Properties

Label 8450.2.a.cs.1.8
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,8,0,0,10,8,16,0,0,0,0,10,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 20x^{6} + 132x^{4} - 332x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(3.07108\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +3.07108 q^{3} +1.00000 q^{4} +3.07108 q^{6} +3.69510 q^{7} +1.00000 q^{8} +6.43154 q^{9} -1.06735 q^{11} +3.07108 q^{12} +3.69510 q^{14} +1.00000 q^{16} -2.79940 q^{17} +6.43154 q^{18} -2.19819 q^{19} +11.3479 q^{21} -1.06735 q^{22} -1.13083 q^{23} +3.07108 q^{24} +10.5385 q^{27} +3.69510 q^{28} -2.73644 q^{29} +4.20191 q^{31} +1.00000 q^{32} -3.27793 q^{33} -2.79940 q^{34} +6.43154 q^{36} +10.3193 q^{37} -2.19819 q^{38} -4.93821 q^{41} +11.3479 q^{42} -4.39637 q^{43} -1.06735 q^{44} -1.13083 q^{46} +10.5582 q^{47} +3.07108 q^{48} +6.65376 q^{49} -8.59720 q^{51} -3.81853 q^{53} +10.5385 q^{54} +3.69510 q^{56} -6.75081 q^{57} -2.73644 q^{58} -3.61033 q^{59} +15.2214 q^{61} +4.20191 q^{62} +23.7652 q^{63} +1.00000 q^{64} -3.27793 q^{66} +4.00000 q^{67} -2.79940 q^{68} -3.47288 q^{69} +12.2843 q^{71} +6.43154 q^{72} +1.23397 q^{73} +10.3193 q^{74} -2.19819 q^{76} -3.94398 q^{77} -14.2237 q^{79} +13.0701 q^{81} -4.93821 q^{82} -8.18235 q^{83} +11.3479 q^{84} -4.39637 q^{86} -8.40383 q^{87} -1.06735 q^{88} +8.80497 q^{89} -1.13083 q^{92} +12.9044 q^{93} +10.5582 q^{94} +3.07108 q^{96} -8.75081 q^{97} +6.65376 q^{98} -6.86472 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{4} + 10 q^{7} + 8 q^{8} + 16 q^{9} + 10 q^{14} + 8 q^{16} + 16 q^{18} + 10 q^{28} - 6 q^{29} + 8 q^{32} + 20 q^{33} + 16 q^{36} + 40 q^{37} - 6 q^{47} + 30 q^{49} + 20 q^{51} + 10 q^{56}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 3.07108 1.77309 0.886545 0.462643i \(-0.153099\pi\)
0.886545 + 0.462643i \(0.153099\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 3.07108 1.25376
\(7\) 3.69510 1.39662 0.698308 0.715797i \(-0.253937\pi\)
0.698308 + 0.715797i \(0.253937\pi\)
\(8\) 1.00000 0.353553
\(9\) 6.43154 2.14385
\(10\) 0 0
\(11\) −1.06735 −0.321819 −0.160910 0.986969i \(-0.551443\pi\)
−0.160910 + 0.986969i \(0.551443\pi\)
\(12\) 3.07108 0.886545
\(13\) 0 0
\(14\) 3.69510 0.987557
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.79940 −0.678955 −0.339478 0.940614i \(-0.610250\pi\)
−0.339478 + 0.940614i \(0.610250\pi\)
\(18\) 6.43154 1.51593
\(19\) −2.19819 −0.504298 −0.252149 0.967688i \(-0.581137\pi\)
