Properties

Label 1690.2.b.f.339.5
Level $1690$
Weight $2$
Character 1690.339
Analytic conductor $13.495$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(339,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.339"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,-18,0,-14,0,0,-16,2,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 29x^{16} + 336x^{14} + 1977x^{12} + 6147x^{10} + 9369x^{8} + 5559x^{6} + 1342x^{4} + 116x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 339.5
Root \(-2.20982i\) of defining polynomial
Character \(\chi\) \(=\) 1690.339
Dual form 1690.2.b.f.339.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -0.666723i q^{3} -1.00000 q^{4} +(-2.18940 + 0.454429i) q^{5} -0.666723 q^{6} -2.41461i q^{7} +1.00000i q^{8} +2.55548 q^{9} +(0.454429 + 2.18940i) q^{10} +1.46118 q^{11} +0.666723i q^{12} -2.41461 q^{14} +(0.302978 + 1.45973i) q^{15} +1.00000 q^{16} +6.74749i q^{17} -2.55548i q^{18} +7.41659 q^{19} +(2.18940 - 0.454429i) q^{20} -1.60988 q^{21} -1.46118i q^{22} +7.48975i q^{23} +0.666723 q^{24} +(4.58699 - 1.98986i) q^{25} -3.70397i q^{27} +2.41461i q^{28} +0.696556 q^{29} +(1.45973 - 0.302978i) q^{30} -1.36837 q^{31} -1.00000i q^{32} -0.974200i q^{33} +6.74749 q^{34} +(1.09727 + 5.28656i) q^{35} -2.55548 q^{36} -9.25191i q^{37} -7.41659i q^{38} +(-0.454429 - 2.18940i) q^{40} -4.24884 q^{41} +1.60988i q^{42} -2.38573i q^{43} -1.46118 q^{44} +(-5.59498 + 1.16128i) q^{45} +7.48975 q^{46} +2.77456i q^{47} -0.666723i q^{48} +1.16965 q^{49} +(-1.98986 - 4.58699i) q^{50} +4.49870 q^{51} -7.04744i q^{53} -3.70397 q^{54} +(-3.19911 + 0.664001i) q^{55} +2.41461 q^{56} -4.94481i q^{57} -0.696556i q^{58} -0.0690364 q^{59} +(-0.302978 - 1.45973i) q^{60} +5.91472 q^{61} +1.36837i q^{62} -6.17050i q^{63} -1.00000 q^{64} -0.974200 q^{66} +10.9958i q^{67} -6.74749i q^{68} +4.99359 q^{69} +(5.28656 - 1.09727i) q^{70} +3.60919 q^{71} +2.55548i q^{72} -9.30157i q^{73} -9.25191 q^{74} +(-1.32668 - 3.05825i) q^{75} -7.41659 q^{76} -3.52818i q^{77} +0.766732 q^{79} +(-2.18940 + 0.454429i) q^{80} +5.19692 q^{81} +4.24884i q^{82} -16.5800i q^{83} +1.60988 q^{84} +(-3.06625 - 14.7730i) q^{85} -2.38573 q^{86} -0.464410i q^{87} +1.46118i q^{88} +17.7481 q^{89} +(1.16128 + 5.59498i) q^{90} -7.48975i q^{92} +0.912326i q^{93} +2.77456 q^{94} +(-16.2379 + 3.37031i) q^{95} -0.666723 q^{96} -10.5209i q^{97} -1.16965i q^{98} +3.73401 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 18 q^{4} - 14 q^{6} - 16 q^{9} + 2 q^{10} - 8 q^{11} - 2 q^{14} - 8 q^{15} + 18 q^{16} + 12 q^{19} - 16 q^{21} + 14 q^{24} + 22 q^{25} - 30 q^{29} - 14 q^{30} + 12 q^{31} + 24 q^{34} - 4 q^{35} + 16 q^{36}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.666723i 0.384933i −0.981304 0.192466i \(-0.938351\pi\)
0.981304 0.192466i \(-0.0616486\pi\)
\(4\) −1.00000 −0.500000
\(5\) −2.18940 + 0.454429i −0.979132 + 0.203227i
\(6\) −0.666723 −0.272188
\(7\) 2.41461i 0.912638i −0.889816 0.456319i \(-0.849168\pi\)
0.889816 0.456319i \(-0.150832\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.55548 0.851827
\(10\) 0.454429 + 2.18940i 0.143703 + 0.692351i
\(11\) 1.46118 0.440561 0.220281 0.975437i \(-0.429303\pi\)
0.220281 + 0.975437i \(0.429303\pi\)
\(12\) 0.666723i 0.192466i
\(13\) 0 0
\(14\) −2.41461 −0.645332
\(15\) 0.302978 + 1.45973i 0.0782286 + 0.376900i
\(16\) 1.00000 0.250000
\(17\) 6.74749i 1.63651i 0.574858 + 0.818253i \(0.305057\pi\)
−0.574858 + 0.818253i \(0.694943\pi\)
\(18\) 2.55548i 0.602333i
\(19\) 7.41659 1.70148 0.850741 0.525585i \(-0.176154\pi\)
0.850741 + 0.525585i \(0.176154\pi\)
\(20\) 2.18940 0.454429i 0.489566 0.101613i
\(21\) −1.60988 −0.351304
\(22\) 1.46118i 0.311524i
\(23\) 7.48975i 1.56172i 0.624705 + 0.780861i \(0.285219\pi\)
−0.624705 + 0.780861i \(0.714781\pi\)
\(24\) 0.666723 0.136094
\(25\) 4.58699 1.98986i 0.917398 0.397972i
\(26\) 0 0
\(27\) 3.70397i 0.712829i
\(28\) 2.41461i 0.456319i
\(29\) 0.696556 0.129347 0.0646736 0.997906i \(-0.479399\pi\)
0.0646736 + 0.997906i \(0.479399\pi\)
\(30\) 1.45973 0.302978i 0.266508 0.0553160i
\(31\) −1.36837 −0.245767 −0.122884 0.992421i \(-0.539214\pi\)
−0.122884 + 0.992421i \(0.539214\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0.974200i 0.169586i
\(34\) 6.74749 1.15718
\(35\) 1.09727 + 5.28656i 0.185473 + 0.893593i
\(36\) −2.55548 −0.425913
\(37\) 9.25191i 1.52101i −0.649335 0.760503i \(-0.724953\pi\)
0.649335 0.760503i \(-0.275047\pi\)
\(38\) 7.41659i 1.20313i
\(39\) 0 0
\(40\) −0.454429 2.18940i −0.0718515 0.346175i
\(41\) −4.24884 −0.663558 −0.331779 0.943357i \(-0.607649\pi\)
−0.331779 + 0.943357i \(0.607649\pi\)
\(42\) 1.60988i 0.248409i
\(43\) 2.38573i 0.363821i −0.983315 0.181910i \(-0.941772\pi\)
0.983315 0.181910i \(-0.0582281\pi\)
\(44\) −1.46118 −0.220281
\(45\) −5.59498 + 1.16128i −0.834051 + 0.173114i
\(46\) 7.48975 1.10430
\(47\) 2.77456i 0.404711i 0.979312 + 0.202356i \(0.0648597\pi\)
−0.979312 + 0.202356i \(0.935140\pi\)
\(48\) 0.666723i 0.0962331i
\(49\) 1.16965 0.167092
\(50\) −1.98986 4.58699i −0.281408 0.648698i
\(51\) 4.49870 0.629944
\(52\) 0 0
\(53\) 7.04744i 0.968040i −0.875057 0.484020i \(-0.839176\pi\)
0.875057 0.484020i \(-0.160824\pi\)
\(54\) −3.70397 −0.504046
\(55\) −3.19911 + 0.664001i −0.431368 + 0.0895339i
\(56\) 2.41461 0.322666
\(57\) 4.94481i 0.654956i
\(58\) 0.696556i 0.0914623i
\(59\) −0.0690364 −0.00898777 −0.00449389 0.999990i \(-0.501430\pi\)
−0.00449389 + 0.999990i \(0.501430\pi\)
\(60\) −0.302978 1.45973i −0.0391143 0.188450i
\(61\) 5.91472 0.757302 0.378651 0.925539i \(-0.376388\pi\)
0.378651 + 0.925539i \(0.376388\pi\)
\(62\) 1.36837i 0.173784i
\(63\) 6.17050i 0.777409i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −0.974200 −0.119916
