Properties

Label 1690.2.c.g.1689.12
Level $1690$
Weight $2$
Character 1690.1689
Analytic conductor $13.495$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1689,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,-18,0,18,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 29x^{16} + 336x^{14} + 1977x^{12} + 6147x^{10} + 9369x^{8} + 5559x^{6} + 1342x^{4} + 116x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1689.12
Root \(2.20982i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1689
Dual form 1690.2.c.g.1689.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +0.666723i q^{3} +1.00000 q^{4} +(0.454429 - 2.18940i) q^{5} -0.666723i q^{6} +2.41461 q^{7} -1.00000 q^{8} +2.55548 q^{9} +(-0.454429 + 2.18940i) q^{10} -1.46118i q^{11} +0.666723i q^{12} -2.41461 q^{14} +(1.45973 + 0.302978i) q^{15} +1.00000 q^{16} +6.74749i q^{17} -2.55548 q^{18} +7.41659i q^{19} +(0.454429 - 2.18940i) q^{20} +1.60988i q^{21} +1.46118i q^{22} +7.48975i q^{23} -0.666723i q^{24} +(-4.58699 - 1.98986i) q^{25} +3.70397i q^{27} +2.41461 q^{28} +0.696556 q^{29} +(-1.45973 - 0.302978i) q^{30} -1.36837i q^{31} -1.00000 q^{32} +0.974200 q^{33} -6.74749i q^{34} +(1.09727 - 5.28656i) q^{35} +2.55548 q^{36} +9.25191 q^{37} -7.41659i q^{38} +(-0.454429 + 2.18940i) q^{40} -4.24884i q^{41} -1.60988i q^{42} -2.38573i q^{43} -1.46118i q^{44} +(1.16128 - 5.59498i) q^{45} -7.48975i q^{46} -2.77456 q^{47} +0.666723i q^{48} -1.16965 q^{49} +(4.58699 + 1.98986i) q^{50} -4.49870 q^{51} +7.04744i q^{53} -3.70397i q^{54} +(-3.19911 - 0.664001i) q^{55} -2.41461 q^{56} -4.94481 q^{57} -0.696556 q^{58} +0.0690364i q^{59} +(1.45973 + 0.302978i) q^{60} +5.91472 q^{61} +1.36837i q^{62} +6.17050 q^{63} +1.00000 q^{64} -0.974200 q^{66} +10.9958 q^{67} +6.74749i q^{68} -4.99359 q^{69} +(-1.09727 + 5.28656i) q^{70} +3.60919i q^{71} -2.55548 q^{72} +9.30157 q^{73} -9.25191 q^{74} +(1.32668 - 3.05825i) q^{75} +7.41659i q^{76} -3.52818i q^{77} +0.766732 q^{79} +(0.454429 - 2.18940i) q^{80} +5.19692 q^{81} +4.24884i q^{82} -16.5800 q^{83} +1.60988i q^{84} +(14.7730 + 3.06625i) q^{85} +2.38573i q^{86} +0.464410i q^{87} +1.46118i q^{88} -17.7481i q^{89} +(-1.16128 + 5.59498i) q^{90} +7.48975i q^{92} +0.912326 q^{93} +2.77456 q^{94} +(16.2379 + 3.37031i) q^{95} -0.666723i q^{96} -10.5209 q^{97} +1.16965 q^{98} -3.73401i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 18 q^{2} + 18 q^{4} + 2 q^{5} + 2 q^{7} - 18 q^{8} - 16 q^{9} - 2 q^{10} - 2 q^{14} - 14 q^{15} + 18 q^{16} + 16 q^{18} + 2 q^{20} - 22 q^{25} + 2 q^{28} - 30 q^{29} + 14 q^{30} - 18 q^{32} + 28 q^{33}+ \cdots + 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.666723i 0.384933i 0.981304 + 0.192466i \(0.0616486\pi\)
−0.981304 + 0.192466i \(0.938351\pi\)
\(4\) 1.00000 0.500000
\(5\) 0.454429 2.18940i 0.203227 0.979132i
\(6\) 0.666723i 0.272188i
\(7\) 2.41461 0.912638 0.456319 0.889816i \(-0.349168\pi\)
0.456319 + 0.889816i \(0.349168\pi\)
\(8\) −1.00000 −0.353553
\(9\) 2.55548 0.851827
\(10\) −0.454429 + 2.18940i −0.143703 + 0.692351i
\(11\) 1.46118i 0.440561i −0.975437 0.220281i \(-0.929303\pi\)
0.975437 0.220281i \(-0.0706973\pi\)
\(12\) 0.666723i 0.192466i
\(13\) 0 0
\(14\) −2.41461 −0.645332
\(15\) 1.45973 + 0.302978i 0.376900 + 0.0782286i
\(16\) 1.00000 0.250000
\(17\) 6.74749i 1.63651i 0.574858 + 0.818253i \(0.305057\pi\)
−0.574858 + 0.818253i \(0.694943\pi\)
\(18\) −2.55548 −0.602333
\(19\) 7.41659i 1.70148i 0.525585 + 0.850741i \(0.323846\pi\)
−0.525585 + 0.850741i \(0.676154\pi\)
\(20\) 0.454429 2.18940i 0.101613 0.489566i
\(21\) 1.60988i 0.351304i
\(22\) 1.46118i 0.311524i
\(23\) 7.48975i 1.56172i 0.624705 + 0.780861i \(0.285219\pi\)
−0.624705 + 0.780861i \(0.714781\pi\)
\(24\) 0.666723i 0.136094i
\(25\) −4.58699 1.98986i −0.917398 0.397972i
\(26\) 0 0
\(27\) 3.70397i 0.712829i
\(28\) 2.41461 0.456319
\(29\) 0.696556 0.129347 0.0646736 0.997906i \(-0.479399\pi\)
0.0646736 + 0.997906i \(0.479399\pi\)
\(30\) −1.45973 0.302978i −0.266508 0.0553160i
\(31\) 1.36837i 0.245767i −0.992421 0.122884i \(-0.960786\pi\)
0.992421 0.122884i \(-0.0392142\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.974200 0.169586
\(34\) 6.74749i 1.15718i
\(35\) 1.09727 5.28656i 0.185473 0.893593i
\(36\) 2.55548 0.425913
\(37\) 9.25191 1.52101 0.760503 0.649335i \(-0.224953\pi\)
0.760503 + 0.649335i \(0.224953\pi\)
\(38\) 7.41659i 1.20313i
\(39\) 0 0
\(40\) −0.454429 + 2.18940i −0.0718515 + 0.346175i
\(41\) 4.24884i 0.663558i −0.943357 0.331779i \(-0.892351\pi\)
0.943357 0.331779i \(-0.107649\pi\)
\(42\) 1.60988i 0.248409i
\(43\) 2.38573i 0.363821i −0.983315 0.181910i \(-0.941772\pi\)
0.983315 0.181910i \(-0.0582281\pi\)
\(44\) 1.46118i 0.220281i
\(45\) 1.16128 5.59498i 0.173114 0.834051i
\(46\) 7.48975i 1.10430i
\(47\) −2.77456 −0.404711 −0.202356 0.979312i \(-0.564860\pi\)
−0.202356 + 0.979312i \(0.564860\pi\)
\(48\) 0.666723i 0.0962331i
\(49\) −1.16965 −0.167092
\(50\) 4.58699 + 1.98986i 0.648698 + 0.281408i
\(51\) −4.49870 −0.629944
\(52\) 0 0
\(53\) 7.04744i 0.968040i 0.875057 + 0.484020i \(0.160824\pi\)
−0.875057 + 0.484020i \(0.839176\pi\)
\(54\) 3.70397i 0.504046i
\(55\) −3.19911 0.664001i −0.431368 0.0895339i
\(56\) −2.41461 −0.322666
\(57\) −4.94481 −0.654956
\(58\) −0.696556 −0.0914623
\(59\) 0.0690364i 0.00898777i 0.999990 + 0.00449389i \(0.00143045\pi\)
−0.999990 + 0.00449389i \(0.998570\pi\)
\(60\) 1.45973 + 0.302978i 0.188450 + 0.0391143i
\(61\) 5.91472 0.757302 0.378651 0.925539i \(-0.376388\pi\)
0.378651 + 0.925539i \(0.376388\pi\)
\(62\) 1.36837i 0.173784i
\(63\) 6.17050 0.777409
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −0.974200 −0.119916
\(67\) 10.9958 1.34335 0.671674 0.740847i \(-0.265576\pi\)