−0.252149 + 0.967688i \(0.581137\pi\)
\(20\) 0 0
\(21\) 11.3479 2.47633
\(22\) −1.06735 −0.227560
\(23\) −1.13083 −0.235795 −0.117897 0.993026i \(-0.537615\pi\)
−0.117897 + 0.993026i \(0.537615\pi\)
\(24\) 3.07108 0.626882
\(25\) 0 0
\(26\) 0 0
\(27\) 10.5385 2.02814
\(28\) 3.69510 0.698308
\(29\) −2.73644 −0.508144 −0.254072 0.967185i \(-0.581770\pi\)
−0.254072 + 0.967185i \(0.581770\pi\)
\(30\) 0 0
\(31\) 4.20191 0.754686 0.377343 0.926074i \(-0.376838\pi\)
0.377343 + 0.926074i \(0.376838\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.27793 −0.570614
\(34\) −2.79940 −0.480094
\(35\) 0 0
\(36\) 6.43154 1.07192
\(37\) 10.3193 1.69648 0.848239 0.529614i \(-0.177663\pi\)
0.848239 + 0.529614i \(0.177663\pi\)
\(38\) −2.19819 −0.356593
\(39\) 0 0
\(40\) 0 0
\(41\) −4.93821 −0.771220 −0.385610 0.922662i \(-0.626009\pi\)
−0.385610 + 0.922662i \(0.626009\pi\)
\(42\) 11.3479 1.75103
\(43\) −4.39637 −0.670440 −0.335220 0.942140i \(-0.608811\pi\)
−0.335220 + 0.942140i \(0.608811\pi\)
\(44\) −1.06735 −0.160910
\(45\) 0 0
\(46\) −1.13083 −0.166732
\(47\) 10.5582 1.54007 0.770034 0.638003i \(-0.220239\pi\)
0.770034 + 0.638003i \(0.220239\pi\)
\(48\) 3.07108 0.443272
\(49\) 6.65376 0.950537
\(50\) 0 0
\(51\) −8.59720 −1.20385
\(52\) 0 0
\(53\) −3.81853 −0.524515 −0.262258 0.964998i \(-0.584467\pi\)
−0.262258 + 0.964998i \(0.584467\pi\)
\(54\) 10.5385 1.43411
\(55\) 0 0
\(56\) 3.69510 0.493778
\(57\) −6.75081 −0.894166
\(58\) −2.73644 −0.359312
\(59\) −3.61033 −0.470025 −0.235013 0.971992i \(-0.575513\pi\)
−0.235013 + 0.971992i \(0.575513\pi\)
\(60\) 0 0
\(61\) 15.2214 1.94890 0.974448 0.224613i \(-0.0721117\pi\)
0.974448 + 0.224613i \(0.0721117\pi\)
\(62\) 4.20191 0.533644
\(63\) 23.7652 2.99413
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −3.27793 −0.403485
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) −2.79940 −0.339478
\(69\) −3.47288 −0.418086
\(70\) 0 0
\(71\) 12.2843 1.45788 0.728941 0.684577i \(-0.240013\pi\)
0.728941 + 0.684577i \(0.240013\pi\)
\(72\) 6.43154 0.757964
\(73\) 1.23397 0.144425 0.0722127 0.997389i \(-0.476994\pi\)
0.0722127 + 0.997389i \(0.476994\pi\)
\(74\) 10.3193 1.19959
\(75\) 0 0
\(76\) −2.19819 −0.252149
\(77\) −3.94398 −0.449458
\(78\) 0 0
\(79\) −14.2237 −1.60029 −0.800145 0.599807i \(-0.795244\pi\)
−0.800145 + 0.599807i \(0.795244\pi\)
\(80\) 0 0
\(81\) 13.0701 1.45223
\(82\) −4.93821 −0.545335
\(83\) −8.18235 −0.898129 −0.449065 0.893499i \(-0.648243\pi\)