\(67\) 10.9958i 1.34335i 0.740847 + 0.671674i \(0.234424\pi\)
−0.740847 + 0.671674i \(0.765576\pi\)
\(68\) 6.74749i 0.818253i
\(69\) 4.99359 0.601157
\(70\) 5.28656 1.09727i 0.631865 0.131149i
\(71\) 3.60919 0.428332 0.214166 0.976797i \(-0.431297\pi\)
0.214166 + 0.976797i \(0.431297\pi\)
\(72\) 2.55548i 0.301166i
\(73\) 9.30157i 1.08867i −0.838869 0.544333i \(-0.816783\pi\)
0.838869 0.544333i \(-0.183217\pi\)
\(74\) −9.25191 −1.07551
\(75\) −1.32668 3.05825i −0.153192 0.353136i
\(76\) −7.41659 −0.850741
\(77\) 3.52818i 0.402073i
\(78\) 0 0
\(79\) 0.766732 0.0862641 0.0431320 0.999069i \(-0.486266\pi\)
0.0431320 + 0.999069i \(0.486266\pi\)
\(80\) −2.18940 + 0.454429i −0.244783 + 0.0508067i
\(81\) 5.19692 0.577436
\(82\) 4.24884i 0.469206i
\(83\) 16.5800i 1.81989i −0.414725 0.909947i \(-0.636122\pi\)
0.414725 0.909947i \(-0.363878\pi\)
\(84\) 1.60988 0.175652
\(85\) −3.06625 14.7730i −0.332582 1.60235i
\(86\) −2.38573 −0.257260
\(87\) 0.464410i 0.0497899i
\(88\) 1.46118i 0.155762i
\(89\) 17.7481 1.88130 0.940648 0.339384i \(-0.110219\pi\)
0.940648 + 0.339384i \(0.110219\pi\)
\(90\) 1.16128 + 5.59498i 0.122410 + 0.589763i
\(91\) 0 0
\(92\) 7.48975i 0.780861i
\(93\) 0.912326i 0.0946038i
\(94\) 2.77456 0.286174
\(95\) −16.2379 + 3.37031i −1.66597 + 0.345787i
\(96\) −0.666723 −0.0680471
\(97\) 10.5209i 1.06824i −0.845409 0.534120i \(-0.820643\pi\)
0.845409 0.534120i \(-0.179357\pi\)
\(98\) 1.16965i 0.118152i
\(99\) 3.73401 0.375282
\(100\) −4.58699 + 1.98986i −0.458699 + 0.198986i
\(101\) 14.2473 1.41765 0.708827 0.705382i \(-0.249225\pi\)
0.708827 + 0.705382i \(0.249225\pi\)
\(102\) 4.49870i 0.445438i
\(103\) 9.72411i 0.958145i −0.877775 0.479072i \(-0.840973\pi\)
0.877775 0.479072i \(-0.159027\pi\)
\(104\) 0 0
\(105\) 3.52467 0.731575i 0.343973 0.0713944i
\(106\) −7.04744 −0.684508
\(107\) 6.14900i 0.594446i 0.954808 + 0.297223i \(0.0960605\pi\)
−0.954808 + 0.297223i \(0.903939\pi\)
\(108\) 3.70397i 0.356414i
\(109\) −0.319202 −0.0305741 −0.0152870 0.999883i \(-0.504866\pi\)
−0.0152870 + 0.999883i \(0.504866\pi\)
\(110\) 0.664001 + 3.19911i 0.0633100 + 0.305023i
\(111\) −6.16846 −0.585485
\(112\) 2.41461i 0.228159i
\(113\) 1.95370i 0.183789i 0.995769 + 0.0918945i \(0.0292923\pi\)
−0.995769 + 0.0918945i \(0.970708\pi\)
\(114\) −4.94481 −0.463124
\(115\) −3.40356 16.3981i −0.317384 1.52913i
\(116\) −0.696556 −0.0646736
\(117\) 0 0
\(118\) 0.0690364i 0.00635531i
\(119\) 16.2926 1.49354
\(120\) −1.45973 + 0.302978i −0.133254 + 0.0276580i
\(121\) −8.86496 −0.805906
\(122\) 5.91472i 0.535494i
\(123\) 2.83280i 0.255425i
\(124\) 1.36837 0.122884
\(125\) −9.13853 + 6.44107i −0.817375 + 0.576107i
\(126\) −6.17050 −0.549711
\(127\) 9.73867i 0.864167i 0.901834 + 0.432084i \(0.142221\pi\)
−0.901834 + 0.432084i \(0.857779\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −1.59062 −0.140046
\(130\) 0 0
\(131\) 10.6075 0.926778 0.463389 0.886155i \(-0.346633\pi\)
0.463389 + 0.886155i \(0.346633\pi\)
\(132\) 0.974200i 0.0847932i
\(133\) 17.9082i 1.55284i
\(134\) 10.9958 0.949890
\(135\) 1.68319 + 8.10948i 0.144866 + 0.697953i
\(136\) −6.74749 −0.578592
\(137\) 6.40586i 0.547289i −0.961831 0.273645i \(-0.911771\pi\)
0.961831 0.273645i \(-0.0882292\pi\)
\(138\) 4.99359i 0.425082i
\(139\) 16.7981 1.42480 0.712398 0.701775i \(-0.247609\pi\)
0.712398 + 0.701775i \(0.247609\pi\)
\(140\) −1.09727 5.28656i −0.0927363 0.446796i
\(141\) 1.84986 0.155786
\(142\) 3.60919i 0.302877i
\(143\) 0 0
\(144\) 2.55548 0.212957
\(145\) −1.52504 + 0.316535i −0.126648 + 0.0262868i
\(146\) −9.30157 −0.769804
\(147\) 0.779830i 0.0643193i
\(148\) 9.25191i 0.760503i
\(149\) −8.90415 −0.729456 −0.364728 0.931114i \(-0.618838\pi\)
−0.364728 + 0.931114i \(0.618838\pi\)
\(150\) −3.05825 + 1.32668i −0.249705 + 0.108323i
\(151\) −17.1722 −1.39745 −0.698726 0.715389i \(-0.746249\pi\)
−0.698726 + 0.715389i \(0.746249\pi\)
\(152\) 7.41659i 0.601565i
\(153\) 17.2431i 1.39402i
\(154\) −3.52818 −0.284308
\(155\) 2.99592 0.621829i 0.240638 0.0499465i
\(156\) 0 0
\(157\) 11.0649i 0.883073i 0.897243 + 0.441537i \(0.145566\pi\)
−0.897243 + 0.441537i \(0.854434\pi\)
\(158\) 0.766732i 0.0609979i
\(159\) −4.69869 −0.372630
\(160\) 0.454429 + 2.18940i 0.0359258 + 0.173088i
\(161\) 18.0848 1.42529
\(162\) 5.19692i 0.408309i
\(163\) 15.2437i 1.19398i 0.802250 + 0.596988i \(0.203636\pi\)
−0.802250 + 0.596988i \(0.796364\pi\)
\(164\) 4.24884 0.331779
\(165\) 0.442705 + 2.13292i 0.0344645 + 0.166047i
\(166\) −16.5800 −1.28686
\(167\) 8.69198i 0.672605i 0.941754 + 0.336303i \(0.109177\pi\)
−0.941754 + 0.336303i \(0.890823\pi\)
\(168\) 1.60988i 0.124205i
\(169\) 0 0
\(170\) −14.7730 + 3.06625i −1.13304 + 0.235171i
\(171\) 18.9529 1.44937
\(172\) 2.38573i 0.181910i
\(173\) 3.39226i 0.257909i 0.991651 + 0.128954i \(0.0411621\pi\)
−0.991651 + 0.128954i \(0.958838\pi\)
\(174\) −0.464410 −0.0352068
\(175\) −4.80474 11.0758i −0.363204 0.837252i
\(176\) 1.46118 0.110140
\(177\) 0.0460281i 0.00345969i
\(178\) 17.7481i 1.33028i
\(179\) −13.2996 −0.994057 −0.497029 0.867734i \(-0.665576\pi\)
−0.497029 + 0.867734i \(0.665576\pi\)
\(180\) 5.59498 1.16128i 0.417025 0.0865571i
\(181\) −14.0010 −1.04068 −0.520341 0.853958i \(-0.674195\pi\)
−0.520341 + 0.853958i \(0.674195\pi\)
\(182\) 0 0
\(183\) 3.94348i 0.291510i
\(184\) −7.48975 −0.552152
\(185\) 4.20434 + 20.2562i 0.309109 + 1.48926i
\(186\) 0.912326 0.0668950
\(187\) 9.85927i 0.720981i
\(188\) 2.77456i 0.202356i
\(189\) −8.94364 −0.650554
\(190\) 3.37031 + 16.2379i 0.244508 + 1.17802i
\(191\) −18.7576 −1.35725 −0.678627 0.734483i \(-0.737425\pi\)
−0.678627 + 0.734483i \(0.737425\pi\)
\(192\) 0.666723i 0.0481166i