0.671674 + 0.740847i \(0.265576\pi\)
\(68\) 6.74749i 0.818253i
\(69\) −4.99359 −0.601157
\(70\) −1.09727 + 5.28656i −0.131149 + 0.631865i
\(71\) 3.60919i 0.428332i 0.976797 + 0.214166i \(0.0687034\pi\)
−0.976797 + 0.214166i \(0.931297\pi\)
\(72\) −2.55548 −0.301166
\(73\) 9.30157 1.08867 0.544333 0.838869i \(-0.316783\pi\)
0.544333 + 0.838869i \(0.316783\pi\)
\(74\) −9.25191 −1.07551
\(75\) 1.32668 3.05825i 0.153192 0.353136i
\(76\) 7.41659i 0.850741i
\(77\) 3.52818i 0.402073i
\(78\) 0 0
\(79\) 0.766732 0.0862641 0.0431320 0.999069i \(-0.486266\pi\)
0.0431320 + 0.999069i \(0.486266\pi\)
\(80\) 0.454429 2.18940i 0.0508067 0.244783i
\(81\) 5.19692 0.577436
\(82\) 4.24884i 0.469206i
\(83\) −16.5800 −1.81989 −0.909947 0.414725i \(-0.863878\pi\)
−0.909947 + 0.414725i \(0.863878\pi\)
\(84\) 1.60988i 0.175652i
\(85\) 14.7730 + 3.06625i 1.60235 + 0.332582i
\(86\) 2.38573i 0.257260i
\(87\) 0.464410i 0.0497899i
\(88\) 1.46118i 0.155762i
\(89\) 17.7481i 1.88130i −0.339384 0.940648i \(-0.610219\pi\)
0.339384 0.940648i \(-0.389781\pi\)
\(90\) −1.16128 + 5.59498i −0.122410 + 0.589763i
\(91\) 0 0
\(92\) 7.48975i 0.780861i
\(93\) 0.912326 0.0946038
\(94\) 2.77456 0.286174
\(95\) 16.2379 + 3.37031i 1.66597 + 0.345787i
\(96\) 0.666723i 0.0680471i
\(97\) −10.5209 −1.06824 −0.534120 0.845409i \(-0.679357\pi\)
−0.534120 + 0.845409i \(0.679357\pi\)
\(98\) 1.16965 0.118152
\(99\) 3.73401i 0.375282i
\(100\) −4.58699 1.98986i −0.458699 0.198986i
\(101\) −14.2473 −1.41765 −0.708827 0.705382i \(-0.750775\pi\)
−0.708827 + 0.705382i \(0.750775\pi\)
\(102\) 4.49870 0.445438
\(103\) 9.72411i 0.958145i −0.877775 0.479072i \(-0.840973\pi\)
0.877775 0.479072i \(-0.159027\pi\)
\(104\) 0 0
\(105\) 3.52467 + 0.731575i 0.343973 + 0.0713944i
\(106\) 7.04744i 0.684508i
\(107\) 6.14900i 0.594446i −0.954808 0.297223i \(-0.903939\pi\)
0.954808 0.297223i \(-0.0960605\pi\)
\(108\) 3.70397i 0.356414i
\(109\) 0.319202i 0.0305741i −0.999883 0.0152870i \(-0.995134\pi\)
0.999883 0.0152870i \(-0.00486620\pi\)
\(110\) 3.19911 + 0.664001i 0.305023 + 0.0633100i
\(111\) 6.16846i 0.585485i
\(112\) 2.41461 0.228159
\(113\) 1.95370i 0.183789i −0.995769 0.0918945i \(-0.970708\pi\)
0.995769 0.0918945i \(-0.0292923\pi\)
\(114\) 4.94481 0.463124
\(115\) 16.3981 + 3.40356i 1.52913 + 0.317384i
\(116\) 0.696556 0.0646736
\(117\) 0 0
\(118\) 0.0690364i 0.00635531i
\(119\) 16.2926i 1.49354i
\(120\) −1.45973 0.302978i −0.133254 0.0276580i
\(121\) 8.86496 0.805906
\(122\) −5.91472 −0.535494
\(123\) 2.83280 0.255425
\(124\) 1.36837i 0.122884i
\(125\) −6.44107 + 9.13853i −0.576107 + 0.817375i
\(126\) −6.17050 −0.549711
\(127\) 9.73867i 0.864167i 0.901834 + 0.432084i \(0.142221\pi\)
−0.901834 + 0.432084i \(0.857779\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 1.59062 0.140046
\(130\) 0 0
\(131\) 10.6075 0.926778 0.463389 0.886155i \(-0.346633\pi\)
0.463389 + 0.886155i \(0.346633\pi\)
\(132\) 0.974200 0.0847932
\(133\) 17.9082i 1.55284i
\(134\) −10.9958 −0.949890
\(135\) 8.10948 + 1.68319i 0.697953 + 0.144866i
\(136\) 6.74749i 0.578592i
\(137\) 6.40586 0.547289 0.273645 0.961831i \(-0.411771\pi\)
0.273645 + 0.961831i \(0.411771\pi\)
\(138\) 4.99359 0.425082
\(139\) 16.7981 1.42480 0.712398 0.701775i \(-0.247609\pi\)
0.712398 + 0.701775i \(0.247609\pi\)
\(140\) 1.09727 5.28656i 0.0927363 0.446796i
\(141\) 1.84986i 0.155786i
\(142\) 3.60919i 0.302877i
\(143\) 0 0
\(144\) 2.55548 0.212957
\(145\) 0.316535 1.52504i 0.0262868 0.126648i
\(146\) −9.30157 −0.769804
\(147\) 0.779830i 0.0643193i
\(148\) 9.25191 0.760503
\(149\) 8.90415i 0.729456i −0.931114 0.364728i \(-0.881162\pi\)
0.931114 0.364728i \(-0.118838\pi\)
\(150\) −1.32668 + 3.05825i −0.108323 + 0.249705i
\(151\) 17.1722i 1.39745i 0.715389 + 0.698726i \(0.246249\pi\)
−0.715389 + 0.698726i \(0.753751\pi\)
\(152\) 7.41659i 0.601565i
\(153\) 17.2431i 1.39402i
\(154\) 3.52818i 0.284308i
\(155\) −2.99592 0.621829i −0.240638 0.0499465i
\(156\) 0 0
\(157\) 11.0649i 0.883073i −0.897243 0.441537i \(-0.854434\pi\)
0.897243 0.441537i \(-0.145566\pi\)
\(158\) −0.766732 −0.0609979
\(159\) −4.69869 −0.372630
\(160\) −0.454429 + 2.18940i −0.0359258 + 0.173088i
\(161\) 18.0848i 1.42529i
\(162\) −5.19692 −0.408309
\(163\) −15.2437 −1.19398 −0.596988 0.802250i \(-0.703636\pi\)
−0.596988 + 0.802250i \(0.703636\pi\)
\(164\) 4.24884i 0.331779i
\(165\) 0.442705 2.13292i 0.0344645 0.166047i
\(166\) 16.5800 1.28686
\(167\) −8.69198 −0.672605 −0.336303 0.941754i \(-0.609177\pi\)
−0.336303 + 0.941754i \(0.609177\pi\)
\(168\) 1.60988i 0.124205i
\(169\) 0 0
\(170\) −14.7730 3.06625i −1.13304 0.235171i
\(171\) 18.9529i 1.44937i
\(172\) 2.38573i 0.181910i
\(173\) 3.39226i 0.257909i 0.991651 + 0.128954i \(0.0411621\pi\)
−0.991651 + 0.128954i \(0.958838\pi\)
\(174\) 0.464410i 0.0352068i
\(175\) −11.0758 4.80474i −0.837252 0.363204i
\(176\) 1.46118i 0.110140i
\(177\) −0.0460281 −0.00345969
\(178\) 17.7481i 1.33028i
\(179\) 13.2996 0.994057 0.497029 0.867734i \(-0.334424\pi\)
0.497029 + 0.867734i \(0.334424\pi\)
\(180\) 1.16128 5.59498i 0.0865571 0.417025i
\(181\) 14.0010 1.04068 0.520341 0.853958i \(-0.325805\pi\)
0.520341 + 0.853958i \(0.325805\pi\)
\(182\) 0 0
\(183\) 3.94348i 0.291510i
\(184\) 7.48975i 0.552152i
\(185\) 4.20434 20.2562i 0.309109 1.48926i
\(186\) −0.912326 −0.0668950
\(187\) 9.85927 0.720981
\(188\) −2.77456 −0.202356
\(189\) 8.94364i 0.650554i
\(190\) −16.2379 3.37031i −1.17802 0.244508i
\(191\) −18.7576 −1.35725 −0.678627 0.734483i \(-0.737425\pi\)
−0.678627 + 0.734483i \(0.737425\pi\)
\(192\) 0.666723i 0.0481166i
\(193\) −24.3855 −1.75530 −0.877652 0.479299i \(-0.840891\pi\)
−0.877652 + 0.479299i \(0.840891\pi\)