−0.449065 + 0.893499i \(0.648243\pi\)
\(84\) 11.3479 1.23816
\(85\) 0 0
\(86\) −4.39637 −0.474073
\(87\) −8.40383 −0.900985
\(88\) −1.06735 −0.113780
\(89\) 8.80497 0.933325 0.466663 0.884435i \(-0.345456\pi\)
0.466663 + 0.884435i \(0.345456\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.13083 −0.117897
\(93\) 12.9044 1.33813
\(94\) 10.5582 1.08899
\(95\) 0 0
\(96\) 3.07108 0.313441
\(97\) −8.75081 −0.888510 −0.444255 0.895900i \(-0.646532\pi\)
−0.444255 + 0.895900i \(0.646532\pi\)
\(98\) 6.65376 0.672131
\(99\) −6.86472 −0.689931
\(100\) 0 0
\(101\) −2.58283 −0.257001 −0.128501 0.991709i \(-0.541016\pi\)
−0.128501 + 0.991709i \(0.541016\pi\)
\(102\) −8.59720 −0.851249
\(103\) −3.00760 −0.296348 −0.148174 0.988961i \(-0.547340\pi\)
−0.148174 + 0.988961i \(0.547340\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −3.81853 −0.370888
\(107\) −5.47595 −0.529380 −0.264690 0.964334i \(-0.585270\pi\)
−0.264690 + 0.964334i \(0.585270\pi\)
\(108\) 10.5385 1.01407
\(109\) 11.8872 1.13859 0.569294 0.822134i \(-0.307217\pi\)
0.569294 + 0.822134i \(0.307217\pi\)
\(110\) 0 0
\(111\) 31.6913 3.00801
\(112\) 3.69510 0.349154
\(113\) 9.26298 0.871388 0.435694 0.900095i \(-0.356503\pi\)
0.435694 + 0.900095i \(0.356503\pi\)
\(114\) −6.75081 −0.632271
\(115\) 0 0
\(116\) −2.73644 −0.254072
\(117\) 0 0
\(118\) −3.61033 −0.332358
\(119\) −10.3441 −0.948240
\(120\) 0 0
\(121\) −9.86076 −0.896432
\(122\) 15.2214 1.37808
\(123\) −15.1657 −1.36744
\(124\) 4.20191 0.377343
\(125\) 0 0
\(126\) 23.7652 2.11717
\(127\) 7.40397 0.656996 0.328498 0.944505i \(-0.393458\pi\)
0.328498 + 0.944505i \(0.393458\pi\)
\(128\) 1.00000 0.0883883
\(129\) −13.5016 −1.18875
\(130\) 0 0
\(131\) −7.35829 −0.642897 −0.321448 0.946927i \(-0.604170\pi\)
−0.321448 + 0.946927i \(0.604170\pi\)
\(132\) −3.27793 −0.285307
\(133\) −8.12252 −0.704311
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) −2.79940 −0.240047
\(137\) −13.4046 −1.14523 −0.572615 0.819825i \(-0.694071\pi\)
−0.572615 + 0.819825i \(0.694071\pi\)
\(138\) −3.47288 −0.295631
\(139\) 11.3583 0.963397 0.481699 0.876337i \(-0.340020\pi\)
0.481699 + 0.876337i \(0.340020\pi\)
\(140\) 0 0
\(141\) 32.4250 2.73068
\(142\) 12.2843 1.03088
\(143\) 0 0
\(144\) 6.43154 0.535962
\(145\) 0 0
\(146\) 1.23397 0.102124
\(147\) 20.4342 1.68539
\(148\) 10.3193 0.848239
\(149\) −7.00132 −0.573570 −0.286785 0.957995i \(-0.592587\pi\)
−0.286785 + 0.957995i \(0.592587\pi\)
\(150\) 0 0