\(193\) 24.3855i 1.75530i 0.479299 + 0.877652i \(0.340891\pi\)
−0.479299 + 0.877652i \(0.659109\pi\)
\(194\) −10.5209 −0.755360
\(195\) 0 0
\(196\) −1.16965 −0.0835462
\(197\) 2.73133i 0.194599i 0.995255 + 0.0972997i \(0.0310205\pi\)
−0.995255 + 0.0972997i \(0.968979\pi\)
\(198\) 3.73401i 0.265364i
\(199\) −11.2116 −0.794771 −0.397385 0.917652i \(-0.630082\pi\)
−0.397385 + 0.917652i \(0.630082\pi\)
\(200\) 1.98986 + 4.58699i 0.140704 + 0.324349i
\(201\) 7.33113 0.517098
\(202\) 14.2473i 1.00243i
\(203\) 1.68191i 0.118047i
\(204\) −4.49870 −0.314972
\(205\) 9.30244 1.93080i 0.649710 0.134853i
\(206\) −9.72411 −0.677511
\(207\) 19.1399i 1.33032i
\(208\) 0 0
\(209\) 10.8369 0.749607
\(210\) −0.731575 3.52467i −0.0504835 0.243226i
\(211\) 13.7163 0.944266 0.472133 0.881527i \(-0.343484\pi\)
0.472133 + 0.881527i \(0.343484\pi\)
\(212\) 7.04744i 0.484020i
\(213\) 2.40633i 0.164879i
\(214\) 6.14900 0.420337
\(215\) 1.08415 + 5.22333i 0.0739381 + 0.356228i
\(216\) 3.70397 0.252023
\(217\) 3.30409i 0.224296i
\(218\) 0.319202i 0.0216191i
\(219\) −6.20157 −0.419063
\(220\) 3.19911 0.664001i 0.215684 0.0447669i
\(221\) 0 0
\(222\) 6.16846i 0.414000i
\(223\) 9.84353i 0.659172i −0.944126 0.329586i \(-0.893091\pi\)
0.944126 0.329586i \(-0.106909\pi\)
\(224\) −2.41461 −0.161333
\(225\) 11.7220 5.08505i 0.781464 0.339003i
\(226\) 1.95370 0.129959
\(227\) 19.4038i 1.28788i 0.765077 + 0.643939i \(0.222701\pi\)
−0.765077 + 0.643939i \(0.777299\pi\)
\(228\) 4.94481i 0.327478i
\(229\) 16.7503 1.10689 0.553447 0.832885i \(-0.313312\pi\)
0.553447 + 0.832885i \(0.313312\pi\)
\(230\) −16.3981 + 3.40356i −1.08126 + 0.224424i
\(231\) −2.35231 −0.154771
\(232\) 0.696556i 0.0457311i
\(233\) 16.7974i 1.10043i −0.835022 0.550217i \(-0.814545\pi\)
0.835022 0.550217i \(-0.185455\pi\)
\(234\) 0 0
\(235\) −1.26084 6.07463i −0.0822482 0.396265i
\(236\) 0.0690364 0.00449389
\(237\) 0.511198i 0.0332059i
\(238\) 16.2926i 1.05609i
\(239\) −18.2819 −1.18256 −0.591278 0.806467i \(-0.701377\pi\)
−0.591278 + 0.806467i \(0.701377\pi\)
\(240\) 0.302978 + 1.45973i 0.0195572 + 0.0942249i
\(241\) −7.86172 −0.506418 −0.253209 0.967412i \(-0.581486\pi\)
−0.253209 + 0.967412i \(0.581486\pi\)
\(242\) 8.86496i 0.569861i
\(243\) 14.5768i 0.935102i
\(244\) −5.91472 −0.378651
\(245\) −2.56083 + 0.531521i −0.163605 + 0.0339577i
\(246\) 2.83280 0.180613
\(247\) 0 0
\(248\) 1.36837i 0.0868918i
\(249\) −11.0543 −0.700536
\(250\) 6.44107 + 9.13853i 0.407369 + 0.577971i
\(251\) 8.97087 0.566236 0.283118 0.959085i \(-0.408631\pi\)
0.283118 + 0.959085i \(0.408631\pi\)
\(252\) 6.17050i 0.388705i
\(253\) 10.9439i 0.688034i
\(254\) 9.73867 0.611059
\(255\) −9.84948 + 2.04434i −0.616799 + 0.128022i
\(256\) 1.00000 0.0625000
\(257\) 24.2725i 1.51408i −0.653369 0.757040i \(-0.726645\pi\)
0.653369 0.757040i \(-0.273355\pi\)
\(258\) 1.59062i 0.0990278i
\(259\) −22.3398 −1.38813
\(260\) 0 0
\(261\) 1.78004 0.110181
\(262\) 10.6075i 0.655331i
\(263\) 28.7755i 1.77438i −0.461408 0.887188i \(-0.652656\pi\)
0.461408 0.887188i \(-0.347344\pi\)
\(264\) 0.974200 0.0599578
\(265\) 3.20256 + 15.4297i 0.196732 + 0.947839i
\(266\) −17.9082 −1.09802
\(267\) 11.8331i 0.724172i
\(268\) 10.9958i 0.671674i
\(269\) 26.2808 1.60237 0.801185 0.598417i \(-0.204203\pi\)
0.801185 + 0.598417i \(0.204203\pi\)
\(270\) 8.10948 1.68319i 0.493527 0.102436i
\(271\) 14.3647 0.872594 0.436297 0.899803i \(-0.356290\pi\)
0.436297 + 0.899803i \(0.356290\pi\)
\(272\) 6.74749i 0.409126i
\(273\) 0 0
\(274\) −6.40586 −0.386992
\(275\) 6.70240 2.90753i 0.404170 0.175331i
\(276\) −4.99359 −0.300579
\(277\) 9.92492i 0.596331i −0.954514 0.298165i \(-0.903625\pi\)
0.954514 0.298165i \(-0.0963747\pi\)
\(278\) 16.7981i 1.00748i
\(279\) −3.49685 −0.209351
\(280\) −5.28656 + 1.09727i −0.315933 + 0.0655744i
\(281\) 11.7992 0.703880 0.351940 0.936023i \(-0.385522\pi\)
0.351940 + 0.936023i \(0.385522\pi\)
\(282\) 1.84986i 0.110158i
\(283\) 13.0538i 0.775968i −0.921666 0.387984i \(-0.873172\pi\)
0.921666 0.387984i \(-0.126828\pi\)
\(284\) −3.60919 −0.214166
\(285\) 2.24706 + 10.8262i 0.133105 + 0.641288i
\(286\) 0 0
\(287\) 10.2593i 0.605588i
\(288\) 2.55548i 0.150583i
\(289\) −28.5286 −1.67815
\(290\) 0.316535 + 1.52504i 0.0185876 + 0.0895536i
\(291\) −7.01455 −0.411200
\(292\) 9.30157i 0.544333i
\(293\) 16.2358i 0.948506i 0.880389 + 0.474253i \(0.157282\pi\)
−0.880389 + 0.474253i \(0.842718\pi\)
\(294\) −0.779830 −0.0454806
\(295\) 0.151149 0.0313721i 0.00880021 0.00182656i
\(296\) 9.25191 0.537757
\(297\) 5.41215i 0.314045i
\(298\) 8.90415i 0.515803i
\(299\) 0 0
\(300\) 1.32668 + 3.05825i 0.0765961 + 0.176568i
\(301\) −5.76062 −0.332036
\(302\) 17.1722i 0.988148i
\(303\) 9.49897i 0.545701i
\(304\) 7.41659 0.425370
\(305\) −12.9497 + 2.68782i −0.741499 + 0.153904i
\(306\) 17.2431 0.985721
\(307\) 5.66589i 0.323370i −0.986842 0.161685i \(-0.948307\pi\)
0.986842 0.161685i \(-0.0516928\pi\)
\(308\) 3.52818i 0.201036i
\(309\) −6.48328 −0.368821
\(310\) −0.621829 2.99592i −0.0353175 0.170157i
\(311\) 20.5465 1.16508 0.582542 0.812801i \(-0.302058\pi\)
0.582542 + 0.812801i \(0.302058\pi\)
\(312\) 0 0
\(313\) 11.0354i 0.623756i 0.950122 + 0.311878i \(0.100958\pi\)
−0.950122 + 0.311878i \(0.899042\pi\)
\(314\) 11.0649 0.624427
\(315\) 2.80405 + 13.5097i 0.157990 + 0.761186i
\(316\) −0.766732 −0.0431320
\(317\) 17.0656i 0.958501i 0.877678 + 0.479251i \(0.159091\pi\)
−0.877678 + 0.479251i \(0.840909\pi\)
\(318\) 4.69869i 0.263489i
\(319\) 1.01779 0.0569854
\(320\) 2.18940 0.454429i 0.122391 0.0254034i
\(321\) 4.09968 0.228822
\(322\) 18.0848i 1.00783i
\(323\) 50.0433i 2.78448i
\(324\) −5.19692 −0.288718
\(325\) 0 0
\(326\) 15.2437 0.844269
\(327\) 0.212820i 0.0117689i