\(194\) 10.5209 0.755360
\(195\) 0 0
\(196\) −1.16965 −0.0835462
\(197\) 2.73133 0.194599 0.0972997 0.995255i \(-0.468979\pi\)
0.0972997 + 0.995255i \(0.468979\pi\)
\(198\) 3.73401i 0.265364i
\(199\) 11.2116 0.794771 0.397385 0.917652i \(-0.369918\pi\)
0.397385 + 0.917652i \(0.369918\pi\)
\(200\) 4.58699 + 1.98986i 0.324349 + 0.140704i
\(201\) 7.33113i 0.517098i
\(202\) 14.2473 1.00243
\(203\) 1.68191 0.118047
\(204\) −4.49870 −0.314972
\(205\) −9.30244 1.93080i −0.649710 0.134853i
\(206\) 9.72411i 0.677511i
\(207\) 19.1399i 1.33032i
\(208\) 0 0
\(209\) 10.8369 0.749607
\(210\) −3.52467 0.731575i −0.243226 0.0504835i
\(211\) 13.7163 0.944266 0.472133 0.881527i \(-0.343484\pi\)
0.472133 + 0.881527i \(0.343484\pi\)
\(212\) 7.04744i 0.484020i
\(213\) −2.40633 −0.164879
\(214\) 6.14900i 0.420337i
\(215\) −5.22333 1.08415i −0.356228 0.0739381i
\(216\) 3.70397i 0.252023i
\(217\) 3.30409i 0.224296i
\(218\) 0.319202i 0.0216191i
\(219\) 6.20157i 0.419063i
\(220\) −3.19911 0.664001i −0.215684 0.0447669i
\(221\) 0 0
\(222\) 6.16846i 0.414000i
\(223\) −9.84353 −0.659172 −0.329586 0.944126i \(-0.606909\pi\)
−0.329586 + 0.944126i \(0.606909\pi\)
\(224\) −2.41461 −0.161333
\(225\) −11.7220 5.08505i −0.781464 0.339003i
\(226\) 1.95370i 0.129959i
\(227\) 19.4038 1.28788 0.643939 0.765077i \(-0.277299\pi\)
0.643939 + 0.765077i \(0.277299\pi\)
\(228\) −4.94481 −0.327478
\(229\) 16.7503i 1.10689i −0.832885 0.553447i \(-0.813312\pi\)
0.832885 0.553447i \(-0.186688\pi\)
\(230\) −16.3981 3.40356i −1.08126 0.224424i
\(231\) 2.35231 0.154771
\(232\) −0.696556 −0.0457311
\(233\) 16.7974i 1.10043i −0.835022 0.550217i \(-0.814545\pi\)
0.835022 0.550217i \(-0.185455\pi\)
\(234\) 0 0
\(235\) −1.26084 + 6.07463i −0.0822482 + 0.396265i
\(236\) 0.0690364i 0.00449389i
\(237\) 0.511198i 0.0332059i
\(238\) 16.2926i 1.05609i
\(239\) 18.2819i 1.18256i −0.806467 0.591278i \(-0.798623\pi\)
0.806467 0.591278i \(-0.201377\pi\)
\(240\) 1.45973 + 0.302978i 0.0942249 + 0.0195572i
\(241\) 7.86172i 0.506418i 0.967412 + 0.253209i \(0.0814860\pi\)
−0.967412 + 0.253209i \(0.918514\pi\)
\(242\) −8.86496 −0.569861
\(243\) 14.5768i 0.935102i
\(244\) 5.91472 0.378651
\(245\) −0.531521 + 2.56083i −0.0339577 + 0.163605i
\(246\) −2.83280 −0.180613
\(247\) 0 0
\(248\) 1.36837i 0.0868918i
\(249\) 11.0543i 0.700536i
\(250\) 6.44107 9.13853i 0.407369 0.577971i
\(251\) −8.97087 −0.566236 −0.283118 0.959085i \(-0.591369\pi\)
−0.283118 + 0.959085i \(0.591369\pi\)
\(252\) 6.17050 0.388705
\(253\) 10.9439 0.688034
\(254\) 9.73867i 0.611059i
\(255\) −2.04434 + 9.84948i −0.128022 + 0.616799i
\(256\) 1.00000 0.0625000
\(257\) 24.2725i 1.51408i −0.653369 0.757040i \(-0.726645\pi\)
0.653369 0.757040i \(-0.273355\pi\)
\(258\) −1.59062 −0.0990278
\(259\) 22.3398 1.38813
\(260\) 0 0
\(261\) 1.78004 0.110181
\(262\) −10.6075 −0.655331
\(263\) 28.7755i 1.77438i 0.461408 + 0.887188i \(0.347344\pi\)
−0.461408 + 0.887188i \(0.652656\pi\)
\(264\) −0.974200 −0.0599578
\(265\) 15.4297 + 3.20256i 0.947839 + 0.196732i
\(266\) 17.9082i 1.09802i
\(267\) 11.8331 0.724172
\(268\) 10.9958 0.671674
\(269\) 26.2808 1.60237 0.801185 0.598417i \(-0.204203\pi\)
0.801185 + 0.598417i \(0.204203\pi\)
\(270\) −8.10948 1.68319i −0.493527 0.102436i
\(271\) 14.3647i 0.872594i −0.899803 0.436297i \(-0.856290\pi\)
0.899803 0.436297i \(-0.143710\pi\)
\(272\) 6.74749i 0.409126i
\(273\) 0 0
\(274\) −6.40586 −0.386992
\(275\) −2.90753 + 6.70240i −0.175331 + 0.404170i
\(276\) −4.99359 −0.300579
\(277\) 9.92492i 0.596331i −0.954514 0.298165i \(-0.903625\pi\)
0.954514 0.298165i \(-0.0963747\pi\)
\(278\) −16.7981 −1.00748
\(279\) 3.49685i 0.209351i
\(280\) −1.09727 + 5.28656i −0.0655744 + 0.315933i
\(281\) 11.7992i 0.703880i −0.936023 0.351940i \(-0.885522\pi\)
0.936023 0.351940i \(-0.114478\pi\)
\(282\) 1.84986i 0.110158i
\(283\) 13.0538i 0.775968i −0.921666 0.387984i \(-0.873172\pi\)
0.921666 0.387984i \(-0.126828\pi\)
\(284\) 3.60919i 0.214166i
\(285\) −2.24706 + 10.8262i −0.133105 + 0.641288i
\(286\) 0 0
\(287\) 10.2593i 0.605588i
\(288\) −2.55548 −0.150583
\(289\) −28.5286 −1.67815
\(290\) −0.316535 + 1.52504i −0.0185876 + 0.0895536i
\(291\) 7.01455i 0.411200i
\(292\) 9.30157 0.544333
\(293\) −16.2358 −0.948506 −0.474253 0.880389i \(-0.657282\pi\)
−0.474253 + 0.880389i \(0.657282\pi\)
\(294\) 0.779830i 0.0454806i
\(295\) 0.151149 + 0.0313721i 0.00880021 + 0.00182656i
\(296\) −9.25191 −0.537757
\(297\) 5.41215 0.314045
\(298\) 8.90415i 0.515803i
\(299\) 0 0
\(300\) 1.32668 3.05825i 0.0765961 0.176568i
\(301\) 5.76062i 0.332036i
\(302\) 17.1722i 0.988148i
\(303\) 9.49897i 0.545701i
\(304\) 7.41659i 0.425370i
\(305\) 2.68782 12.9497i 0.153904 0.741499i
\(306\) 17.2431i 0.985721i
\(307\) 5.66589 0.323370 0.161685 0.986842i \(-0.448307\pi\)
0.161685 + 0.986842i \(0.448307\pi\)
\(308\) 3.52818i 0.201036i
\(309\) 6.48328 0.368821
\(310\) 2.99592 + 0.621829i 0.170157 + 0.0353175i
\(311\) −20.5465 −1.16508 −0.582542 0.812801i \(-0.697942\pi\)
−0.582542 + 0.812801i \(0.697942\pi\)
\(312\) 0 0
\(313\) 11.0354i 0.623756i −0.950122 0.311878i \(-0.899042\pi\)
0.950122 0.311878i \(-0.100958\pi\)
\(314\) 11.0649i 0.624427i
\(315\) 2.80405 13.5097i 0.157990 0.761186i
\(316\) 0.766732 0.0431320
\(317\) 17.0656 0.958501 0.479251 0.877678i \(-0.340909\pi\)
0.479251 + 0.877678i \(0.340909\pi\)
\(318\) 4.69869 0.263489
\(319\) 1.01779i 0.0569854i
\(320\) 0.454429 2.18940i 0.0254034 0.122391i
\(321\) 4.09968 0.228822
\(322\) 18.0848i 1.00783i
\(323\) −50.0433 −2.78448
\(324\) 5.19692 0.288718
\(325\) 0 0
\(326\) 15.2437 0.844269
\(327\) 0.212820 0.0117689
\(328\) 4.24884i 0.234603i
\(329\) −6.69949 −0.369355
\(330\) −0.442705 + 2.13292i −0.0243701 + 0.117413i
