0.690826i \(0.757247\pi\)
\(492\) 2.83280 0.127712
\(493\) 4.70000 0.211677
\(494\) 0 0
\(495\) 0 0
\(496\) −1.36837 −0.0614418
\(497\) 8.71480 0.390912
\(498\) 11.0543 0.495354
\(499\) 25.9861 1.16330 0.581648 0.813440i \(-0.302408\pi\)
0.581648 + 0.813440i \(0.302408\pi\)
\(500\) 0 0
\(501\) 5.79514 0.258908
\(502\) 8.97087 0.400389
\(503\) −7.96895 −0.355318 −0.177659 0.984092i \(-0.556852\pi\)
−0.177659 + 0.984092i \(0.556852\pi\)
\(504\) −6.17050 −0.274856
\(505\) 0 0
\(506\) 10.9439 0.486513
\(507\) 0 0
\(508\) −9.73867 −0.432084
\(509\) 26.5772 1.17801 0.589007 0.808128i \(-0.299519\pi\)
0.589007 + 0.808128i \(0.299519\pi\)
\(510\) 0 0
\(511\) −22.4597 −0.993558
\(512\) 1.00000 0.0441942
\(513\) −27.4708 −1.21286
\(514\) 24.2725 1.07062
\(515\) 0 0
\(516\) 1.59062 0.0700232
\(517\) −4.05412 −0.178300
\(518\) 22.3398 0.981554
\(519\) −2.26170 −0.0992776
\(520\) 0 0
\(521\) −16.3843 −0.717810 −0.358905 0.933374i \(-0.616850\pi\)
−0.358905 + 0.933374i \(0.616850\pi\)
\(522\) 1.78004 0.0779100
\(523\) −12.9757 −0.567390 −0.283695 0.958915i \(-0.591560\pi\)
−0.283695 + 0.958915i \(0.591560\pi\)
\(524\) 10.6075 0.463389
\(525\) 0 0
\(526\) −28.7755 −1.25467
\(527\) 9.23308 0.402199
\(528\) −0.974200 −0.0423966
\(529\) 33.0964 1.43897
\(530\) 0 0
\(531\) −0.176421 −0.00765602
\(532\) −17.9082 −0.776418
\(533\) 0 0
\(534\) 11.8331 0.512067
\(535\) 0 0
\(536\) −10.9958 −0.474945
\(537\) −8.86713 −0.382645
\(538\) −26.2808 −1.13305
\(539\) −1.70906 −0.0736144
\(540\) 0 0
\(541\) 23.1606 0.995753 0.497877 0.867248i \(-0.334113\pi\)
0.497877 + 0.867248i \(0.334113\pi\)
\(542\) 14.3647 0.617017
\(543\) 9.33475 0.400593
\(544\) −6.74749 −0.289296
\(545\) 0 0
\(546\) 0 0
\(547\) −13.3168 −0.569387 −0.284693 0.958619i \(-0.591892\pi\)
−0.284693 + 0.958619i \(0.591892\pi\)
\(548\) 6.40586 0.273645
\(549\) −15.1150 −0.645091
\(550\) 0 0
\(551\) 5.16607 0.220082
\(552\) −4.99359 −0.212541
\(553\) −1.85136 −0.0787279
\(554\) 9.92492 0.421669
\(555\) 0 0
\(556\) −16.7981 −0.712398
\(557\) −3.02677 −0.128248 −0.0641242 0.997942i \(-0.520425\pi\)
−0.0641242 + 0.997942i \(0.520425\pi\)
\(558\) 3.49685 0.148034
\(559\) 0 0
\(560\) 0 0
\(561\) 6.57340 0.277529
\(562\) 11.7992 0.497718
\(563\) 18.2744 0.770175 0.385087 0.922880i \(-0.374171\pi\)
0.385087 + 0.922880i \(0.374171\pi\)
\(564\) 1.84986 0.0778932
\(565\) 0 0
\(566\) −13.0538 −0.548692
\(567\) 12.5486 0.526990
\(568\) 3.60919 0.151438
\(569\) −25.9020 −1.08587 −0.542933 0.839776i \(-0.682686\pi\)
−0.542933 + 0.839776i \(0.682686\pi\)
\(570\) 0 0