\(328\) 4.24884i 0.234603i
\(329\) 6.69949 0.369355
\(330\) 2.13292 0.442705i 0.117413 0.0243701i
\(331\) 29.6977 1.63233 0.816167 0.577817i \(-0.196095\pi\)
0.816167 + 0.577817i \(0.196095\pi\)
\(332\) 16.5800i 0.909947i
\(333\) 23.6431i 1.29563i
\(334\) 8.69198 0.475604
\(335\) −4.99680 24.0742i −0.273004 1.31531i
\(336\) −1.60988 −0.0878260
\(337\) 11.1216i 0.605833i 0.953017 + 0.302917i \(0.0979604\pi\)
−0.953017 + 0.302917i \(0.902040\pi\)
\(338\) 0 0
\(339\) 1.30258 0.0707464
\(340\) 3.06625 + 14.7730i 0.166291 + 0.801177i
\(341\) −1.99944 −0.108275
\(342\) 18.9529i 1.02486i
\(343\) 19.7265i 1.06513i
\(344\) 2.38573 0.128630
\(345\) −10.9330 + 2.26923i −0.588612 + 0.122171i
\(346\) 3.39226 0.182369
\(347\) 19.1698i 1.02909i 0.857463 + 0.514545i \(0.172039\pi\)
−0.857463 + 0.514545i \(0.827961\pi\)
\(348\) 0.464410i 0.0248950i
\(349\) −2.07169 −0.110895 −0.0554474 0.998462i \(-0.517659\pi\)
−0.0554474 + 0.998462i \(0.517659\pi\)
\(350\) −11.0758 + 4.80474i −0.592026 + 0.256824i
\(351\) 0 0
\(352\) 1.46118i 0.0778810i
\(353\) 14.2889i 0.760522i −0.924879 0.380261i \(-0.875834\pi\)
0.924879 0.380261i \(-0.124166\pi\)
\(354\) 0.0460281 0.00244637
\(355\) −7.90198 + 1.64012i −0.419394 + 0.0870486i
\(356\) −17.7481 −0.940648
\(357\) 10.8626i 0.574911i
\(358\) 13.2996i 0.702905i
\(359\) −12.4966 −0.659543 −0.329772 0.944061i \(-0.606972\pi\)
−0.329772 + 0.944061i \(0.606972\pi\)
\(360\) −1.16128 5.59498i −0.0612051 0.294881i
\(361\) 36.0058 1.89504
\(362\) 14.0010i 0.735874i
\(363\) 5.91047i 0.310219i
\(364\) 0 0
\(365\) 4.22690 + 20.3649i 0.221246 + 1.06595i
\(366\) −3.94348 −0.206129
\(367\) 20.7194i 1.08154i 0.841170 + 0.540772i \(0.181868\pi\)
−0.841170 + 0.540772i \(0.818132\pi\)
\(368\) 7.48975i 0.390430i
\(369\) −10.8578 −0.565236
\(370\) 20.2562 4.20434i 1.05307 0.218573i
\(371\) −17.0168 −0.883470
\(372\) 0.912326i 0.0473019i
\(373\) 31.4926i 1.63063i −0.579020 0.815313i \(-0.696565\pi\)
0.579020 0.815313i \(-0.303435\pi\)
\(374\) 9.85927 0.509811
\(375\) 4.29441 + 6.09286i 0.221762 + 0.314634i
\(376\) −2.77456 −0.143087
\(377\) 0 0
\(378\) 8.94364i 0.460011i
\(379\) 7.87442 0.404482 0.202241 0.979336i \(-0.435178\pi\)
0.202241 + 0.979336i \(0.435178\pi\)
\(380\) 16.2379 3.37031i 0.832987 0.172893i
\(381\) 6.49299 0.332646
\(382\) 18.7576i 0.959723i
\(383\) 8.03386i 0.410511i 0.978708 + 0.205256i \(0.0658025\pi\)
−0.978708 + 0.205256i \(0.934197\pi\)
\(384\) 0.666723 0.0340236
\(385\) 1.60331 + 7.72460i 0.0817120 + 0.393682i
\(386\) 24.3855 1.24119
\(387\) 6.09669i 0.309912i
\(388\) 10.5209i 0.534120i
\(389\) 21.5917 1.09474 0.547371 0.836890i \(-0.315629\pi\)
0.547371 + 0.836890i \(0.315629\pi\)
\(390\) 0 0
\(391\) −50.5370 −2.55577
\(392\) 1.16965i 0.0590761i
\(393\) 7.07224i 0.356747i
\(394\) 2.73133 0.137603
\(395\) −1.67869 + 0.348425i −0.0844639 + 0.0175312i
\(396\) −3.73401 −0.187641
\(397\) 36.8751i 1.85071i 0.379102 + 0.925355i \(0.376233\pi\)
−0.379102 + 0.925355i \(0.623767\pi\)
\(398\) 11.2116i 0.561988i
\(399\) −11.9398 −0.597737
\(400\) 4.58699 1.98986i 0.229349 0.0994929i
\(401\) −8.26837 −0.412902 −0.206451 0.978457i \(-0.566191\pi\)
−0.206451 + 0.978457i \(0.566191\pi\)
\(402\) 7.33113i 0.365644i
\(403\) 0 0
\(404\) −14.2473 −0.708827
\(405\) −11.3782 + 2.36163i −0.565386 + 0.117351i
\(406\) −1.68191 −0.0834719
\(407\) 13.5187i 0.670096i
\(408\) 4.49870i 0.222719i
\(409\) 3.02146 0.149402 0.0747008 0.997206i \(-0.476200\pi\)
0.0747008 + 0.997206i \(0.476200\pi\)
\(410\) −1.93080 9.30244i −0.0953553 0.459415i
\(411\) −4.27093 −0.210669
\(412\) 9.72411i 0.479072i
\(413\) 0.166696i 0.00820258i
\(414\) 19.1399 0.940676
\(415\) 7.53444 + 36.3004i 0.369851 + 1.78192i
\(416\) 0 0
\(417\) 11.1997i 0.548451i
\(418\) 10.8369i 0.530052i
\(419\) 35.0376 1.71170 0.855850 0.517223i \(-0.173034\pi\)
0.855850 + 0.517223i \(0.173034\pi\)
\(420\) −3.52467 + 0.731575i −0.171986 + 0.0356972i
\(421\) 9.81291 0.478252 0.239126 0.970989i \(-0.423139\pi\)
0.239126 + 0.970989i \(0.423139\pi\)
\(422\) 13.7163i 0.667697i
\(423\) 7.09033i 0.344744i
\(424\) 7.04744 0.342254
\(425\) 13.4265 + 30.9506i 0.651283 + 1.50133i
\(426\) −2.40633 −0.116587
\(427\) 14.2818i 0.691143i
\(428\) 6.14900i 0.297223i
\(429\) 0 0
\(430\) 5.22333 1.08415i 0.251891 0.0522821i
\(431\) −5.88552 −0.283495 −0.141748 0.989903i \(-0.545272\pi\)
−0.141748 + 0.989903i \(0.545272\pi\)
\(432\) 3.70397i 0.178207i
\(433\) 31.1096i 1.49503i −0.664244 0.747516i \(-0.731246\pi\)
0.664244 0.747516i \(-0.268754\pi\)
\(434\) 3.30409 0.158601
\(435\) 0.211041 + 1.01678i 0.0101187 + 0.0487509i
\(436\) 0.319202 0.0152870
\(437\) 55.5484i 2.65724i
\(438\) 6.20157i 0.296322i
\(439\) 2.69710 0.128726 0.0643629 0.997927i \(-0.479498\pi\)
0.0643629 + 0.997927i \(0.479498\pi\)
\(440\) −0.664001 3.19911i −0.0316550 0.152511i
\(441\) 2.98901 0.142334
\(442\) 0 0
\(443\) 19.0859i 0.906799i 0.891308 + 0.453399i \(0.149789\pi\)
−0.891308 + 0.453399i \(0.850211\pi\)
\(444\) 6.16846 0.292742
\(445\) −38.8578 + 8.06526i −1.84204 + 0.382330i
\(446\) −9.84353 −0.466105
\(447\) 5.93660i 0.280791i
\(448\) 2.41461i 0.114080i
\(449\) 18.3579 0.866363 0.433182 0.901307i \(-0.357391\pi\)
0.433182 + 0.901307i \(0.357391\pi\)
\(450\) −5.08505 11.7220i −0.239711 0.552579i
\(451\) −6.20831 −0.292338
\(452\) 1.95370i 0.0918945i
\(453\) 11.4491i 0.537925i
\(454\) 19.4038 0.910668
\(455\) 0 0
\(456\) 4.94481 0.231562
\(457\) 25.3873i 1.18757i −0.804624 0.593785i \(-0.797633\pi\)
0.804624 0.593785i \(-0.202367\pi\)
\(458\) 16.7503i 0.782692i
\(459\) 24.9925 1.16655
\(460\) 3.40356 + 16.3981i 0.158692 + 0.764565i
\(461\) −1.12031 −0.0521782 −0.0260891 0.999660i \(-0.508305\pi\)
−0.0260891 + 0.999660i \(0.508305\pi\)