\(331\) 29.6977i 1.63233i 0.577817 + 0.816167i \(0.303905\pi\)
−0.577817 + 0.816167i \(0.696095\pi\)
\(332\) −16.5800 −0.909947
\(333\) 23.6431 1.29563
\(334\) 8.69198 0.475604
\(335\) 4.99680 24.0742i 0.273004 1.31531i
\(336\) 1.60988i 0.0878260i
\(337\) 11.1216i 0.605833i 0.953017 + 0.302917i \(0.0979604\pi\)
−0.953017 + 0.302917i \(0.902040\pi\)
\(338\) 0 0
\(339\) 1.30258 0.0707464
\(340\) 14.7730 + 3.06625i 0.801177 + 0.166291i
\(341\) −1.99944 −0.108275
\(342\) 18.9529i 1.02486i
\(343\) −19.7265 −1.06513
\(344\) 2.38573i 0.128630i
\(345\) −2.26923 + 10.9330i −0.122171 + 0.588612i
\(346\) 3.39226i 0.182369i
\(347\) 19.1698i 1.02909i −0.857463 0.514545i \(-0.827961\pi\)
0.857463 0.514545i \(-0.172039\pi\)
\(348\) 0.464410i 0.0248950i
\(349\) 2.07169i 0.110895i 0.998462 + 0.0554474i \(0.0176585\pi\)
−0.998462 + 0.0554474i \(0.982341\pi\)
\(350\) 11.0758 + 4.80474i 0.592026 + 0.256824i
\(351\) 0 0
\(352\) 1.46118i 0.0778810i
\(353\) −14.2889 −0.760522 −0.380261 0.924879i \(-0.624166\pi\)
−0.380261 + 0.924879i \(0.624166\pi\)
\(354\) 0.0460281 0.00244637
\(355\) 7.90198 + 1.64012i 0.419394 + 0.0870486i
\(356\) 17.7481i 0.940648i
\(357\) −10.8626 −0.574911
\(358\) −13.2996 −0.702905
\(359\) 12.4966i 0.659543i 0.944061 + 0.329772i \(0.106972\pi\)
−0.944061 + 0.329772i \(0.893028\pi\)
\(360\) −1.16128 + 5.59498i −0.0612051 + 0.294881i
\(361\) −36.0058 −1.89504
\(362\) −14.0010 −0.735874
\(363\) 5.91047i 0.310219i
\(364\) 0 0
\(365\) 4.22690 20.3649i 0.221246 1.06595i
\(366\) 3.94348i 0.206129i
\(367\) 20.7194i 1.08154i −0.841170 0.540772i \(-0.818132\pi\)
0.841170 0.540772i \(-0.181868\pi\)
\(368\) 7.48975i 0.390430i
\(369\) 10.8578i 0.565236i
\(370\) −4.20434 + 20.2562i −0.218573 + 1.05307i
\(371\) 17.0168i 0.883470i
\(372\) 0.912326 0.0473019
\(373\) 31.4926i 1.63063i 0.579020 + 0.815313i \(0.303435\pi\)
−0.579020 + 0.815313i \(0.696565\pi\)
\(374\) −9.85927 −0.509811
\(375\) −6.09286 4.29441i −0.314634 0.221762i
\(376\) 2.77456 0.143087
\(377\) 0 0
\(378\) 8.94364i 0.460011i
\(379\) 7.87442i 0.404482i 0.979336 + 0.202241i \(0.0648224\pi\)
−0.979336 + 0.202241i \(0.935178\pi\)
\(380\) 16.2379 + 3.37031i 0.832987 + 0.172893i
\(381\) −6.49299 −0.332646
\(382\) 18.7576 0.959723
\(383\) 8.03386 0.410511 0.205256 0.978708i \(-0.434197\pi\)
0.205256 + 0.978708i \(0.434197\pi\)
\(384\) 0.666723i 0.0340236i
\(385\) −7.72460 1.60331i −0.393682 0.0817120i
\(386\) 24.3855 1.24119
\(387\) 6.09669i 0.309912i
\(388\) −10.5209 −0.534120
\(389\) −21.5917 −1.09474 −0.547371 0.836890i \(-0.684371\pi\)
−0.547371 + 0.836890i \(0.684371\pi\)
\(390\) 0 0
\(391\) −50.5370 −2.55577
\(392\) 1.16965 0.0590761
\(393\) 7.07224i 0.356747i
\(394\) −2.73133 −0.137603
\(395\) 0.348425 1.67869i 0.0175312 0.0844639i
\(396\) 3.73401i 0.187641i
\(397\) −36.8751 −1.85071 −0.925355 0.379102i \(-0.876233\pi\)
−0.925355 + 0.379102i \(0.876233\pi\)
\(398\) −11.2116 −0.561988
\(399\) −11.9398 −0.597737
\(400\) −4.58699 1.98986i −0.229349 0.0994929i
\(401\) 8.26837i 0.412902i 0.978457 + 0.206451i \(0.0661915\pi\)
−0.978457 + 0.206451i \(0.933809\pi\)
\(402\) 7.33113i 0.365644i
\(403\) 0 0
\(404\) −14.2473 −0.708827
\(405\) 2.36163 11.3782i 0.117351 0.565386i
\(406\) −1.68191 −0.0834719
\(407\) 13.5187i 0.670096i
\(408\) 4.49870 0.222719
\(409\) 3.02146i 0.149402i 0.997206 + 0.0747008i \(0.0238002\pi\)
−0.997206 + 0.0747008i \(0.976200\pi\)
\(410\) 9.30244 + 1.93080i 0.459415 + 0.0953553i
\(411\) 4.27093i 0.210669i
\(412\) 9.72411i 0.479072i
\(413\) 0.166696i 0.00820258i
\(414\) 19.1399i 0.940676i
\(415\) −7.53444 + 36.3004i −0.369851 + 1.78192i
\(416\) 0 0
\(417\) 11.1997i 0.548451i
\(418\) −10.8369 −0.530052
\(419\) 35.0376 1.71170 0.855850 0.517223i \(-0.173034\pi\)
0.855850 + 0.517223i \(0.173034\pi\)
\(420\) 3.52467 + 0.731575i 0.171986 + 0.0356972i
\(421\) 9.81291i 0.478252i 0.970989 + 0.239126i \(0.0768609\pi\)
−0.970989 + 0.239126i \(0.923139\pi\)
\(422\) −13.7163 −0.667697
\(423\) −7.09033 −0.344744
\(424\) 7.04744i 0.342254i
\(425\) 13.4265 30.9506i 0.651283 1.50133i
\(426\) 2.40633 0.116587
\(427\) 14.2818 0.691143
\(428\) 6.14900i 0.297223i
\(429\) 0 0
\(430\) 5.22333 + 1.08415i 0.251891 + 0.0522821i
\(431\) 5.88552i 0.283495i −0.989903 0.141748i \(-0.954728\pi\)
0.989903 0.141748i \(-0.0452722\pi\)
\(432\) 3.70397i 0.178207i
\(433\) 31.1096i 1.49503i −0.664244 0.747516i \(-0.731246\pi\)
0.664244 0.747516i \(-0.268754\pi\)
\(434\) 3.30409i 0.158601i
\(435\) 1.01678 + 0.211041i 0.0487509 + 0.0101187i
\(436\) 0.319202i 0.0152870i
\(437\) −55.5484 −2.65724
\(438\) 6.20157i 0.296322i
\(439\) −2.69710 −0.128726 −0.0643629 0.997927i \(-0.520502\pi\)
−0.0643629 + 0.997927i \(0.520502\pi\)
\(440\) 3.19911 + 0.664001i 0.152511 + 0.0316550i
\(441\) −2.98901 −0.142334
\(442\) 0 0
\(443\) 19.0859i 0.906799i −0.891308 0.453399i \(-0.850211\pi\)
0.891308 0.453399i \(-0.149789\pi\)
\(444\) 6.16846i 0.292742i
\(445\) −38.8578 8.06526i −1.84204 0.382330i
\(446\) 9.84353 0.466105
\(447\) 5.93660 0.280791
\(448\) 2.41461 0.114080
\(449\) 18.3579i 0.866363i −0.901307 0.433182i \(-0.857391\pi\)
0.901307 0.433182i \(-0.142609\pi\)
\(450\) 11.7220 + 5.08505i 0.552579 + 0.239711i
\(451\) −6.20831 −0.292338
\(452\) 1.95370i 0.0918945i
\(453\) −11.4491 −0.537925
\(454\) −19.4038 −0.910668
\(455\) 0 0
\(456\) 4.94481 0.231562
\(457\) −25.3873 −1.18757 −0.593785 0.804624i \(-0.702367\pi\)
−0.593785 + 0.804624i \(0.702367\pi\)
\(458\) 16.7503i 0.782692i
\(459\) −24.9925 −1.16655
\(460\) 16.3981 + 3.40356i 0.764565 + 0.158692i
\(461\) 1.12031i 0.0521782i −0.999660 0.0260891i \(-0.991695\pi\)
0.999660 0.0260891i \(-0.00830536\pi\)
\(462\) −2.35231 −0.109440