\(151\) −0.194458 −0.0158248 −0.00791239 0.999969i \(-0.502519\pi\)
−0.00791239 + 0.999969i \(0.502519\pi\)
\(152\) −2.19819 −0.178296
\(153\) −18.0045 −1.45558
\(154\) −3.94398 −0.317815
\(155\) 0 0
\(156\) 0 0
\(157\) −16.8889 −1.34788 −0.673940 0.738786i \(-0.735399\pi\)
−0.673940 + 0.738786i \(0.735399\pi\)
\(158\) −14.2237 −1.13158
\(159\) −11.7270 −0.930012
\(160\) 0 0
\(161\) −4.17854 −0.329315
\(162\) 13.0701 1.02688
\(163\) 2.23165 0.174796 0.0873982 0.996173i \(-0.472145\pi\)
0.0873982 + 0.996173i \(0.472145\pi\)
\(164\) −4.93821 −0.385610
\(165\) 0 0
\(166\) −8.18235 −0.635073
\(167\) 2.03902 0.157784 0.0788920 0.996883i \(-0.474862\pi\)
0.0788920 + 0.996883i \(0.474862\pi\)
\(168\) 11.3479 0.875513
\(169\) 0 0
\(170\) 0 0
\(171\) −14.1377 −1.08114
\(172\) −4.39637 −0.335220
\(173\) −10.8722 −0.826596 −0.413298 0.910596i \(-0.635623\pi\)
−0.413298 + 0.910596i \(0.635623\pi\)
\(174\) −8.40383 −0.637093
\(175\) 0 0
\(176\) −1.06735 −0.0804548
\(177\) −11.0876 −0.833396
\(178\) 8.80497 0.659961
\(179\) −3.91732 −0.292794 −0.146397 0.989226i \(-0.546768\pi\)
−0.146397 + 0.989226i \(0.546768\pi\)
\(180\) 0 0
\(181\) 14.1976 1.05530 0.527648 0.849463i \(-0.323074\pi\)
0.527648 + 0.849463i \(0.323074\pi\)
\(182\) 0 0
\(183\) 46.7460 3.45557
\(184\) −1.13083 −0.0833661
\(185\) 0 0
\(186\) 12.9044 0.946198
\(187\) 2.98795 0.218501
\(188\) 10.5582 0.770034
\(189\) 38.9409 2.83254
\(190\) 0 0
\(191\) −0.336811 −0.0243708 −0.0121854 0.999926i \(-0.503879\pi\)
−0.0121854 + 0.999926i \(0.503879\pi\)
\(192\) 3.07108 0.221636
\(193\) −6.76518 −0.486968 −0.243484 0.969905i \(-0.578290\pi\)
−0.243484 + 0.969905i \(0.578290\pi\)
\(194\) −8.75081 −0.628271
\(195\) 0 0
\(196\) 6.65376 0.475269
\(197\) −14.9363 −1.06417 −0.532085 0.846691i \(-0.678591\pi\)
−0.532085 + 0.846691i \(0.678591\pi\)
\(198\) −6.86472 −0.487855
\(199\) −0.302580 −0.0214493 −0.0107247 0.999942i \(-0.503414\pi\)
−0.0107247 + 0.999942i \(0.503414\pi\)
\(200\) 0 0
\(201\) 12.2843 0.866469
\(202\) −2.58283 −0.181727
\(203\) −10.1114 −0.709682
\(204\) −8.59720 −0.601924
\(205\) 0 0
\(206\) −3.00760 −0.209550
\(207\) −7.27299 −0.505508
\(208\) 0 0
\(209\) 2.34624 0.162293
\(210\) 0 0
\(211\) 0.404566 0.0278515 0.0139258 0.999903i \(-0.495567\pi\)
0.0139258 + 0.999903i \(0.495567\pi\)
\(212\) −3.81853 −0.262258
\(213\) 37.7262 2.58495
\(214\) −5.47595 −0.374328
\(215\) 0 0
\(216\) 10.5385 0.717056
\(217\) 15.5265 1.05401
\(218\) 11.8872 0.805103