\(571\) −37.9443 −1.58792 −0.793960 0.607970i \(-0.791984\pi\)
−0.793960 + 0.607970i \(0.791984\pi\)
\(572\) 0 0
\(573\) 12.5061 0.522451
\(574\) −10.2593 −0.428215
\(575\) 0 0
\(576\) −2.55548 −0.106478
\(577\) −18.6481 −0.776330 −0.388165 0.921590i \(-0.626891\pi\)
−0.388165 + 0.921590i \(0.626891\pi\)
\(578\) 28.5286 1.18663
\(579\) −16.2583 −0.675674
\(580\) 0 0
\(581\) −40.0343 −1.66090
\(582\) −7.01455 −0.290763
\(583\) −10.2976 −0.426481
\(584\) −9.30157 −0.384902
\(585\) 0 0
\(586\) 16.2358 0.670695
\(587\) 6.63680 0.273930 0.136965 0.990576i \(-0.456265\pi\)
0.136965 + 0.990576i \(0.456265\pi\)
\(588\) 0.779830 0.0321596
\(589\) 10.1487 0.418168
\(590\) 0 0
\(591\) 1.82104 0.0749077
\(592\) 9.25191 0.380251
\(593\) 8.72953 0.358479 0.179239 0.983805i \(-0.442636\pi\)
0.179239 + 0.983805i \(0.442636\pi\)
\(594\) 5.41215 0.222063
\(595\) 0 0
\(596\) 8.90415 0.364728
\(597\) −7.47504 −0.305933
\(598\) 0 0
\(599\) 38.0625 1.55519 0.777596 0.628765i \(-0.216439\pi\)
0.777596 + 0.628765i \(0.216439\pi\)
\(600\) 0 0
\(601\) −2.03785 −0.0831256 −0.0415628 0.999136i \(-0.513234\pi\)
−0.0415628 + 0.999136i \(0.513234\pi\)
\(602\) −5.76062 −0.234785
\(603\) 28.0995 1.14430
\(604\) −17.1722 −0.698726
\(605\) 0 0
\(606\) −9.49897 −0.385869
\(607\) −1.61460 −0.0655347 −0.0327674 0.999463i \(-0.510432\pi\)
−0.0327674 + 0.999463i \(0.510432\pi\)
\(608\) −7.41659 −0.300782
\(609\) 1.12137 0.0454402
\(610\) 0 0
\(611\) 0 0
\(612\) 17.2431 0.697010
\(613\) 17.8032 0.719066 0.359533 0.933132i \(-0.382936\pi\)
0.359533 + 0.933132i \(0.382936\pi\)
\(614\) 5.66589 0.228657
\(615\) 0 0
\(616\) 3.52818 0.142154
\(617\) −36.9565 −1.48781 −0.743906 0.668284i \(-0.767029\pi\)
−0.743906 + 0.668284i \(0.767029\pi\)
\(618\) 6.48328 0.260796
\(619\) 31.6640 1.27268 0.636341 0.771408i \(-0.280447\pi\)
0.636341 + 0.771408i \(0.280447\pi\)
\(620\) 0 0
\(621\) 27.7418 1.11324
\(622\) 20.5465 0.823839
\(623\) −42.8548 −1.71694
\(624\) 0 0
\(625\) 0 0
\(626\) 11.0354 0.441062
\(627\) 7.22524 0.288548
\(628\) −11.0649 −0.441537
\(629\) −62.4272 −2.48913
\(630\) 0 0
\(631\) 7.35141 0.292655 0.146327 0.989236i \(-0.453255\pi\)
0.146327 + 0.989236i \(0.453255\pi\)
\(632\) −0.766732 −0.0304990
\(633\) −9.14494 −0.363479
\(634\) −17.0656 −0.677763
\(635\) 0 0
\(636\) 4.69869 0.186315
\(637\) 0 0
\(638\) −1.01779 −0.0402947
\(639\) −9.22322 −0.364865
\(640\) 0 0
\(641\) 38.9606 1.53885 0.769425 0.638737i \(-0.220543\pi\)
0.769425 + 0.638737i \(0.220543\pi\)
\(642\) 4.09968 0.161801
\(643\) −0.528071 −0.0208251 −0.0104126 0.999946i \(-0.503314\pi\)