\(463\) 30.6952 1.42653 0.713264 0.700895i \(-0.247216\pi\)
0.713264 + 0.700895i \(0.247216\pi\)
\(464\) 0.696556 0.0323368
\(465\) 0.414587 1.99745i 0.0192260 0.0926296i
\(466\) 16.7974i 0.778124i
\(467\) 5.88670i 0.272404i −0.990681 0.136202i \(-0.956510\pi\)
0.990681 0.136202i \(-0.0434896\pi\)
\(468\) 0 0
\(469\) 26.5505 1.22599
\(470\) 1.26084 6.07463i 0.0581582 0.280202i
\(471\) 7.37720 0.339924
\(472\) 0.0690364i 0.00317766i
\(473\) −3.48597 −0.160285
\(474\) 0.511198i 0.0234801i
\(475\) 14.7580 34.0198i 0.677142 1.56094i
\(476\) 16.2926i 0.746768i
\(477\) 18.0096i 0.824602i
\(478\) 18.2819i 0.836194i
\(479\) 24.6962i 1.12840i 0.825638 + 0.564200i \(0.190815\pi\)
−0.825638 + 0.564200i \(0.809185\pi\)
\(480\) −1.45973 0.302978i −0.0666271 0.0138290i
\(481\) 0 0
\(482\) 7.86172i 0.358091i
\(483\) −12.0576 −0.548639
\(484\) 8.86496 0.402953
\(485\) −4.78102 + 23.0346i −0.217095 + 1.04595i
\(486\) 14.5768i 0.661217i
\(487\) 6.85817 0.310774 0.155387 0.987854i \(-0.450338\pi\)
0.155387 + 0.987854i \(0.450338\pi\)
\(488\) −5.91472 −0.267747
\(489\) 10.1633i 0.459600i
\(490\) 0.531521 2.56083i 0.0240117 0.115687i
\(491\) 32.0421 1.44604 0.723021 0.690826i \(-0.242753\pi\)
0.723021 + 0.690826i \(0.242753\pi\)
\(492\) 2.83280 0.127712
\(493\) 4.70000i 0.211677i
\(494\) 0 0
\(495\) −8.17526 1.69684i −0.367450 0.0762674i
\(496\) 1.36837i 0.0614418i
\(497\) 8.71480i 0.390912i
\(498\) 11.0543i 0.495354i
\(499\) 25.9861i 1.16330i −0.813440 0.581648i \(-0.802408\pi\)
0.813440 0.581648i \(-0.197592\pi\)
\(500\) −6.44107 + 9.13853i −0.288053 + 0.408687i
\(501\) 5.79514i 0.258908i
\(502\) 8.97087 0.400389
\(503\) 7.96895i 0.355318i 0.984092 + 0.177659i \(0.0568524\pi\)
−0.984092 + 0.177659i \(0.943148\pi\)
\(504\) −6.17050 −0.274856
\(505\) −6.47437 + 31.1930i −0.288105 + 1.38807i
\(506\) −10.9439 −0.486513
\(507\) 0 0
\(508\) 9.73867i 0.432084i
\(509\) 26.5772i 1.17801i −0.808128 0.589007i \(-0.799519\pi\)
0.808128 0.589007i \(-0.200481\pi\)
\(510\) 2.04434 9.84948i 0.0905250 0.436142i
\(511\) 22.4597 0.993558
\(512\) −1.00000 −0.0441942
\(513\) −27.4708 −1.21286
\(514\) 24.2725i 1.07062i
\(515\) −21.2900 4.41892i −0.938150 0.194721i
\(516\) 1.59062 0.0700232
\(517\) 4.05412i 0.178300i
\(518\) −22.3398 −0.981554
\(519\) −2.26170 −0.0992776
\(520\) 0 0
\(521\) −16.3843 −0.717810 −0.358905 0.933374i \(-0.616850\pi\)
−0.358905 + 0.933374i \(0.616850\pi\)
\(522\) −1.78004 −0.0779100
\(523\) 12.9757i 0.567390i 0.958915 + 0.283695i \(0.0915603\pi\)
−0.958915 + 0.283695i \(0.908440\pi\)
\(524\) 10.6075 0.463389
\(525\) 3.20343 7.38449i 0.139809 0.322285i
\(526\) 28.7755i 1.25467i
\(527\) 9.23308 0.402199
\(528\) 0.974200 0.0423966
\(529\) −33.0964 −1.43897
\(530\) −15.4297 3.20256i −0.670223 0.139110i
\(531\) 0.176421i 0.00765602i
\(532\) 17.9082i 0.776418i
\(533\) 0 0
\(534\) −11.8331 −0.512067
\(535\) −13.4627 2.79428i −0.582041 0.120807i
\(536\) −10.9958 −0.474945
\(537\) 8.86713i 0.382645i
\(538\) −26.2808 −1.13305
\(539\) 1.70906i 0.0736144i
\(540\) 8.10948 + 1.68319i 0.348976 + 0.0724329i
\(541\) 23.1606i 0.995753i −0.867248 0.497877i \(-0.834113\pi\)
0.867248 0.497877i \(-0.165887\pi\)
\(542\) 14.3647i 0.617017i
\(543\) 9.33475i 0.400593i
\(544\) 6.74749i 0.289296i
\(545\) −0.698864 0.145055i −0.0299360 0.00621347i
\(546\) 0 0
\(547\) 13.3168i 0.569387i −0.958619 0.284693i \(-0.908108\pi\)
0.958619 0.284693i \(-0.0918917\pi\)
\(548\) 6.40586 0.273645
\(549\) 15.1150 0.645091
\(550\) 2.90753 6.70240i 0.123978 0.285791i
\(551\) 5.16607i 0.220082i
\(552\) 4.99359 0.212541
\(553\) 1.85136 0.0787279
\(554\) 9.92492i 0.421669i
\(555\) 13.5053 + 2.80313i 0.573266 + 0.118986i
\(556\) 16.7981 0.712398
\(557\) −3.02677 −0.128248 −0.0641242 0.997942i \(-0.520425\pi\)
−0.0641242 + 0.997942i \(0.520425\pi\)
\(558\) 3.49685i 0.148034i
\(559\) 0 0
\(560\) 1.09727 5.28656i 0.0463681 0.223398i
\(561\) 6.57340i 0.277529i
\(562\) 11.7992i 0.497718i
\(563\) 18.2744i 0.770175i 0.922880 + 0.385087i \(0.125829\pi\)
−0.922880 + 0.385087i \(0.874171\pi\)
\(564\) 1.84986i 0.0778932i
\(565\) −4.27745 0.887820i −0.179954 0.0373509i
\(566\) 13.0538i 0.548692i
\(567\) 12.5486 0.526990
\(568\) 3.60919i 0.151438i
\(569\) −25.9020 −1.08587 −0.542933 0.839776i \(-0.682686\pi\)
−0.542933 + 0.839776i \(0.682686\pi\)
\(570\) 2.24706 10.8262i 0.0941192 0.453459i
\(571\) 37.9443 1.58792 0.793960 0.607970i \(-0.208016\pi\)
0.793960 + 0.607970i \(0.208016\pi\)
\(572\) 0 0
\(573\) 12.5061i 0.522451i
\(574\) 10.2593i 0.428215i
\(575\) 14.9035 34.3554i 0.621521 1.43272i
\(576\) 2.55548 0.106478
\(577\) 18.6481 0.776330 0.388165 0.921590i \(-0.373109\pi\)
0.388165 + 0.921590i \(0.373109\pi\)
\(578\) 28.5286 1.18663
\(579\) 16.2583i 0.675674i
\(580\) 0.316535 1.52504i 0.0131434 0.0633240i
\(581\) −40.0343 −1.66090
\(582\) 7.01455i 0.290763i
\(583\) 10.2976 0.426481
\(584\) −9.30157 −0.384902
\(585\) 0 0
\(586\) 16.2358 0.670695
\(587\) −6.63680 −0.273930 −0.136965 0.990576i \(-0.543735\pi\)
−0.136965 + 0.990576i \(0.543735\pi\)
\(588\) 0.779830i 0.0321596i
\(589\) 10.1487 0.418168
\(590\) −0.151149 0.0313721i −0.00622269 0.00129157i
\(591\) 1.82104i 0.0749077i
\(592\) 9.25191 0.380251
\(593\) −8.72953 −0.358479 −0.179239 0.983805i \(-0.557364\pi\)
−0.179239 + 0.983805i \(0.557364\pi\)
\(594\) −5.41215 −0.222063
\(595\) 35.6710 + 7.40381i 1.46237 + 0.303527i
\(596\) 8.90415i 0.364728i
\(597\) 7.47504i 0.305933i
\(598\) 0 0
\(599\) −38.0625 −1.55519 −0.777596 0.628765i \(-0.783561\pi\)
−0.777596 + 0.628765i \(0.783561\pi\)
\(600\) −1.32668 + 3.05825i −0.0541616 + 0.124853i
\(601\) −2.03785 −0.0831256 −0.0415628 0.999136i \(-0.513234\pi\)
−0.0415628 + 0.999136i \(0.513234\pi\)
\(602\) 5.76062i 0.234785i