\(219\) 3.78962 0.256079
\(220\) 0 0
\(221\) 0 0
\(222\) 31.6913 2.12698
\(223\) 0.832022 0.0557163 0.0278581 0.999612i \(-0.491131\pi\)
0.0278581 + 0.999612i \(0.491131\pi\)
\(224\) 3.69510 0.246889
\(225\) 0 0
\(226\) 9.26298 0.616164
\(227\) −7.77546 −0.516075 −0.258038 0.966135i \(-0.583076\pi\)
−0.258038 + 0.966135i \(0.583076\pi\)
\(228\) −6.75081 −0.447083
\(229\) 7.73762 0.511316 0.255658 0.966767i \(-0.417708\pi\)
0.255658 + 0.966767i \(0.417708\pi\)
\(230\) 0 0
\(231\) −12.1123 −0.796929
\(232\) −2.73644 −0.179656
\(233\) −6.86070 −0.449460 −0.224730 0.974421i \(-0.572150\pi\)
−0.224730 + 0.974421i \(0.572150\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −3.61033 −0.235013
\(237\) −43.6821 −2.83746
\(238\) −10.3441 −0.670507
\(239\) −22.3277 −1.44426 −0.722130 0.691757i \(-0.756837\pi\)
−0.722130 + 0.691757i \(0.756837\pi\)
\(240\) 0 0
\(241\) −5.68717 −0.366343 −0.183172 0.983081i \(-0.558636\pi\)
−0.183172 + 0.983081i \(0.558636\pi\)
\(242\) −9.86076 −0.633873
\(243\) 8.52366 0.546793
\(244\) 15.2214 0.974448
\(245\) 0 0
\(246\) −15.1657 −0.966927
\(247\) 0 0
\(248\) 4.20191 0.266822
\(249\) −25.1286 −1.59246
\(250\) 0 0
\(251\) −17.6162 −1.11193 −0.555963 0.831207i \(-0.687650\pi\)
−0.555963 + 0.831207i \(0.687650\pi\)
\(252\) 23.7652 1.49707
\(253\) 1.20700 0.0758833
\(254\) 7.40397 0.464567
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −25.8167 −1.61040 −0.805201 0.593001i \(-0.797943\pi\)
−0.805201 + 0.593001i \(0.797943\pi\)
\(258\) −13.5016 −0.840574
\(259\) 38.1307 2.36933
\(260\) 0 0
\(261\) −17.5995 −1.08938
\(262\) −7.35829 −0.454597
\(263\) −21.2163 −1.30825 −0.654125 0.756386i \(-0.726963\pi\)
−0.654125 + 0.756386i \(0.726963\pi\)
\(264\) −3.27793 −0.201743
\(265\) 0 0
\(266\) −8.12252 −0.498023
\(267\) 27.0408 1.65487
\(268\) 4.00000 0.244339
\(269\) 14.4896 0.883445 0.441722 0.897152i \(-0.354368\pi\)
0.441722 + 0.897152i \(0.354368\pi\)
\(270\) 0 0
\(271\) −29.0838 −1.76671 −0.883357 0.468701i \(-0.844722\pi\)
−0.883357 + 0.468701i \(0.844722\pi\)
\(272\) −2.79940 −0.169739
\(273\) 0 0
\(274\) −13.4046 −0.809799
\(275\) 0 0
\(276\) −3.47288 −0.209043
\(277\) −2.54147 −0.152702 −0.0763510 0.997081i \(-0.524327\pi\)
−0.0763510 + 0.997081i \(0.524327\pi\)
\(278\) 11.3583 0.681225
\(279\) 27.0248 1.61793
\(280\) 0 0
\(281\) 15.2066 0.907149 0.453574 0.891218i \(-0.350149\pi\)
0.453574 + 0.891218i \(0.350149\pi\)
\(282\) 32.4250 1.93088