−0.0104126 + 0.999946i \(0.503314\pi\)
\(644\) 18.0848 0.712643
\(645\) 0 0
\(646\) 50.0433 1.96893
\(647\) 30.5439 1.20081 0.600403 0.799698i \(-0.295007\pi\)
0.600403 + 0.799698i \(0.295007\pi\)
\(648\) 5.19692 0.204154
\(649\) 0.100874 0.00395966
\(650\) 0 0
\(651\) 2.20291 0.0863390
\(652\) 15.2437 0.596988
\(653\) −11.9772 −0.468704 −0.234352 0.972152i \(-0.575297\pi\)
−0.234352 + 0.972152i \(0.575297\pi\)
\(654\) −0.212820 −0.00832190
\(655\) 0 0
\(656\) −4.24884 −0.165889
\(657\) 23.7700 0.927355
\(658\) −6.69949 −0.261173
\(659\) 4.01683 0.156474 0.0782368 0.996935i \(-0.475071\pi\)
0.0782368 + 0.996935i \(0.475071\pi\)
\(660\) 0 0
\(661\) 40.3372 1.56893 0.784467 0.620170i \(-0.212936\pi\)
0.784467 + 0.620170i \(0.212936\pi\)
\(662\) 29.6977 1.15423
\(663\) 0 0
\(664\) −16.5800 −0.643430
\(665\) 0 0
\(666\) −23.6431 −0.916151
\(667\) −5.21703 −0.202004
\(668\) −8.69198 −0.336303
\(669\) 6.56291 0.253737
\(670\) 0 0
\(671\) 8.64245 0.333638
\(672\) −1.60988 −0.0621024
\(673\) 41.3853 1.59529 0.797644 0.603129i \(-0.206080\pi\)
0.797644 + 0.603129i \(0.206080\pi\)
\(674\) −11.1216 −0.428389
\(675\) 0 0
\(676\) 0 0
\(677\) 23.9115 0.918995 0.459497 0.888179i \(-0.348030\pi\)
0.459497 + 0.888179i \(0.348030\pi\)
\(678\) −1.30258 −0.0500253
\(679\) 25.4040 0.974916
\(680\) 0 0
\(681\) 12.9370 0.495746
\(682\) −1.99944 −0.0765623
\(683\) 23.5399 0.900729 0.450364 0.892845i \(-0.351294\pi\)
0.450364 + 0.892845i \(0.351294\pi\)
\(684\) 18.9529 0.724684
\(685\) 0 0
\(686\) −19.7265 −0.753162
\(687\) 11.1678 0.426079
\(688\) −2.38573 −0.0909552
\(689\) 0 0
\(690\) 0 0
\(691\) −27.7945 −1.05735 −0.528677 0.848823i \(-0.677312\pi\)
−0.528677 + 0.848823i \(0.677312\pi\)
\(692\) 3.39226 0.128954
\(693\) −9.01618 −0.342496
\(694\) −19.1698 −0.727676
\(695\) 0 0
\(696\) 0.464410 0.0176034
\(697\) 28.6690 1.08592
\(698\) 2.07169 0.0784145
\(699\) 11.1992 0.423593
\(700\) 0 0
\(701\) 20.6527 0.780042 0.390021 0.920806i \(-0.372468\pi\)
0.390021 + 0.920806i \(0.372468\pi\)
\(702\) 0 0
\(703\) −68.6176 −2.58796
\(704\) 1.46118 0.0550702
\(705\) 0 0
\(706\) −14.2889 −0.537770
\(707\) 34.4016 1.29381
\(708\) −0.0460281 −0.00172984
\(709\) 1.90959 0.0717161 0.0358581 0.999357i \(-0.488584\pi\)
0.0358581 + 0.999357i \(0.488584\pi\)
\(710\) 0 0
\(711\) 1.95937 0.0734821
\(712\) −17.7481 −0.665138
\(713\) −10.2488 −0.383820
\(714\) 10.8626 0.406523
\(715\) 0 0
\(716\) 13.2996 0.497029
\(717\) −12.1889 −0.455205
\(718\) 12.4966 0.466367
\(719\) 36.3672 1.35627 0.678135 0.734938i \(-0.262789\pi\)