\(603\) 28.0995 1.14430
\(604\) 17.1722i 0.698726i
\(605\) 4.02850 19.4090i 0.163782 0.789088i
\(606\) 9.49897i 0.385869i
\(607\) 1.61460i 0.0655347i −0.999463 0.0327674i \(-0.989568\pi\)
0.999463 0.0327674i \(-0.0104320\pi\)
\(608\) 7.41659i 0.300782i
\(609\) 1.12137i 0.0454402i
\(610\) −2.68782 + 12.9497i −0.108827 + 0.524319i
\(611\) 0 0
\(612\) 17.2431i 0.697010i
\(613\) 17.8032 0.719066 0.359533 0.933132i \(-0.382936\pi\)
0.359533 + 0.933132i \(0.382936\pi\)
\(614\) −5.66589 −0.228657
\(615\) 1.28731 6.20215i 0.0519092 0.250095i
\(616\) 3.52818i 0.142154i
\(617\) 36.9565 1.48781 0.743906 0.668284i \(-0.232971\pi\)
0.743906 + 0.668284i \(0.232971\pi\)
\(618\) −6.48328 −0.260796
\(619\) 31.6640i 1.27268i 0.771408 + 0.636341i \(0.219553\pi\)
−0.771408 + 0.636341i \(0.780447\pi\)
\(620\) −2.99592 0.621829i −0.120319 0.0249732i
\(621\) −27.7418 −1.11324
\(622\) 20.5465 0.823839
\(623\) 42.8548i 1.71694i
\(624\) 0 0
\(625\) 17.0809 + 18.2549i 0.683237 + 0.730197i
\(626\) 11.0354i 0.441062i
\(627\) 7.22524i 0.288548i
\(628\) 11.0649i 0.441537i
\(629\) 62.4272i 2.48913i
\(630\) −2.80405 + 13.5097i −0.111716 + 0.538240i
\(631\) 7.35141i 0.292655i −0.989236 0.146327i \(-0.953255\pi\)
0.989236 0.146327i \(-0.0467453\pi\)
\(632\) −0.766732 −0.0304990
\(633\) 9.14494i 0.363479i
\(634\) −17.0656 −0.677763
\(635\) 21.3219 + 4.42554i 0.846134 + 0.175622i
\(636\) −4.69869 −0.186315
\(637\) 0 0
\(638\) 1.01779i 0.0402947i
\(639\) 9.22322i 0.364865i
\(640\) −0.454429 + 2.18940i −0.0179629 + 0.0865438i
\(641\) −38.9606 −1.53885 −0.769425 0.638737i \(-0.779457\pi\)
−0.769425 + 0.638737i \(0.779457\pi\)
\(642\) −4.09968 −0.161801
\(643\) −0.528071 −0.0208251 −0.0104126 0.999946i \(-0.503314\pi\)
−0.0104126 + 0.999946i \(0.503314\pi\)
\(644\) 18.0848i 0.712643i
\(645\) 0.722825 3.48251i 0.0284612 0.137124i
\(646\) 50.0433 1.96893
\(647\) 30.5439i 1.20081i −0.799698 0.600403i \(-0.795007\pi\)
0.799698 0.600403i \(-0.204993\pi\)
\(648\) −5.19692 −0.204154
\(649\) 0.100874 0.00395966
\(650\) 0 0
\(651\) 2.20291 0.0863390
\(652\) −15.2437 −0.596988
\(653\) 11.9772i 0.468704i 0.972152 + 0.234352i \(0.0752968\pi\)
−0.972152 + 0.234352i \(0.924703\pi\)
\(654\) −0.212820 −0.00832190
\(655\) 4.82034 23.2240i 0.188346 0.907438i
\(656\) 4.24884i 0.165889i
\(657\) 23.7700 0.927355
\(658\) 6.69949 0.261173
\(659\) −4.01683 −0.156474 −0.0782368 0.996935i \(-0.524929\pi\)
−0.0782368 + 0.996935i \(0.524929\pi\)
\(660\) 0.442705 2.13292i 0.0172323 0.0830237i
\(661\) 40.3372i 1.56893i −0.620170 0.784467i \(-0.712936\pi\)
0.620170 0.784467i \(-0.287064\pi\)
\(662\) 29.6977i 1.15423i
\(663\) 0 0
\(664\) 16.5800 0.643430
\(665\) 39.2083 + 8.13800i 1.52043 + 0.315578i
\(666\) −23.6431 −0.916151
\(667\) 5.21703i 0.202004i
\(668\) −8.69198 −0.336303
\(669\) 6.56291i 0.253737i
\(670\) −4.99680 + 24.0742i −0.193043 + 0.930067i
\(671\) 8.64245i 0.333638i
\(672\) 1.60988i 0.0621024i
\(673\) 41.3853i 1.59529i 0.603129 + 0.797644i \(0.293920\pi\)
−0.603129 + 0.797644i \(0.706080\pi\)
\(674\) 11.1216i 0.428389i
\(675\) 7.37037 16.9900i 0.283686 0.653947i
\(676\) 0 0
\(677\) 23.9115i 0.918995i 0.888179 + 0.459497i \(0.151970\pi\)
−0.888179 + 0.459497i \(0.848030\pi\)
\(678\) −1.30258 −0.0500253
\(679\) −25.4040 −0.974916
\(680\) −14.7730 3.06625i −0.566518 0.117585i
\(681\) 12.9370i 0.495746i
\(682\) 1.99944 0.0765623
\(683\) −23.5399 −0.900729 −0.450364 0.892845i \(-0.648706\pi\)
−0.450364 + 0.892845i \(0.648706\pi\)
\(684\) 18.9529i 0.724684i
\(685\) 2.91101 14.0250i 0.111224 0.535868i
\(686\) 19.7265 0.753162
\(687\) 11.1678 0.426079
\(688\) 2.38573i 0.0909552i
\(689\) 0 0
\(690\) 2.26923 10.9330i 0.0863882 0.416212i
\(691\) 27.7945i 1.05735i −0.848823 0.528677i \(-0.822688\pi\)
0.848823 0.528677i \(-0.177312\pi\)
\(692\) 3.39226i 0.128954i
\(693\) 9.01618i 0.342496i
\(694\) 19.1698i 0.727676i
\(695\) 7.63355 36.7779i 0.289557 1.39506i
\(696\) 0.464410i 0.0176034i
\(697\) 28.6690 1.08592
\(698\) 2.07169i 0.0784145i
\(699\) 11.1992 0.423593
\(700\) −11.0758 4.80474i −0.418626 0.181602i
\(701\) −20.6527 −0.780042 −0.390021 0.920806i \(-0.627532\pi\)
−0.390021 + 0.920806i \(0.627532\pi\)
\(702\) 0 0
\(703\) 68.6176i 2.58796i
\(704\) 1.46118i 0.0550702i
\(705\) −4.05010 0.840631i −0.152535 0.0316600i
\(706\) 14.2889 0.537770
\(707\) −34.4016 −1.29381
\(708\) −0.0460281 −0.00172984
\(709\) 1.90959i 0.0717161i 0.999357 + 0.0358581i \(0.0114164\pi\)
−0.999357 + 0.0358581i \(0.988584\pi\)
\(710\) −7.90198 1.64012i −0.296556 0.0615527i
\(711\) 1.95937 0.0734821
\(712\) 17.7481i 0.665138i
\(713\) 10.2488 0.383820
\(714\) 10.8626 0.406523
\(715\) 0 0
\(716\) 13.2996 0.497029
\(717\) 12.1889 0.455205
\(718\) 12.4966i 0.466367i
\(719\) 36.3672 1.35627 0.678135 0.734938i \(-0.262789\pi\)
0.678135 + 0.734938i \(0.262789\pi\)
\(720\) 1.16128 5.59498i 0.0432785 0.208513i
\(721\) 23.4799i 0.874439i
\(722\) 36.0058 1.34000
\(723\) −5.24159 −0.194937
\(724\) 14.0010 0.520341
\(725\) −3.19509 1.38605i −0.118663 0.0514765i
\(726\) 5.91047i 0.219358i
\(727\) 2.25162i 0.0835080i −0.999128 0.0417540i \(-0.986705\pi\)
0.999128 0.0417540i \(-0.0132946\pi\)
\(728\) 0 0
\(729\) 5.87208 0.217485
\(730\) −4.22690 + 20.3649i −0.156445 + 0.753739i
\(731\) 16.0977 0.595395
\(732\) 3.94348i 0.145755i
\(733\) −27.7157 −1.02370 −0.511851 0.859074i \(-0.671040\pi\)
−0.511851 + 0.859074i \(0.671040\pi\)
\(734\) 20.7194i 0.764766i
\(735\) −1.70736 0.354377i −0.0629771 0.0130714i
\(736\) 7.48975i 0.276076i
\(737\) 16.0668i 0.591827i
\(738\) 10.8578i 0.399682i
\(739\) 17.4826i 0.643108i 0.946891 + 0.321554i \(0.104205\pi\)
−0.946891 + 0.321554i \(0.895795\pi\)
\(740\) 4.20434 20.2562i 0.154555 0.744632i