\(283\) −24.7921 −1.47374 −0.736868 0.676037i \(-0.763696\pi\)
−0.736868 + 0.676037i \(0.763696\pi\)
\(284\) 12.2843 0.728941
\(285\) 0 0
\(286\) 0 0
\(287\) −18.2472 −1.07710
\(288\) 6.43154 0.378982
\(289\) −9.16334 −0.539020
\(290\) 0 0
\(291\) −26.8744 −1.57541
\(292\) 1.23397 0.0722127
\(293\) 21.0630 1.23051 0.615256 0.788328i \(-0.289053\pi\)
0.615256 + 0.788328i \(0.289053\pi\)
\(294\) 20.4342 1.19175
\(295\) 0 0
\(296\) 10.3193 0.599795
\(297\) −11.2483 −0.652695
\(298\) −7.00132 −0.405575
\(299\) 0 0
\(300\) 0 0
\(301\) −16.2450 −0.936348
\(302\) −0.194458 −0.0111898
\(303\) −7.93208 −0.455686
\(304\) −2.19819 −0.126075
\(305\) 0 0
\(306\) −18.0045 −1.02925
\(307\) −8.89181 −0.507483 −0.253741 0.967272i \(-0.581661\pi\)
−0.253741 + 0.967272i \(0.581661\pi\)
\(308\) −3.94398 −0.224729
\(309\) −9.23659 −0.525451
\(310\) 0 0
\(311\) −28.7015 −1.62751 −0.813756 0.581206i \(-0.802581\pi\)
−0.813756 + 0.581206i \(0.802581\pi\)
\(312\) 0 0
\(313\) 7.84120 0.443211 0.221606 0.975136i \(-0.428870\pi\)
0.221606 + 0.975136i \(0.428870\pi\)
\(314\) −16.8889 −0.953095
\(315\) 0 0
\(316\) −14.2237 −0.800145
\(317\) −6.17741 −0.346958 −0.173479 0.984838i \(-0.555501\pi\)
−0.173479 + 0.984838i \(0.555501\pi\)
\(318\) −11.7270 −0.657618
\(319\) 2.92075 0.163530
\(320\) 0 0
\(321\) −16.8171 −0.938639
\(322\) −4.17854 −0.232861
\(323\) 6.15361 0.342396
\(324\) 13.0701 0.726115
\(325\) 0 0
\(326\) 2.23165 0.123600
\(327\) 36.5066 2.01882
\(328\) −4.93821 −0.272667
\(329\) 39.0135 2.15088
\(330\) 0 0
\(331\) 26.6566 1.46518 0.732590 0.680670i \(-0.238311\pi\)
0.732590 + 0.680670i \(0.238311\pi\)
\(332\) −8.18235 −0.449065
\(333\) 66.3688 3.63699
\(334\) 2.03902 0.111570
\(335\) 0 0
\(336\) 11.3479 0.619081
\(337\) −22.4283 −1.22175 −0.610874 0.791728i \(-0.709182\pi\)
−0.610874 + 0.791728i \(0.709182\pi\)
\(338\) 0 0
\(339\) 28.4474 1.54505
\(340\) 0 0
\(341\) −4.48493 −0.242872
\(342\) −14.1377 −0.764480
\(343\) −1.27939 −0.0690808
\(344\) −4.39637 −0.237036
\(345\) 0 0
\(346\) −10.8722 −0.584492
\(347\) −0.412291 −0.0221329 −0.0110665 0.999939i \(-0.503523\pi\)
−0.0110665 + 0.999939i \(0.503523\pi\)
\(348\) −8.40383 −0.450492
\(349\) −3.34125 −0.178853 −0.0894264 0.995993i \(-0.528503\pi\)
−0.0894264 + 0.995993i \(0.528503\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.06735 −0.0568901
\(353\) 21.1208 1.12415 0.562075 0.827087i \(-0.310003\pi\)
0.562075 + 0.827087i \(0.310003\pi\)
\(354\) −11.0876 −0.589300
\(355\) 0 0