0.678135 + 0.734938i \(0.262789\pi\)
\(720\) 0 0
\(721\) −23.4799 −0.874439
\(722\) 36.0058 1.34000
\(723\) 5.24159 0.194937
\(724\) −14.0010 −0.520341
\(725\) 0 0
\(726\) 5.91047 0.219358
\(727\) 2.25162 0.0835080 0.0417540 0.999128i \(-0.486705\pi\)
0.0417540 + 0.999128i \(0.486705\pi\)
\(728\) 0 0
\(729\) −5.87208 −0.217485
\(730\) 0 0
\(731\) 16.0977 0.595395
\(732\) −3.94348 −0.145755
\(733\) −27.7157 −1.02370 −0.511851 0.859074i \(-0.671040\pi\)
−0.511851 + 0.859074i \(0.671040\pi\)
\(734\) −20.7194 −0.764766
\(735\) 0 0
\(736\) 7.48975 0.276076
\(737\) −16.0668 −0.591827
\(738\) 10.8578 0.399682
\(739\) 17.4826 0.643108 0.321554 0.946891i \(-0.395795\pi\)
0.321554 + 0.946891i \(0.395795\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −17.0168 −0.624707
\(743\) 45.4090 1.66589 0.832947 0.553353i \(-0.186652\pi\)
0.832947 + 0.553353i \(0.186652\pi\)
\(744\) 0.912326 0.0334475
\(745\) 0 0
\(746\) −31.4926 −1.15303
\(747\) 42.3699 1.55023
\(748\) −9.85927 −0.360491
\(749\) −14.8475 −0.542514
\(750\) 0 0
\(751\) −23.3846 −0.853315 −0.426657 0.904413i \(-0.640309\pi\)
−0.426657 + 0.904413i \(0.640309\pi\)
\(752\) −2.77456 −0.101178
\(753\) −5.98108 −0.217963
\(754\) 0 0
\(755\) 0 0
\(756\) 8.94364 0.325277
\(757\) −33.7347 −1.22611 −0.613055 0.790040i \(-0.710059\pi\)
−0.613055 + 0.790040i \(0.710059\pi\)
\(758\) −7.87442 −0.286012
\(759\) −7.29651 −0.264847
\(760\) 0 0
\(761\) −13.4210 −0.486512 −0.243256 0.969962i \(-0.578215\pi\)
−0.243256 + 0.969962i \(0.578215\pi\)
\(762\) 6.49299 0.235216
\(763\) 0.770750 0.0279030
\(764\) −18.7576 −0.678627
\(765\) 0 0
\(766\) 8.03386 0.290275
\(767\) 0 0
\(768\) −0.666723 −0.0240583
\(769\) 18.6681 0.673188 0.336594 0.941650i \(-0.390725\pi\)
0.336594 + 0.941650i \(0.390725\pi\)
\(770\) 0 0
\(771\) −16.1831 −0.582818
\(772\) 24.3855 0.877652
\(773\) −2.12110 −0.0762905 −0.0381453 0.999272i \(-0.512145\pi\)
−0.0381453 + 0.999272i \(0.512145\pi\)
\(774\) 6.09669 0.219141
\(775\) 0 0
\(776\) 10.5209 0.377680
\(777\) −14.8944 −0.534335
\(778\) −21.5917 −0.774099
\(779\) 31.5119 1.12903
\(780\) 0 0
\(781\) 5.27367 0.188707
\(782\) −50.5370 −1.80720
\(783\) −2.58002 −0.0922024
\(784\) −1.16965 −0.0417731
\(785\) 0 0
\(786\) −7.07224 −0.252258
\(787\) 1.88977 0.0673631 0.0336815 0.999433i \(-0.489277\pi\)
0.0336815 + 0.999433i \(0.489277\pi\)
\(788\) −2.73133 −0.0972997
\(789\) 19.1853 0.683015
\(790\) 0 0
\(791\) 4.71744 0.167733
\(792\) −3.73401 −0.132682
\(793\) 0 0
\(794\) −36.8751 −1.30865
\(795\) 0 0
\(796\) 11.2116 0.397385
\(797\) −27.7575 −0.983222 −0.491611 0.870815i \(-0.663592\pi\)