\(462\) 2.35231i 0.109440i
\(463\) 30.6952i 1.42653i −0.700895 0.713264i \(-0.747216\pi\)
0.700895 0.713264i \(-0.252784\pi\)
\(464\) 0.696556 0.0323368
\(465\) −0.414587 1.99745i −0.0192260 0.0926296i
\(466\) −16.7974 −0.778124
\(467\) 5.88670i 0.272404i −0.990681 0.136202i \(-0.956510\pi\)
0.990681 0.136202i \(-0.0434896\pi\)
\(468\) 0 0
\(469\) 26.5505 1.22599
\(470\) −6.07463 + 1.26084i −0.280202 + 0.0581582i
\(471\) 7.37720 0.339924
\(472\) 0.0690364i 0.00317766i
\(473\) 3.48597i 0.160285i
\(474\) −0.511198 −0.0234801
\(475\) 34.0198 14.7580i 1.56094 0.677142i
\(476\) −16.2926 −0.746768
\(477\) 18.0096i 0.824602i
\(478\) 18.2819i 0.836194i
\(479\) −24.6962 −1.12840 −0.564200 0.825638i \(-0.690815\pi\)
−0.564200 + 0.825638i \(0.690815\pi\)
\(480\) 1.45973 0.302978i 0.0666271 0.0138290i
\(481\) 0 0
\(482\) 7.86172i 0.358091i
\(483\) 12.0576i 0.548639i
\(484\) 8.86496 0.402953
\(485\) 4.78102 + 23.0346i 0.217095 + 1.04595i
\(486\) −14.5768 −0.661217
\(487\) 6.85817i 0.310774i 0.987854 + 0.155387i \(0.0496624\pi\)
−0.987854 + 0.155387i \(0.950338\pi\)
\(488\) 5.91472i 0.267747i
\(489\) 10.1633 0.459600
\(490\) 0.531521 + 2.56083i 0.0240117 + 0.115687i
\(491\) −32.0421 −1.44604 −0.723021 0.690826i \(-0.757247\pi\)
−0.723021 + 0.690826i \(0.757247\pi\)
\(492\) 2.83280i 0.127712i
\(493\) 4.70000i 0.211677i
\(494\) 0 0
\(495\) −8.17526 + 1.69684i −0.367450 + 0.0762674i
\(496\) −1.36837 −0.0614418
\(497\) 8.71480i 0.390912i
\(498\) 11.0543i 0.495354i
\(499\) −25.9861 −1.16330 −0.581648 0.813440i \(-0.697592\pi\)
−0.581648 + 0.813440i \(0.697592\pi\)
\(500\) 9.13853 6.44107i 0.408687 0.288053i
\(501\) 5.79514 0.258908
\(502\) 8.97087i 0.400389i
\(503\) 7.96895i 0.355318i −0.984092 0.177659i \(-0.943148\pi\)
0.984092 0.177659i \(-0.0568524\pi\)
\(504\) 6.17050 0.274856
\(505\) −31.1930 + 6.47437i −1.38807 + 0.288105i
\(506\) 10.9439 0.486513
\(507\) 0 0
\(508\) 9.73867i 0.432084i
\(509\) −26.5772 −1.17801 −0.589007 0.808128i \(-0.700481\pi\)
−0.589007 + 0.808128i \(0.700481\pi\)
\(510\) 2.04434 + 9.84948i 0.0905250 + 0.436142i
\(511\) −22.4597 −0.993558
\(512\) 1.00000i 0.0441942i
\(513\) 27.4708i 1.21286i
\(514\) −24.2725 −1.07062
\(515\) 4.41892 + 21.2900i 0.194721 + 0.938150i
\(516\) 1.59062 0.0700232
\(517\) 4.05412i 0.178300i
\(518\) 22.3398i 0.981554i
\(519\) 2.26170 0.0992776
\(520\) 0 0
\(521\) −16.3843 −0.717810 −0.358905 0.933374i \(-0.616850\pi\)
−0.358905 + 0.933374i \(0.616850\pi\)
\(522\) 1.78004i 0.0779100i
\(523\) 12.9757i 0.567390i −0.958915 0.283695i \(-0.908440\pi\)
0.958915 0.283695i \(-0.0915603\pi\)
\(524\) −10.6075 −0.463389
\(525\) −7.38449 + 3.20343i −0.322285 + 0.139809i
\(526\) −28.7755 −1.25467
\(527\) 9.23308i 0.402199i
\(528\) 0.974200i 0.0423966i
\(529\) −33.0964 −1.43897
\(530\) 15.4297 3.20256i 0.670223 0.139110i
\(531\) −0.176421 −0.00765602
\(532\) 17.9082i 0.776418i
\(533\) 0 0
\(534\) −11.8331 −0.512067
\(535\) −2.79428 13.4627i −0.120807 0.582041i
\(536\) −10.9958 −0.474945
\(537\) 8.86713i 0.382645i
\(538\) 26.2808i 1.13305i
\(539\) 1.70906 0.0736144
\(540\) −1.68319 8.10948i −0.0724329 0.348976i
\(541\) 23.1606 0.995753 0.497877 0.867248i \(-0.334113\pi\)
0.497877 + 0.867248i \(0.334113\pi\)
\(542\) 14.3647i 0.617017i
\(543\) 9.33475i 0.400593i
\(544\) 6.74749 0.289296
\(545\) 0.698864 0.145055i 0.0299360 0.00621347i
\(546\) 0 0
\(547\) 13.3168i 0.569387i 0.958619 + 0.284693i \(0.0918917\pi\)
−0.958619 + 0.284693i \(0.908108\pi\)
\(548\) 6.40586i 0.273645i
\(549\) 15.1150 0.645091
\(550\) −2.90753 6.70240i −0.123978 0.285791i
\(551\) 5.16607 0.220082
\(552\) 4.99359i 0.212541i
\(553\) 1.85136i 0.0787279i
\(554\) −9.92492 −0.421669
\(555\) 13.5053 2.80313i 0.573266 0.118986i
\(556\) −16.7981 −0.712398
\(557\) 3.02677i 0.128248i 0.997942 + 0.0641242i \(0.0204254\pi\)
−0.997942 + 0.0641242i \(0.979575\pi\)
\(558\) 3.49685i 0.148034i
\(559\) 0 0
\(560\) 1.09727 + 5.28656i 0.0463681 + 0.223398i
\(561\) 6.57340 0.277529
\(562\) 11.7992i 0.497718i
\(563\) 18.2744i 0.770175i 0.922880 + 0.385087i \(0.125829\pi\)
−0.922880 + 0.385087i \(0.874171\pi\)
\(564\) −1.84986 −0.0778932
\(565\) −0.887820 4.27745i −0.0373509 0.179954i
\(566\) −13.0538 −0.548692
\(567\) 12.5486i 0.526990i
\(568\) 3.60919i 0.151438i
\(569\) 25.9020 1.08587 0.542933 0.839776i \(-0.317314\pi\)
0.542933 + 0.839776i \(0.317314\pi\)
\(570\) 10.8262 2.24706i 0.453459 0.0941192i
\(571\) −37.9443 −1.58792 −0.793960 0.607970i \(-0.791984\pi\)
−0.793960 + 0.607970i \(0.791984\pi\)
\(572\) 0 0
\(573\) 12.5061i 0.522451i
\(574\) 10.2593 0.428215
\(575\) 14.9035 + 34.3554i 0.621521 + 1.43272i
\(576\) −2.55548 −0.106478
\(577\) 18.6481i 0.776330i 0.921590 + 0.388165i \(0.126891\pi\)
−0.921590 + 0.388165i \(0.873109\pi\)
\(578\) 28.5286i 1.18663i
\(579\) 16.2583 0.675674
\(580\) 1.52504 0.316535i 0.0633240 0.0131434i
\(581\) −40.0343 −1.66090
\(582\) 7.01455i 0.290763i
\(583\) 10.2976i 0.426481i
\(584\) 9.30157 0.384902
\(585\) 0 0
\(586\) 16.2358 0.670695
\(587\) 6.63680i 0.273930i −0.990576 0.136965i \(-0.956265\pi\)
0.990576 0.136965i \(-0.0437348\pi\)
\(588\) 0.779830i 0.0321596i
\(589\) −10.1487 −0.418168
\(590\) −0.0313721 0.151149i −0.00129157 0.00622269i
\(591\) 1.82104 0.0749077
\(592\) 9.25191i 0.380251i
\(593\) 8.72953i 0.358479i 0.983805 + 0.179239i \(0.0573636\pi\)
−0.983805 + 0.179239i \(0.942636\pi\)
\(594\) −5.41215 −0.222063
\(595\) −35.6710 + 7.40381i −1.46237 + 0.303527i
\(596\) 8.90415 0.364728
\(597\) 7.47504i 0.305933i
\(598\) 0 0
\(599\) −38.0625 −1.55519 −0.777596 0.628765i \(-0.783561\pi\)
−0.777596 + 0.628765i \(0.783561\pi\)
\(600\) 3.05825 1.32668i 0.124853 0.0541616i
\(601\) −2.03785 −0.0831256 −0.0415628 0.999136i \(-0.513234\pi\)