\(741\) 0 0
\(742\) 17.0168i 0.624707i
\(743\) 45.4090 1.66589 0.832947 0.553353i \(-0.186652\pi\)
0.832947 + 0.553353i \(0.186652\pi\)
\(744\) −0.912326 −0.0334475
\(745\) −19.4948 4.04630i −0.714234 0.148245i
\(746\) 31.4926i 1.15303i
\(747\) −42.3699 −1.55023
\(748\) 9.85927 0.360491
\(749\) 14.8475i 0.542514i
\(750\) 6.09286 + 4.29441i 0.222480 + 0.156810i
\(751\) 23.3846 0.853315 0.426657 0.904413i \(-0.359691\pi\)
0.426657 + 0.904413i \(0.359691\pi\)
\(752\) −2.77456 −0.101178
\(753\) 5.98108i 0.217963i
\(754\) 0 0
\(755\) 37.5969 + 7.80354i 1.36829 + 0.284000i
\(756\) 8.94364i 0.325277i
\(757\) 33.7347i 1.22611i −0.790040 0.613055i \(-0.789941\pi\)
0.790040 0.613055i \(-0.210059\pi\)
\(758\) 7.87442i 0.286012i
\(759\) 7.29651i 0.264847i
\(760\) −16.2379 3.37031i −0.589011 0.122254i
\(761\) 13.4210i 0.486512i 0.969962 + 0.243256i \(0.0782155\pi\)
−0.969962 + 0.243256i \(0.921785\pi\)
\(762\) 6.49299 0.235216
\(763\) 0.770750i 0.0279030i
\(764\) −18.7576 −0.678627
\(765\) 37.7521 + 7.83575i 1.36493 + 0.283302i
\(766\) −8.03386 −0.290275
\(767\) 0 0
\(768\) 0.666723i 0.0240583i
\(769\) 18.6681i 0.673188i −0.941650 0.336594i \(-0.890725\pi\)
0.941650 0.336594i \(-0.109275\pi\)
\(770\) 7.72460 + 1.60331i 0.278375 + 0.0577791i
\(771\) 16.1831 0.582818
\(772\) −24.3855 −0.877652
\(773\) −2.12110 −0.0762905 −0.0381453 0.999272i \(-0.512145\pi\)
−0.0381453 + 0.999272i \(0.512145\pi\)
\(774\) 6.09669i 0.219141i
\(775\) −2.72287 + 6.27671i −0.0978084 + 0.225466i
\(776\) 10.5209 0.377680
\(777\) 14.8944i 0.534335i
\(778\) 21.5917 0.774099
\(779\) 31.5119 1.12903
\(780\) 0 0
\(781\) 5.27367 0.188707
\(782\) 50.5370 1.80720
\(783\) 2.58002i 0.0922024i
\(784\) −1.16965 −0.0417731
\(785\) −24.2255 5.02820i −0.864645 0.179464i
\(786\) 7.07224i 0.252258i
\(787\) 1.88977 0.0673631 0.0336815 0.999433i \(-0.489277\pi\)
0.0336815 + 0.999433i \(0.489277\pi\)
\(788\) 2.73133 0.0972997
\(789\) −19.1853 −0.683015
\(790\) −0.348425 + 1.67869i −0.0123964 + 0.0597250i
\(791\) 4.71744i 0.167733i
\(792\) 3.73401i 0.132682i
\(793\) 0 0
\(794\) 36.8751 1.30865
\(795\) −2.13522 + 10.2873i −0.0757284 + 0.364854i
\(796\) 11.2116 0.397385
\(797\) 27.7575i 0.983222i 0.870815 + 0.491611i \(0.163592\pi\)
−0.870815 + 0.491611i \(0.836408\pi\)
\(798\) 11.9398 0.422664
\(799\) 18.7213i 0.662312i
\(800\) 4.58699 + 1.98986i 0.162175 + 0.0703521i
\(801\) 45.3549i 1.60254i
\(802\) 8.26837i 0.291966i
\(803\) 13.5912i 0.479624i
\(804\) 7.33113i 0.258549i
\(805\) 39.5951 + 8.21828i 1.39554 + 0.289656i
\(806\) 0 0
\(807\) 17.5220i 0.616804i
\(808\) 14.2473 0.501217
\(809\) −22.3988 −0.787501 −0.393751 0.919217i \(-0.628823\pi\)
−0.393751 + 0.919217i \(0.628823\pi\)
\(810\) −2.36163 + 11.3782i −0.0829793 + 0.399788i
\(811\) 10.0371i 0.352450i 0.984350 + 0.176225i \(0.0563886\pi\)
−0.984350 + 0.176225i \(0.943611\pi\)
\(812\) 1.68191 0.0590236
\(813\) 9.57728 0.335890
\(814\) 13.5187i 0.473830i
\(815\) −6.92717 + 33.3746i −0.242648 + 1.16906i
\(816\) −4.49870 −0.157486
\(817\) 17.6940 0.619034
\(818\) 3.02146i 0.105643i
\(819\) 0 0
\(820\) −9.30244 1.93080i −0.324855 0.0674264i
\(821\) 12.9086i 0.450513i 0.974299 + 0.225257i \(0.0723221\pi\)
−0.974299 + 0.225257i \(0.927678\pi\)
\(822\) 4.27093i 0.148966i
\(823\) 24.3811i 0.849870i 0.905224 + 0.424935i \(0.139703\pi\)
−0.905224 + 0.424935i \(0.860297\pi\)
\(824\) 9.72411i 0.338755i
\(825\) −4.46864 1.93852i −0.155578 0.0674906i
\(826\) 0.166696i 0.00580010i
\(827\) −11.1712 −0.388461 −0.194230 0.980956i \(-0.562221\pi\)
−0.194230 + 0.980956i \(0.562221\pi\)
\(828\) 19.1399i 0.665158i
\(829\) 28.9931 1.00697 0.503487 0.864003i \(-0.332050\pi\)
0.503487 + 0.864003i \(0.332050\pi\)
\(830\) 7.53444 36.3004i 0.261524 1.26000i
\(831\) 6.61717 0.229547
\(832\) 0 0
\(833\) 7.89217i 0.273448i
\(834\) 11.1997i 0.387813i
\(835\) −3.94989 + 19.0303i −0.136691 + 0.658569i
\(836\) 10.8369 0.374804
\(837\) 5.06841 0.175190
\(838\) −35.0376 −1.21036
\(839\) 24.0650i 0.830818i 0.909635 + 0.415409i \(0.136361\pi\)
−0.909635 + 0.415409i \(0.863639\pi\)
\(840\) −3.52467 0.731575i −0.121613 0.0252417i
\(841\) −28.5148 −0.983269
\(842\) 9.81291i 0.338175i
\(843\) 7.86678 0.270946
\(844\) 13.7163 0.472133
\(845\) 0 0
\(846\) 7.09033 0.243771
\(847\) 21.4055 0.735500
\(848\) 7.04744i 0.242010i
\(849\) 8.70327 0.298695
\(850\) −13.4265 + 30.9506i −0.460527 + 1.06160i
\(851\) 69.2945i 2.37539i
\(852\) −2.40633 −0.0824395
\(853\) 13.7936 0.472284 0.236142 0.971719i \(-0.424117\pi\)
0.236142 + 0.971719i \(0.424117\pi\)
\(854\) −14.2818 −0.488712
\(855\) 41.4957 + 8.61277i 1.41912 + 0.294551i
\(856\) 6.14900i 0.210168i
\(857\) 14.1595i 0.483678i −0.970316 0.241839i \(-0.922249\pi\)
0.970316 0.241839i \(-0.0777506\pi\)
\(858\) 0 0
\(859\) −27.6665 −0.943968 −0.471984 0.881607i \(-0.656462\pi\)
−0.471984 + 0.881607i \(0.656462\pi\)
\(860\) −5.22333 1.08415i −0.178114 0.0369691i
\(861\) 6.84011 0.233110
\(862\) 5.88552i 0.200462i
\(863\) −17.4318 −0.593386 −0.296693 0.954973i \(-0.595884\pi\)
−0.296693 + 0.954973i \(0.595884\pi\)
\(864\) 3.70397i 0.126011i
\(865\) 7.42704 + 1.54154i 0.252527 + 0.0524140i
\(866\) 31.1096i 1.05715i
\(867\) 19.0206i 0.645975i
\(868\) 3.30409i 0.112148i
\(869\) 1.12033i 0.0380046i
\(870\) −1.01678 0.211041i −0.0344721 0.00715497i
\(871\) 0 0
\(872\) 0.319202i 0.0108096i
\(873\) −26.8861 −0.909956
\(874\) 55.5484 1.87895
\(875\) −15.5527 + 22.0660i −0.525777 + 0.745967i
\(876\) 6.20157i 0.209532i
\(877\) 2.17528 0.0734539 0.0367270 0.999325i \(-0.488307\pi\)
0.0367270 + 0.999325i \(0.488307\pi\)
\(878\) 2.69710 0.0910229
\(879\) 10.8248i 0.365111i
\(880\) −3.19911 0.664001i −0.107842 0.0223835i