−0.491611 + 0.870815i \(0.663592\pi\)
\(798\) 11.9398 0.422664
\(799\) 18.7213 0.662312
\(800\) 0 0
\(801\) 45.3549 1.60254
\(802\) −8.26837 −0.291966
\(803\) −13.5912 −0.479624
\(804\) 7.33113 0.258549
\(805\) 0 0
\(806\) 0 0
\(807\) 17.5220 0.616804
\(808\) 14.2473 0.501217
\(809\) 22.3988 0.787501 0.393751 0.919217i \(-0.371177\pi\)
0.393751 + 0.919217i \(0.371177\pi\)
\(810\) 0 0
\(811\) 10.0371 0.352450 0.176225 0.984350i \(-0.443611\pi\)
0.176225 + 0.984350i \(0.443611\pi\)
\(812\) −1.68191 −0.0590236
\(813\) −9.57728 −0.335890
\(814\) 13.5187 0.473830
\(815\) 0 0
\(816\) 4.49870 0.157486
\(817\) 17.6940 0.619034
\(818\) −3.02146 −0.105643
\(819\) 0 0
\(820\) 0 0
\(821\) 12.9086 0.450513 0.225257 0.974299i \(-0.427678\pi\)
0.225257 + 0.974299i \(0.427678\pi\)
\(822\) −4.27093 −0.148966
\(823\) 24.3811 0.849870 0.424935 0.905224i \(-0.360297\pi\)
0.424935 + 0.905224i \(0.360297\pi\)
\(824\) −9.72411 −0.338755
\(825\) 0 0
\(826\) 0.166696 0.00580010
\(827\) −11.1712 −0.388461 −0.194230 0.980956i \(-0.562221\pi\)
−0.194230 + 0.980956i \(0.562221\pi\)
\(828\) −19.1399 −0.665158
\(829\) 28.9931 1.00697 0.503487 0.864003i \(-0.332050\pi\)
0.503487 + 0.864003i \(0.332050\pi\)
\(830\) 0 0
\(831\) −6.61717 −0.229547
\(832\) 0 0
\(833\) 7.89217 0.273448
\(834\) 11.1997 0.387813
\(835\) 0 0
\(836\) −10.8369 −0.374804
\(837\) −5.06841 −0.175190
\(838\) −35.0376 −1.21036
\(839\) 24.0650 0.830818 0.415409 0.909635i \(-0.363639\pi\)
0.415409 + 0.909635i \(0.363639\pi\)
\(840\) 0 0
\(841\) −28.5148 −0.983269
\(842\) 9.81291 0.338175
\(843\) −7.86678 −0.270946
\(844\) 13.7163 0.472133
\(845\) 0 0
\(846\) 7.09033 0.243771
\(847\) −21.4055 −0.735500
\(848\) −7.04744 −0.242010
\(849\) 8.70327 0.298695
\(850\) 0 0
\(851\) 69.2945 2.37539
\(852\) −2.40633 −0.0824395
\(853\) −13.7936 −0.472284 −0.236142 0.971719i \(-0.575883\pi\)
−0.236142 + 0.971719i \(0.575883\pi\)
\(854\) 14.2818 0.488712
\(855\) 0 0
\(856\) −6.14900 −0.210168
\(857\) 14.1595 0.483678 0.241839 0.970316i \(-0.422249\pi\)
0.241839 + 0.970316i \(0.422249\pi\)
\(858\) 0 0
\(859\) 27.6665 0.943968 0.471984 0.881607i \(-0.343538\pi\)
0.471984 + 0.881607i \(0.343538\pi\)
\(860\) 0 0
\(861\) 6.84011 0.233110
\(862\) −5.88552 −0.200462
\(863\) −17.4318 −0.593386 −0.296693 0.954973i \(-0.595884\pi\)
−0.296693 + 0.954973i \(0.595884\pi\)
\(864\) 3.70397 0.126011
\(865\) 0 0
\(866\) −31.1096 −1.05715
\(867\) −19.0206 −0.645975
\(868\) −3.30409 −0.112148
\(869\) −1.12033 −0.0380046
\(870\) 0 0
\(871\) 0 0
\(872\) 0.319202 0.0108096