−0.0415628 + 0.999136i \(0.513234\pi\)
\(602\) 5.76062i 0.234785i
\(603\) 28.0995i 1.14430i
\(604\) 17.1722 0.698726
\(605\) 19.4090 4.02850i 0.789088 0.163782i
\(606\) −9.49897 −0.385869
\(607\) 1.61460i 0.0655347i 0.999463 + 0.0327674i \(0.0104320\pi\)
−0.999463 + 0.0327674i \(0.989568\pi\)
\(608\) 7.41659i 0.300782i
\(609\) −1.12137 −0.0454402
\(610\) 2.68782 + 12.9497i 0.108827 + 0.524319i
\(611\) 0 0
\(612\) 17.2431i 0.697010i
\(613\) 17.8032i 0.719066i 0.933132 + 0.359533i \(0.117064\pi\)
−0.933132 + 0.359533i \(0.882936\pi\)
\(614\) −5.66589 −0.228657
\(615\) −1.28731 6.20215i −0.0519092 0.250095i
\(616\) 3.52818 0.142154
\(617\) 36.9565i 1.48781i 0.668284 + 0.743906i \(0.267029\pi\)
−0.668284 + 0.743906i \(0.732971\pi\)
\(618\) 6.48328i 0.260796i
\(619\) −31.6640 −1.27268 −0.636341 0.771408i \(-0.719553\pi\)
−0.636341 + 0.771408i \(0.719553\pi\)
\(620\) −2.99592 + 0.621829i −0.120319 + 0.0249732i
\(621\) 27.7418 1.11324
\(622\) 20.5465i 0.823839i
\(623\) 42.8548i 1.71694i
\(624\) 0 0
\(625\) 17.0809 18.2549i 0.683237 0.730197i
\(626\) 11.0354 0.441062
\(627\) 7.22524i 0.288548i
\(628\) 11.0649i 0.441537i
\(629\) 62.4272 2.48913
\(630\) 13.5097 2.80405i 0.538240 0.111716i
\(631\) 7.35141 0.292655 0.146327 0.989236i \(-0.453255\pi\)
0.146327 + 0.989236i \(0.453255\pi\)
\(632\) 0.766732i 0.0304990i
\(633\) 9.14494i 0.363479i
\(634\) 17.0656 0.677763
\(635\) −4.42554 21.3219i −0.175622 0.846134i
\(636\) 4.69869 0.186315
\(637\) 0 0
\(638\) 1.01779i 0.0402947i
\(639\) 9.22322 0.364865
\(640\) −0.454429 2.18940i −0.0179629 0.0865438i
\(641\) 38.9606 1.53885 0.769425 0.638737i \(-0.220543\pi\)
0.769425 + 0.638737i \(0.220543\pi\)
\(642\) 4.09968i 0.161801i
\(643\) 0.528071i 0.0208251i −0.999946 0.0104126i \(-0.996686\pi\)
0.999946 0.0104126i \(-0.00331448\pi\)
\(644\) −18.0848 −0.712643
\(645\) 3.48251 0.722825i 0.137124 0.0284612i
\(646\) 50.0433 1.96893
\(647\) 30.5439i 1.20081i −0.799698 0.600403i \(-0.795007\pi\)
0.799698 0.600403i \(-0.204993\pi\)
\(648\) 5.19692i 0.204154i
\(649\) −0.100874 −0.00395966
\(650\) 0 0
\(651\) 2.20291 0.0863390
\(652\) 15.2437i 0.596988i
\(653\) 11.9772i 0.468704i −0.972152 0.234352i \(-0.924703\pi\)
0.972152 0.234352i \(-0.0752968\pi\)
\(654\) 0.212820 0.00832190
\(655\) −23.2240 + 4.82034i −0.907438 + 0.188346i
\(656\) −4.24884 −0.165889
\(657\) 23.7700i 0.927355i
\(658\) 6.69949i 0.261173i
\(659\) −4.01683 −0.156474 −0.0782368 0.996935i \(-0.524929\pi\)
−0.0782368 + 0.996935i \(0.524929\pi\)
\(660\) −0.442705 2.13292i −0.0172323 0.0830237i
\(661\) 40.3372 1.56893 0.784467 0.620170i \(-0.212936\pi\)
0.784467 + 0.620170i \(0.212936\pi\)
\(662\) 29.6977i 1.15423i
\(663\) 0 0
\(664\) 16.5800 0.643430
\(665\) 8.13800 + 39.2083i 0.315578 + 1.52043i
\(666\) −23.6431 −0.916151
\(667\) 5.21703i 0.202004i
\(668\) 8.69198i 0.336303i
\(669\) −6.56291 −0.253737
\(670\) −24.0742 + 4.99680i −0.930067 + 0.193043i
\(671\) 8.64245 0.333638
\(672\) 1.60988i 0.0621024i
\(673\) 41.3853i 1.59529i 0.603129 + 0.797644i \(0.293920\pi\)
−0.603129 + 0.797644i \(0.706080\pi\)
\(674\) 11.1216 0.428389
\(675\) −7.37037 16.9900i −0.283686 0.653947i
\(676\) 0 0
\(677\) 23.9115i 0.918995i −0.888179 0.459497i \(-0.848030\pi\)
0.888179 0.459497i \(-0.151970\pi\)
\(678\) 1.30258i 0.0500253i
\(679\) −25.4040 −0.974916
\(680\) 14.7730 3.06625i 0.566518 0.117585i
\(681\) 12.9370 0.495746
\(682\) 1.99944i 0.0765623i
\(683\) 23.5399i 0.900729i 0.892845 + 0.450364i \(0.148706\pi\)
−0.892845 + 0.450364i \(0.851294\pi\)
\(684\) −18.9529 −0.724684
\(685\) 2.91101 + 14.0250i 0.111224 + 0.535868i
\(686\) −19.7265 −0.753162
\(687\) 11.1678i 0.426079i
\(688\) 2.38573i 0.0909552i
\(689\) 0 0
\(690\) 2.26923 + 10.9330i 0.0863882 + 0.416212i
\(691\) −27.7945 −1.05735 −0.528677 0.848823i \(-0.677312\pi\)
−0.528677 + 0.848823i \(0.677312\pi\)
\(692\) 3.39226i 0.128954i
\(693\) 9.01618i 0.342496i
\(694\) 19.1698 0.727676
\(695\) −36.7779 + 7.63355i −1.39506 + 0.289557i
\(696\) 0.464410 0.0176034
\(697\) 28.6690i 1.08592i
\(698\) 2.07169i 0.0784145i
\(699\) −11.1992 −0.423593
\(700\) 4.80474 + 11.0758i 0.181602 + 0.418626i
\(701\) 20.6527 0.780042 0.390021 0.920806i \(-0.372468\pi\)
0.390021 + 0.920806i \(0.372468\pi\)
\(702\) 0 0
\(703\) 68.6176i 2.58796i
\(704\) −1.46118 −0.0550702
\(705\) −4.05010 + 0.840631i −0.152535 + 0.0316600i
\(706\) −14.2889 −0.537770
\(707\) 34.4016i 1.29381i
\(708\) 0.0460281i 0.00172984i
\(709\) −1.90959 −0.0717161 −0.0358581 0.999357i \(-0.511416\pi\)
−0.0358581 + 0.999357i \(0.511416\pi\)
\(710\) 1.64012 + 7.90198i 0.0615527 + 0.296556i
\(711\) 1.95937 0.0734821
\(712\) 17.7481i 0.665138i
\(713\) 10.2488i 0.383820i
\(714\) −10.8626 −0.406523
\(715\) 0 0
\(716\) 13.2996 0.497029
\(717\) 12.1889i 0.455205i
\(718\) 12.4966i 0.466367i
\(719\) −36.3672 −1.35627 −0.678135 0.734938i \(-0.737211\pi\)
−0.678135 + 0.734938i \(0.737211\pi\)
\(720\) −5.59498 + 1.16128i −0.208513 + 0.0432785i
\(721\) −23.4799 −0.874439
\(722\) 36.0058i 1.34000i
\(723\) 5.24159i 0.194937i
\(724\) 14.0010 0.520341
\(725\) 3.19509 1.38605i 0.118663 0.0514765i
\(726\) 5.91047 0.219358
\(727\) 2.25162i 0.0835080i −0.999128 0.0417540i \(-0.986705\pi\)
0.999128 0.0417540i \(-0.0132946\pi\)
\(728\) 0 0
\(729\) 5.87208 0.217485
\(730\) 20.3649 4.22690i 0.753739 0.156445i
\(731\) 16.0977 0.595395
\(732\) 3.94348i 0.145755i
\(733\) 27.7157i 1.02370i −0.859074 0.511851i \(-0.828960\pi\)
0.859074 0.511851i \(-0.171040\pi\)
\(734\) 20.7194 0.764766
\(735\) 0.354377 + 1.70736i 0.0130714 + 0.0629771i
\(736\) 7.48975 0.276076
\(737\) 16.0668i 0.591827i
\(738\) 10.8578i 0.399682i
\(739\) −17.4826 −0.643108 −0.321554 0.946891i \(-0.604205\pi\)