\(356\) 8.80497 0.466663
\(357\) −31.7675 −1.68131
\(358\) −3.91732 −0.207037
\(359\) −5.57954 −0.294477 −0.147238 0.989101i \(-0.547038\pi\)
−0.147238 + 0.989101i \(0.547038\pi\)
\(360\) 0 0
\(361\) −14.1680 −0.745683
\(362\) 14.1976 0.746208
\(363\) −30.2832 −1.58945
\(364\) 0 0
\(365\) 0 0
\(366\) 46.7460 2.44346
\(367\) 1.30192 0.0679595 0.0339797 0.999423i \(-0.489182\pi\)
0.0339797 + 0.999423i \(0.489182\pi\)
\(368\) −1.13083 −0.0589487
\(369\) −31.7603 −1.65338
\(370\) 0 0
\(371\) −14.1098 −0.732546
\(372\) 12.9044 0.669063
\(373\) −33.9971 −1.76030 −0.880152 0.474691i \(-0.842560\pi\)
−0.880152 + 0.474691i \(0.842560\pi\)
\(374\) 2.98795 0.154503
\(375\) 0 0
\(376\) 10.5582 0.544496
\(377\) 0 0
\(378\) 38.9409 2.00291
\(379\) 4.67768 0.240276 0.120138 0.992757i \(-0.461666\pi\)
0.120138 + 0.992757i \(0.461666\pi\)
\(380\) 0 0
\(381\) 22.7382 1.16491
\(382\) −0.336811 −0.0172328
\(383\) −13.7388 −0.702018 −0.351009 0.936372i \(-0.614161\pi\)
−0.351009 + 0.936372i \(0.614161\pi\)
\(384\) 3.07108 0.156720
\(385\) 0 0
\(386\) −6.76518 −0.344338
\(387\) −28.2754 −1.43732
\(388\) −8.75081 −0.444255
\(389\) 17.9138 0.908268 0.454134 0.890933i \(-0.349949\pi\)
0.454134 + 0.890933i \(0.349949\pi\)
\(390\) 0 0
\(391\) 3.16566 0.160094
\(392\) 6.65376 0.336066
\(393\) −22.5979 −1.13991
\(394\) −14.9363 −0.752481
\(395\) 0 0
\(396\) −6.86472 −0.344965
\(397\) 0.458511 0.0230120 0.0115060 0.999934i \(-0.496337\pi\)
0.0115060 + 0.999934i \(0.496337\pi\)
\(398\) −0.302580 −0.0151670
\(399\) −24.9449 −1.24881
\(400\) 0 0
\(401\) 26.0554 1.30114 0.650572 0.759445i \(-0.274529\pi\)
0.650572 + 0.759445i \(0.274529\pi\)
\(402\) 12.2843 0.612686
\(403\) 0 0
\(404\) −2.58283 −0.128501
\(405\) 0 0
\(406\) −10.1114 −0.501821
\(407\) −11.0143 −0.545959
\(408\) −8.59720 −0.425625
\(409\) −0.358531 −0.0177282 −0.00886411 0.999961i \(-0.502822\pi\)
−0.00886411 + 0.999961i \(0.502822\pi\)
\(410\) 0 0
\(411\) −41.1665 −2.03059
\(412\) −3.00760 −0.148174
\(413\) −13.3405 −0.656445
\(414\) −7.27299 −0.357448
\(415\) 0 0
\(416\) 0 0
\(417\) 34.8822 1.70819
\(418\) 2.34624 0.114758
\(419\) −19.3184 −0.943766 −0.471883 0.881661i \(-0.656426\pi\)
−0.471883 + 0.881661i \(0.656426\pi\)
\(420\) 0 0
\(421\) −0.220426 −0.0107429 −0.00537144 0.999986i \(-0.501710\pi\)
−0.00537144 + 0.999986i \(0.501710\pi\)
\(422\) 0.404566 0.0196940
\(423\) 67.9053 3.30167
\(424\) −3.81853 −0.185444
\(425\) 0 0
\(426\) 37.7262 1.82784
\(427\) 56.2445 2.72186