\(873\) −26.8861 −0.909956
\(874\) −55.5484 −1.87895
\(875\) 0 0
\(876\) 6.20157 0.209532
\(877\) −2.17528 −0.0734539 −0.0367270 0.999325i \(-0.511693\pi\)
−0.0367270 + 0.999325i \(0.511693\pi\)
\(878\) −2.69710 −0.0910229
\(879\) −10.8248 −0.365111
\(880\) 0 0
\(881\) −6.32823 −0.213204 −0.106602 0.994302i \(-0.533997\pi\)
−0.106602 + 0.994302i \(0.533997\pi\)
\(882\) 2.98901 0.100645
\(883\) −28.5533 −0.960895 −0.480447 0.877024i \(-0.659526\pi\)
−0.480447 + 0.877024i \(0.659526\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 19.0859 0.641203
\(887\) 21.3012 0.715225 0.357613 0.933870i \(-0.383591\pi\)
0.357613 + 0.933870i \(0.383591\pi\)
\(888\) −6.16846 −0.207000
\(889\) −23.5151 −0.788672
\(890\) 0 0
\(891\) 7.59362 0.254396
\(892\) −9.84353 −0.329586
\(893\) 20.5778 0.688609
\(894\) −5.93660 −0.198550
\(895\) 0 0
\(896\) 2.41461 0.0806665
\(897\) 0 0
\(898\) −18.3579 −0.612611
\(899\) 0.953149 0.0317893
\(900\) 0 0
\(901\) 47.5525 1.58420
\(902\) −6.20831 −0.206714
\(903\) 3.84073 0.127812
\(904\) 1.95370 0.0649793
\(905\) 0 0
\(906\) 11.4491 0.380370
\(907\) −46.5451 −1.54551 −0.772753 0.634707i \(-0.781121\pi\)
−0.772753 + 0.634707i \(0.781121\pi\)
\(908\) −19.4038 −0.643939
\(909\) −36.4086 −1.20760
\(910\) 0 0
\(911\) −29.3014 −0.970800 −0.485400 0.874292i \(-0.661326\pi\)
−0.485400 + 0.874292i \(0.661326\pi\)
\(912\) 4.94481 0.163739
\(913\) −24.2263 −0.801775
\(914\) 25.3873 0.839739
\(915\) 0 0
\(916\) −16.7503 −0.553447
\(917\) 25.6129 0.845813
\(918\) −24.9925 −0.824874
\(919\) 29.4843 0.972598 0.486299 0.873792i \(-0.338346\pi\)
0.486299 + 0.873792i \(0.338346\pi\)
\(920\) 0 0
\(921\) −3.77758 −0.124476
\(922\) −1.12031 −0.0368956
\(923\) 0 0
\(924\) −2.35231 −0.0773855
\(925\) 0 0
\(926\) −30.6952 −1.00871
\(927\) 24.8498 0.816173
\(928\) −0.696556 −0.0228656
\(929\) 47.7459 1.56649 0.783246 0.621712i \(-0.213562\pi\)
0.783246 + 0.621712i \(0.213562\pi\)
\(930\) 0 0
\(931\) 8.67479 0.284305
\(932\) −16.7974 −0.550217
\(933\) −13.6988 −0.448479
\(934\) 5.88670 0.192619
\(935\) 0 0
\(936\) 0 0
\(937\) −29.2998 −0.957182 −0.478591 0.878038i \(-0.658852\pi\)
−0.478591 + 0.878038i \(0.658852\pi\)
\(938\) −26.5505 −0.866905
\(939\) −7.35753 −0.240104
\(940\) 0 0
\(941\) −7.48425 −0.243980 −0.121990 0.992531i \(-0.538928\pi\)
−0.121990 + 0.992531i \(0.538928\pi\)
\(942\) 7.37720 0.240362
\(943\) −31.8228 −1.03629
\(944\) 0.0690364 0.00224694
\(945\) 0 0
\(946\) −3.48597 −0.113339
\(947\) 15.9785 0.519230 0.259615 0.965712i \(-0.416404\pi\)
0.259615 + 0.965712i \(0.416404\pi\)
\(948\) 0.511198 0.0166029