−0.321554 + 0.946891i \(0.604205\pi\)
\(740\) −4.20434 20.2562i −0.154555 0.744632i
\(741\) 0 0
\(742\) 17.0168i 0.624707i
\(743\) 45.4090i 1.66589i 0.553353 + 0.832947i \(0.313348\pi\)
−0.553353 + 0.832947i \(0.686652\pi\)
\(744\) −0.912326 −0.0334475
\(745\) 19.4948 4.04630i 0.714234 0.148245i
\(746\) −31.4926 −1.15303
\(747\) 42.3699i 1.55023i
\(748\) 9.85927i 0.360491i
\(749\) 14.8475 0.542514
\(750\) 6.09286 4.29441i 0.222480 0.156810i
\(751\) −23.3846 −0.853315 −0.426657 0.904413i \(-0.640309\pi\)
−0.426657 + 0.904413i \(0.640309\pi\)
\(752\) 2.77456i 0.101178i
\(753\) 5.98108i 0.217963i
\(754\) 0 0
\(755\) 37.5969 7.80354i 1.36829 0.284000i
\(756\) 8.94364 0.325277
\(757\) 33.7347i 1.22611i 0.790040 + 0.613055i \(0.210059\pi\)
−0.790040 + 0.613055i \(0.789941\pi\)
\(758\) 7.87442i 0.286012i
\(759\) 7.29651 0.264847
\(760\) −3.37031 16.2379i −0.122254 0.589011i
\(761\) −13.4210 −0.486512 −0.243256 0.969962i \(-0.578215\pi\)
−0.243256 + 0.969962i \(0.578215\pi\)
\(762\) 6.49299i 0.235216i
\(763\) 0.770750i 0.0279030i
\(764\) 18.7576 0.678627
\(765\) −7.83575 37.7521i −0.283302 1.36493i
\(766\) 8.03386 0.290275
\(767\) 0 0
\(768\) 0.666723i 0.0240583i
\(769\) −18.6681 −0.673188 −0.336594 0.941650i \(-0.609275\pi\)
−0.336594 + 0.941650i \(0.609275\pi\)
\(770\) 7.72460 1.60331i 0.278375 0.0577791i
\(771\) −16.1831 −0.582818
\(772\) 24.3855i 0.877652i
\(773\) 2.12110i 0.0762905i −0.999272 0.0381453i \(-0.987855\pi\)
0.999272 0.0381453i \(-0.0121450\pi\)
\(774\) −6.09669 −0.219141
\(775\) −6.27671 + 2.72287i −0.225466 + 0.0978084i
\(776\) 10.5209 0.377680
\(777\) 14.8944i 0.534335i
\(778\) 21.5917i 0.774099i
\(779\) −31.5119 −1.12903
\(780\) 0 0
\(781\) 5.27367 0.188707
\(782\) 50.5370i 1.80720i
\(783\) 2.58002i 0.0922024i
\(784\) 1.16965 0.0417731
\(785\) −5.02820 24.2255i −0.179464 0.864645i
\(786\) −7.07224 −0.252258
\(787\) 1.88977i 0.0673631i −0.999433 0.0336815i \(-0.989277\pi\)
0.999433 0.0336815i \(-0.0107232\pi\)
\(788\) 2.73133i 0.0972997i
\(789\) −19.1853 −0.683015
\(790\) 0.348425 + 1.67869i 0.0123964 + 0.0597250i
\(791\) 4.71744 0.167733
\(792\) 3.73401i 0.132682i
\(793\) 0 0
\(794\) 36.8751 1.30865
\(795\) 10.2873 2.13522i 0.364854 0.0757284i
\(796\) 11.2116 0.397385
\(797\) 27.7575i 0.983222i 0.870815 + 0.491611i \(0.163592\pi\)
−0.870815 + 0.491611i \(0.836408\pi\)
\(798\) 11.9398i 0.422664i
\(799\) −18.7213 −0.662312
\(800\) −1.98986 4.58699i −0.0703521 0.162175i
\(801\) 45.3549 1.60254
\(802\) 8.26837i 0.291966i
\(803\) 13.5912i 0.479624i
\(804\) −7.33113 −0.258549
\(805\) −39.5951 + 8.21828i −1.39554 + 0.289656i
\(806\) 0 0
\(807\) 17.5220i 0.616804i
\(808\) 14.2473i 0.501217i
\(809\) −22.3988 −0.787501 −0.393751 0.919217i \(-0.628823\pi\)
−0.393751 + 0.919217i \(0.628823\pi\)
\(810\) 2.36163 + 11.3782i 0.0829793 + 0.399788i
\(811\) 10.0371 0.352450 0.176225 0.984350i \(-0.443611\pi\)
0.176225 + 0.984350i \(0.443611\pi\)
\(812\) 1.68191i 0.0590236i
\(813\) 9.57728i 0.335890i
\(814\) −13.5187 −0.473830
\(815\) −6.92717 33.3746i −0.242648 1.16906i
\(816\) 4.49870 0.157486
\(817\) 17.6940i 0.619034i
\(818\) 3.02146i 0.105643i
\(819\) 0 0
\(820\) −9.30244 + 1.93080i −0.324855 + 0.0674264i
\(821\) 12.9086 0.450513 0.225257 0.974299i \(-0.427678\pi\)
0.225257 + 0.974299i \(0.427678\pi\)
\(822\) 4.27093i 0.148966i
\(823\) 24.3811i 0.849870i 0.905224 + 0.424935i \(0.139703\pi\)
−0.905224 + 0.424935i \(0.860297\pi\)
\(824\) 9.72411 0.338755
\(825\) −1.93852 4.46864i −0.0674906 0.155578i
\(826\) 0.166696 0.00580010
\(827\) 11.1712i 0.388461i 0.980956 + 0.194230i \(0.0622209\pi\)
−0.980956 + 0.194230i \(0.937779\pi\)
\(828\) 19.1399i 0.665158i
\(829\) −28.9931 −1.00697 −0.503487 0.864003i \(-0.667950\pi\)
−0.503487 + 0.864003i \(0.667950\pi\)
\(830\) 36.3004 7.53444i 1.26000 0.261524i
\(831\) −6.61717 −0.229547
\(832\) 0 0
\(833\) 7.89217i 0.273448i
\(834\) −11.1997 −0.387813
\(835\) −3.94989 19.0303i −0.136691 0.658569i
\(836\) −10.8369 −0.374804
\(837\) 5.06841i 0.175190i
\(838\) 35.0376i 1.21036i
\(839\) −24.0650 −0.830818 −0.415409 0.909635i \(-0.636361\pi\)
−0.415409 + 0.909635i \(0.636361\pi\)
\(840\) 0.731575 + 3.52467i 0.0252417 + 0.121613i
\(841\) −28.5148 −0.983269
\(842\) 9.81291i 0.338175i
\(843\) 7.86678i 0.270946i
\(844\) −13.7163 −0.472133
\(845\) 0 0
\(846\) 7.09033 0.243771
\(847\) 21.4055i 0.735500i
\(848\) 7.04744i 0.242010i
\(849\) −8.70327 −0.298695
\(850\) 30.9506 13.4265i 1.06160 0.460527i
\(851\) 69.2945 2.37539
\(852\) 2.40633i 0.0824395i
\(853\) 13.7936i 0.472284i −0.971719 0.236142i \(-0.924117\pi\)
0.971719 0.236142i \(-0.0758831\pi\)
\(854\) −14.2818 −0.488712
\(855\) −41.4957 + 8.61277i −1.41912 + 0.294551i
\(856\) −6.14900 −0.210168
\(857\) 14.1595i 0.483678i −0.970316 0.241839i \(-0.922249\pi\)
0.970316 0.241839i \(-0.0777506\pi\)
\(858\) 0 0
\(859\) −27.6665 −0.943968 −0.471984 0.881607i \(-0.656462\pi\)
−0.471984 + 0.881607i \(0.656462\pi\)
\(860\) −1.08415 5.22333i −0.0369691 0.178114i
\(861\) 6.84011 0.233110
\(862\) 5.88552i 0.200462i
\(863\) 17.4318i 0.593386i −0.954973 0.296693i \(-0.904116\pi\)
0.954973 0.296693i \(-0.0958839\pi\)
\(864\) −3.70397 −0.126011
\(865\) −1.54154 7.42704i −0.0524140 0.252527i
\(866\) −31.1096 −1.05715
\(867\) 19.0206i 0.645975i
\(868\) 3.30409i 0.112148i
\(869\) 1.12033 0.0380046
\(870\) 1.01678 0.211041i 0.0344721 0.00715497i
\(871\) 0 0
\(872\) 0.319202i 0.0108096i
\(873\) 26.8861i 0.909956i
\(874\) 55.5484 1.87895
\(875\) 15.5527 + 22.0660i 0.525777 + 0.745967i
\(876\) 6.20157 0.209532
\(877\) 2.17528i 0.0734539i 0.999325 + 0.0367270i \(0.0116932\pi\)
−0.999325 + 0.0367270i \(0.988307\pi\)
\(878\) 2.69710i 0.0910229i
\(879\) 10.8248 0.365111