\(881\) 6.32823 0.213204 0.106602 0.994302i \(-0.466003\pi\)
0.106602 + 0.994302i \(0.466003\pi\)
\(882\) 2.98901 0.100645
\(883\) 28.5533i 0.960895i −0.877024 0.480447i \(-0.840474\pi\)
0.877024 0.480447i \(-0.159526\pi\)
\(884\) 0 0
\(885\) −0.0209165 + 0.100774i −0.000703101 + 0.00338749i
\(886\) 19.0859i 0.641203i
\(887\) 21.3012i 0.715225i 0.933870 + 0.357613i \(0.116409\pi\)
−0.933870 + 0.357613i \(0.883591\pi\)
\(888\) 6.16846i 0.207000i
\(889\) 23.5151i 0.788672i
\(890\) 38.8578 + 8.06526i 1.30252 + 0.270348i
\(891\) 7.59362i 0.254396i
\(892\) −9.84353 −0.329586
\(893\) 20.5778i 0.688609i
\(894\) −5.93660 −0.198550
\(895\) 6.04372 29.1182i 0.202019 0.973313i
\(896\) −2.41461 −0.0806665
\(897\) 0 0
\(898\) 18.3579i 0.612611i
\(899\) 0.953149i 0.0317893i
\(900\) −11.7220 5.08505i −0.390732 0.169502i
\(901\) −47.5525 −1.58420
\(902\) 6.20831 0.206714
\(903\) 3.84073 0.127812
\(904\) 1.95370i 0.0649793i
\(905\) 6.36244 30.6538i 0.211495 1.01897i
\(906\) 11.4491 0.380370
\(907\) 46.5451i 1.54551i 0.634707 + 0.772753i \(0.281121\pi\)
−0.634707 + 0.772753i \(0.718879\pi\)
\(908\) 19.4038 0.643939
\(909\) −36.4086 −1.20760
\(910\) 0 0
\(911\) −29.3014 −0.970800 −0.485400 0.874292i \(-0.661326\pi\)
−0.485400 + 0.874292i \(0.661326\pi\)
\(912\) −4.94481 −0.163739
\(913\) 24.2263i 0.801775i
\(914\) 25.3873 0.839739
\(915\) 8.63387 + 1.79203i 0.285427 + 0.0592427i
\(916\) 16.7503i 0.553447i
\(917\) 25.6129 0.845813
\(918\) 24.9925 0.824874
\(919\) −29.4843 −0.972598 −0.486299 0.873792i \(-0.661654\pi\)
−0.486299 + 0.873792i \(0.661654\pi\)
\(920\) −16.3981 3.40356i −0.540629 0.112212i
\(921\) 3.77758i 0.124476i
\(922\) 1.12031i 0.0368956i
\(923\) 0 0
\(924\) 2.35231 0.0773855
\(925\) −42.4384 18.4100i −1.39537 0.605317i
\(926\) −30.6952 −1.00871
\(927\) 24.8498i 0.816173i
\(928\) −0.696556 −0.0228656
\(929\) 47.7459i 1.56649i −0.621712 0.783246i \(-0.713562\pi\)
0.621712 0.783246i \(-0.286438\pi\)
\(930\) −0.414587 + 1.99745i −0.0135949 + 0.0654990i
\(931\) 8.67479i 0.284305i
\(932\) 16.7974i 0.550217i
\(933\) 13.6988i 0.448479i
\(934\) 5.88670i 0.192619i
\(935\) 4.48034 21.5859i 0.146523 0.705935i
\(936\) 0 0
\(937\) 29.2998i 0.957182i −0.878038 0.478591i \(-0.841148\pi\)
0.878038 0.478591i \(-0.158852\pi\)
\(938\) −26.5505 −0.866905
\(939\) 7.35753 0.240104
\(940\) −1.26084 + 6.07463i −0.0411241 + 0.198133i
\(941\) 7.48425i 0.243980i −0.992531 0.121990i \(-0.961072\pi\)
0.992531 0.121990i \(-0.0389275\pi\)
\(942\) −7.37720 −0.240362
\(943\) 31.8228 1.03629
\(944\) 0.0690364i 0.00224694i
\(945\) 19.5813 + 4.06425i 0.636978 + 0.132210i
\(946\) 3.48597 0.113339
\(947\) 15.9785 0.519230 0.259615 0.965712i \(-0.416404\pi\)
0.259615 + 0.965712i \(0.416404\pi\)
\(948\) 0.511198i 0.0166029i
\(949\) 0 0
\(950\) −14.7580 + 34.0198i −0.478811 + 1.10375i
\(951\) 11.3780i 0.368958i
\(952\) 16.2926i 0.528045i
\(953\) 44.7821i 1.45063i 0.688415 + 0.725317i \(0.258307\pi\)
−0.688415 + 0.725317i \(0.741693\pi\)
\(954\) 18.0096i 0.583082i
\(955\) −8.52401 + 41.0680i −0.275830 + 1.32893i
\(956\) 18.2819i 0.591278i
\(957\) 0.678585 0.0219355
\(958\) 24.6962i 0.797899i
\(959\) 15.4677 0.499477
\(960\) 1.45973 + 0.302978i 0.0471125 + 0.00977858i
\(961\) 29.1276 0.939599
\(962\) 0 0
\(963\) 15.7137i 0.506365i
\(964\) 7.86172i 0.253209i
\(965\) −11.0815 + 53.3896i −0.356725 + 1.71867i
\(966\) 12.0576 0.387946
\(967\) −5.51993 −0.177509 −0.0887546 0.996054i \(-0.528289\pi\)
−0.0887546 + 0.996054i \(0.528289\pi\)
\(968\) −8.86496 −0.284931
\(969\) 33.3650i 1.07184i
\(970\) 4.78102 23.0346i 0.153509 0.739597i
\(971\) −38.6903 −1.24163 −0.620815 0.783957i \(-0.713198\pi\)
−0.620815 + 0.783957i \(0.713198\pi\)
\(972\) 14.5768i 0.467551i
\(973\) 40.5609 1.30032
\(974\) −6.85817 −0.219750
\(975\) 0 0
\(976\) 5.91472 0.189326
\(977\) 22.0275 0.704722 0.352361 0.935864i \(-0.385379\pi\)
0.352361 + 0.935864i \(0.385379\pi\)
\(978\) 10.1633i 0.324987i
\(979\) −25.9331 −0.828826
\(980\) −0.531521 + 2.56083i −0.0169788 + 0.0818027i
\(981\) 0.815716i 0.0260438i
\(982\) −32.0421 −1.02251
\(983\) −49.1575 −1.56788 −0.783941 0.620835i \(-0.786794\pi\)
−0.783941 + 0.620835i \(0.786794\pi\)
\(984\) −2.83280 −0.0903064
\(985\) 1.24120 5.97999i 0.0395478 0.190538i
\(986\) 4.70000i 0.149679i
\(987\) 4.46670i 0.142177i
\(988\) 0 0
\(989\) 17.8685 0.568186
\(990\) 8.17526 + 1.69684i 0.259827 + 0.0539292i
\(991\) −7.70733 −0.244831 −0.122416 0.992479i \(-0.539064\pi\)
−0.122416 + 0.992479i \(0.539064\pi\)
\(992\) 1.36837i 0.0434459i
\(993\) −19.8001 −0.628338
\(994\) 8.71480i 0.276417i
\(995\) 5.09489 24.5468i 0.161519 0.778185i
\(996\) 11.0543i 0.350268i
\(997\) 23.9968i 0.759986i 0.924989 + 0.379993i \(0.124074\pi\)
−0.924989 + 0.379993i \(0.875926\pi\)
\(998\) 25.9861i 0.822575i
\(999\) 34.2688i 1.08422i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.c.g.1689.12 18
5.4 even 2 1690.2.c.h.1689.7 18
13.5 odd 4 1690.2.b.f.339.14 yes 18
13.8 odd 4 1690.2.b.g.339.5 yes 18
13.12 even 2 1690.2.c.h.1689.12 18
65.8 even 4 8450.2.a.ct.1.5 9
65.18 even 4 8450.2.a.cx.1.5 9
65.34 odd 4 1690.2.b.g.339.14 yes 18
65.44 odd 4 1690.2.b.f.339.5 18
65.47 even 4 8450.2.a.da.1.5 9
65.57 even 4 8450.2.a.cw.1.5 9
65.64 even 2 inner 1690.2.c.g.1689.7 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.b.f.339.5 18 65.44 odd 4
1690.2.b.f.339.14 yes 18 13.5 odd 4
1690.2.b.g.339.5 yes 18 13.8 odd 4
1690.2.b.g.339.14 yes 18 65.34 odd 4
1690.2.c.g.1689.7 18 65.64 even 2 inner
1690.2.c.g.1689.12 18 1.1 even 1 trivial
1690.2.c.h.1689.7 18 5.4 even 2
1690.2.c.h.1689.12 18 13.12 even 2
8450.2.a.ct.1.5 9 65.8 even 4
8450.2.a.cw.1.5 9 65.57 even 4
8450.2.a.cx.1.5 9 65.18 even 4
8450.2.a.da.1.5 9 65.47 even 4