\(949\) 0 0
\(950\) 0 0
\(951\) 11.3780 0.368958
\(952\) −16.2926 −0.528045
\(953\) 44.7821 1.45063 0.725317 0.688415i \(-0.241693\pi\)
0.725317 + 0.688415i \(0.241693\pi\)
\(954\) 18.0096 0.583082
\(955\) 0 0
\(956\) 18.2819 0.591278
\(957\) 0.678585 0.0219355
\(958\) 24.6962 0.797899
\(959\) 15.4677 0.499477
\(960\) 0 0
\(961\) −29.1276 −0.939599
\(962\) 0 0
\(963\) 15.7137 0.506365
\(964\) −7.86172 −0.253209
\(965\) 0 0
\(966\) −12.0576 −0.387946
\(967\) 5.51993 0.177509 0.0887546 0.996054i \(-0.471711\pi\)
0.0887546 + 0.996054i \(0.471711\pi\)
\(968\) −8.86496 −0.284931
\(969\) −33.3650 −1.07184
\(970\) 0 0
\(971\) −38.6903 −1.24163 −0.620815 0.783957i \(-0.713198\pi\)
−0.620815 + 0.783957i \(0.713198\pi\)
\(972\) −14.5768 −0.467551
\(973\) −40.5609 −1.30032
\(974\) −6.85817 −0.219750
\(975\) 0 0
\(976\) 5.91472 0.189326
\(977\) −22.0275 −0.704722 −0.352361 0.935864i \(-0.614621\pi\)
−0.352361 + 0.935864i \(0.614621\pi\)
\(978\) −10.1633 −0.324987
\(979\) −25.9331 −0.828826
\(980\) 0 0
\(981\) −0.815716 −0.0260438
\(982\) −32.0421 −1.02251
\(983\) 49.1575 1.56788 0.783941 0.620835i \(-0.213206\pi\)
0.783941 + 0.620835i \(0.213206\pi\)
\(984\) 2.83280 0.0903064
\(985\) 0 0
\(986\) 4.70000 0.149679
\(987\) 4.46670 0.142177
\(988\) 0 0
\(989\) −17.8685 −0.568186
\(990\) 0 0
\(991\) −7.70733 −0.244831 −0.122416 0.992479i \(-0.539064\pi\)
−0.122416 + 0.992479i \(0.539064\pi\)
\(992\) −1.36837 −0.0434459
\(993\) −19.8001 −0.628338
\(994\) 8.71480 0.276417
\(995\) 0 0
\(996\) 11.0543 0.350268
\(997\) 23.9968 0.759986 0.379993 0.924989i \(-0.375926\pi\)
0.379993 + 0.924989i \(0.375926\pi\)
\(998\) 25.9861 0.822575
\(999\) 34.2688 1.08422
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.cx.1.5 9
5.2 odd 4 1690.2.b.f.339.14 yes 18
5.3 odd 4 1690.2.b.f.339.5 18
5.4 even 2 8450.2.a.cw.1.5 9
13.12 even 2 8450.2.a.ct.1.5 9
65.8 even 4 1690.2.c.h.1689.7 18
65.12 odd 4 1690.2.b.g.339.5 yes 18
65.18 even 4 1690.2.c.g.1689.7 18
65.38 odd 4 1690.2.b.g.339.14 yes 18
65.47 even 4 1690.2.c.g.1689.12 18
65.57 even 4 1690.2.c.h.1689.12 18
65.64 even 2 8450.2.a.da.1.5 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.5 18 5.3 odd 4
1690.2.b.f.339.14 yes 18 5.2 odd 4
1690.2.b.g.339.5 yes 18 65.12 odd 4
1690.2.b.g.339.14 yes 18 65.38 odd 4
1690.2.c.g.1689.7 18 65.18 even 4
1690.2.c.g.1689.12 18 65.47 even 4
1690.2.c.h.1689.7 18 65.8 even 4
1690.2.c.h.1689.12 18 65.57 even 4
8450.2.a.ct.1.5 9 13.12 even 2
8450.2.a.cw.1.5 9 5.4 even 2
8450.2.a.cx.1.5 9 1.1 even 1 trivial
8450.2.a.da.1.5 9 65.64 even 2