\(880\) −3.19911 + 0.664001i −0.107842 + 0.0223835i
\(881\) −6.32823 −0.213204 −0.106602 0.994302i \(-0.533997\pi\)
−0.106602 + 0.994302i \(0.533997\pi\)
\(882\) 2.98901i 0.100645i
\(883\) 28.5533i 0.960895i −0.877024 0.480447i \(-0.840474\pi\)
0.877024 0.480447i \(-0.159526\pi\)
\(884\) 0 0
\(885\) −0.0209165 0.100774i −0.000703101 0.00338749i
\(886\) 19.0859 0.641203
\(887\) 21.3012i 0.715225i −0.933870 0.357613i \(-0.883591\pi\)
0.933870 0.357613i \(-0.116409\pi\)
\(888\) 6.16846i 0.207000i
\(889\) 23.5151 0.788672
\(890\) 8.06526 + 38.8578i 0.270348 + 1.30252i
\(891\) 7.59362 0.254396
\(892\) 9.84353i 0.329586i
\(893\) 20.5778i 0.688609i
\(894\) 5.93660 0.198550
\(895\) 29.1182 6.04372i 0.973313 0.202019i
\(896\) 2.41461 0.0806665
\(897\) 0 0
\(898\) 18.3579i 0.612611i
\(899\) −0.953149 −0.0317893
\(900\) −11.7220 + 5.08505i −0.390732 + 0.169502i
\(901\) 47.5525 1.58420
\(902\) 6.20831i 0.206714i
\(903\) 3.84073i 0.127812i
\(904\) −1.95370 −0.0649793
\(905\) 30.6538 6.36244i 1.01897 0.211495i
\(906\) 11.4491 0.380370
\(907\) 46.5451i 1.54551i 0.634707 + 0.772753i \(0.281121\pi\)
−0.634707 + 0.772753i \(0.718879\pi\)
\(908\) 19.4038i 0.643939i
\(909\) 36.4086 1.20760
\(910\) 0 0
\(911\) −29.3014 −0.970800 −0.485400 0.874292i \(-0.661326\pi\)
−0.485400 + 0.874292i \(0.661326\pi\)
\(912\) 4.94481i 0.163739i
\(913\) 24.2263i 0.801775i
\(914\) −25.3873 −0.839739
\(915\) 1.79203 + 8.63387i 0.0592427 + 0.285427i
\(916\) −16.7503 −0.553447
\(917\) 25.6129i 0.845813i
\(918\) 24.9925i 0.824874i
\(919\) −29.4843 −0.972598 −0.486299 0.873792i \(-0.661654\pi\)
−0.486299 + 0.873792i \(0.661654\pi\)
\(920\) 16.3981 3.40356i 0.540629 0.112212i
\(921\) −3.77758 −0.124476
\(922\) 1.12031i 0.0368956i
\(923\) 0 0
\(924\) 2.35231 0.0773855
\(925\) −18.4100 42.4384i −0.605317 1.39537i
\(926\) −30.6952 −1.00871
\(927\) 24.8498i 0.816173i
\(928\) 0.696556i 0.0228656i
\(929\) −47.7459 −1.56649 −0.783246 0.621712i \(-0.786438\pi\)
−0.783246 + 0.621712i \(0.786438\pi\)
\(930\) −1.99745 + 0.414587i −0.0654990 + 0.0135949i
\(931\) 8.67479 0.284305
\(932\) 16.7974i 0.550217i
\(933\) 13.6988i 0.448479i
\(934\) −5.88670 −0.192619
\(935\) −4.48034 21.5859i −0.146523 0.705935i
\(936\) 0 0
\(937\) 29.2998i 0.957182i 0.878038 + 0.478591i \(0.158852\pi\)
−0.878038 + 0.478591i \(0.841148\pi\)
\(938\) 26.5505i 0.866905i
\(939\) 7.35753 0.240104
\(940\) 1.26084 + 6.07463i 0.0411241 + 0.198133i
\(941\) −7.48425 −0.243980 −0.121990 0.992531i \(-0.538928\pi\)
−0.121990 + 0.992531i \(0.538928\pi\)
\(942\) 7.37720i 0.240362i
\(943\) 31.8228i 1.03629i
\(944\) −0.0690364 −0.00224694
\(945\) 19.5813 4.06425i 0.636978 0.132210i
\(946\) −3.48597 −0.113339
\(947\) 15.9785i 0.519230i −0.965712 0.259615i \(-0.916404\pi\)
0.965712 0.259615i \(-0.0835957\pi\)
\(948\) 0.511198i 0.0166029i
\(949\) 0 0
\(950\) −14.7580 34.0198i −0.478811 1.10375i
\(951\) 11.3780 0.368958
\(952\) 16.2926i 0.528045i
\(953\) 44.7821i 1.45063i 0.688415 + 0.725317i \(0.258307\pi\)
−0.688415 + 0.725317i \(0.741693\pi\)
\(954\) −18.0096 −0.583082
\(955\) 41.0680 8.52401i 1.32893 0.275830i
\(956\) 18.2819 0.591278
\(957\) 0.678585i 0.0219355i
\(958\) 24.6962i 0.797899i
\(959\) −15.4677 −0.499477
\(960\) −0.302978 1.45973i −0.00977858 0.0471125i
\(961\) −29.1276 −0.939599
\(962\) 0 0
\(963\) 15.7137i 0.506365i
\(964\) 7.86172 0.253209
\(965\) −11.0815 53.3896i −0.356725 1.71867i
\(966\) −12.0576 −0.387946
\(967\) 5.51993i 0.177509i −0.996054 0.0887546i \(-0.971711\pi\)
0.996054 0.0887546i \(-0.0282887\pi\)
\(968\) 8.86496i 0.284931i
\(969\) 33.3650 1.07184
\(970\) 23.0346 4.78102i 0.739597 0.153509i
\(971\) −38.6903 −1.24163 −0.620815 0.783957i \(-0.713198\pi\)
−0.620815 + 0.783957i \(0.713198\pi\)
\(972\) 14.5768i 0.467551i
\(973\) 40.5609i 1.30032i
\(974\) 6.85817 0.219750
\(975\) 0 0
\(976\) 5.91472 0.189326
\(977\) 22.0275i 0.704722i 0.935864 + 0.352361i \(0.114621\pi\)
−0.935864 + 0.352361i \(0.885379\pi\)
\(978\) 10.1633i 0.324987i
\(979\) 25.9331 0.828826
\(980\) 2.56083 0.531521i 0.0818027 0.0169788i
\(981\) −0.815716 −0.0260438
\(982\) 32.0421i 1.02251i
\(983\) 49.1575i 1.56788i 0.620835 + 0.783941i \(0.286794\pi\)
−0.620835 + 0.783941i \(0.713206\pi\)
\(984\) −2.83280 −0.0903064
\(985\) −1.24120 5.97999i −0.0395478 0.190538i
\(986\) 4.70000 0.149679
\(987\) 4.46670i 0.142177i
\(988\) 0 0
\(989\) 17.8685 0.568186
\(990\) 1.69684 + 8.17526i 0.0539292 + 0.259827i
\(991\) −7.70733 −0.244831 −0.122416 0.992479i \(-0.539064\pi\)
−0.122416 + 0.992479i \(0.539064\pi\)
\(992\) 1.36837i 0.0434459i
\(993\) 19.8001i 0.628338i
\(994\) −8.71480 −0.276417
\(995\) 24.5468 5.09489i 0.778185 0.161519i
\(996\) 11.0543 0.350268
\(997\) 23.9968i 0.759986i −0.924989 0.379993i \(-0.875926\pi\)
0.924989 0.379993i \(-0.124074\pi\)
\(998\) 25.9861i 0.822575i
\(999\) −34.2688 −1.08422
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.b.f.339.5 18
5.2 odd 4 8450.2.a.cx.1.5 9
5.3 odd 4 8450.2.a.cw.1.5 9
5.4 even 2 inner 1690.2.b.f.339.14 yes 18
13.5 odd 4 1690.2.c.g.1689.7 18
13.8 odd 4 1690.2.c.h.1689.7 18
13.12 even 2 1690.2.b.g.339.14 yes 18
65.12 odd 4 8450.2.a.ct.1.5 9
65.34 odd 4 1690.2.c.g.1689.12 18
65.38 odd 4 8450.2.a.da.1.5 9
65.44 odd 4 1690.2.c.h.1689.12 18
65.64 even 2 1690.2.b.g.339.5 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.5 18 1.1 even 1 trivial
1690.2.b.f.339.14 yes 18 5.4 even 2 inner
1690.2.b.g.339.5 yes 18 65.64 even 2
1690.2.b.g.339.14 yes 18 13.12 even 2
1690.2.c.g.1689.7 18 13.5 odd 4
1690.2.c.g.1689.12 18 65.34 odd 4
1690.2.c.h.1689.7 18 13.8 odd 4
1690.2.c.h.1689.12 18 65.44 odd 4
8450.2.a.ct.1.5 9 65.12 odd 4
8450.2.a.cw.1.5 9 5.3 odd 4
8450.2.a.cx.1.5 9 5.2 odd 4
8450.2.a.da.1.5 9 65.38 odd 4