\(428\) −5.47595 −0.264690
\(429\) 0 0
\(430\) 0 0
\(431\) 19.9696 0.961902 0.480951 0.876747i \(-0.340291\pi\)
0.480951 + 0.876747i \(0.340291\pi\)
\(432\) 10.5385 0.507035
\(433\) 31.4155 1.50973 0.754867 0.655878i \(-0.227701\pi\)
0.754867 + 0.655878i \(0.227701\pi\)
\(434\) 15.5265 0.745295
\(435\) 0 0
\(436\) 11.8872 0.569294
\(437\) 2.48578 0.118911
\(438\) 3.78962 0.181075
\(439\) −25.6139 −1.22248 −0.611242 0.791444i \(-0.709330\pi\)
−0.611242 + 0.791444i \(0.709330\pi\)
\(440\) 0 0
\(441\) 42.7939 2.03781
\(442\) 0 0
\(443\) 28.4024 1.34944 0.674719 0.738074i \(-0.264265\pi\)
0.674719 + 0.738074i \(0.264265\pi\)
\(444\) 31.6913 1.50400
\(445\) 0 0
\(446\) 0.832022 0.0393974
\(447\) −21.5016 −1.01699
\(448\) 3.69510 0.174577
\(449\) −22.4217 −1.05815 −0.529073 0.848576i \(-0.677460\pi\)
−0.529073 + 0.848576i \(0.677460\pi\)
\(450\) 0 0
\(451\) 5.27082 0.248193
\(452\) 9.26298 0.435694
\(453\) −0.597197 −0.0280587
\(454\) −7.77546 −0.364920
\(455\) 0 0
\(456\) −6.75081 −0.316136
\(457\) 23.5987 1.10390 0.551949 0.833878i \(-0.313884\pi\)
0.551949 + 0.833878i \(0.313884\pi\)
\(458\) 7.73762 0.361555
\(459\) −29.5016 −1.37702
\(460\) 0 0
\(461\) −32.5063 −1.51397 −0.756986 0.653432i \(-0.773329\pi\)
−0.756986 + 0.653432i \(0.773329\pi\)
\(462\) −12.1123 −0.563514
\(463\) −7.70367 −0.358020 −0.179010 0.983847i \(-0.557289\pi\)
−0.179010 + 0.983847i \(0.557289\pi\)
\(464\) −2.73644 −0.127036
\(465\) 0 0
\(466\) −6.86070 −0.317816
\(467\) −20.9339 −0.968704 −0.484352 0.874873i \(-0.660945\pi\)
−0.484352 + 0.874873i \(0.660945\pi\)
\(468\) 0 0
\(469\) 14.7804 0.682495
\(470\) 0 0
\(471\) −51.8672 −2.38991
\(472\) −3.61033 −0.166179
\(473\) 4.69248 0.215761
\(474\) −43.6821 −2.00639
\(475\) 0 0
\(476\) −10.3441 −0.474120
\(477\) −24.5590 −1.12448
\(478\) −22.3277 −1.02125
\(479\) 0.980499 0.0448002 0.0224001 0.999749i \(-0.492869\pi\)
0.0224001 + 0.999749i \(0.492869\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −5.68717 −0.259044
\(483\) −12.8326 −0.583905
\(484\) −9.86076 −0.448216
\(485\) 0 0
\(486\) 8.52366 0.386641
\(487\) 38.6283 1.75041 0.875207 0.483749i \(-0.160725\pi\)
0.875207 + 0.483749i \(0.160725\pi\)
\(488\) 15.2214 0.689039
\(489\) 6.85358 0.309929
\(490\) 0 0
\(491\) −17.7068 −0.799099 −0.399549 0.916712i \(-0.630833\pi\)
−0.399549 + 0.916712i \(0.630833\pi\)
\(492\) −15.1657 −0.683721
\(493\) 7.66040 0.345007
\(494\) 0 0
\(495\) 0 0
\(496\) 4.20191 0.188672
\(497\) 45.3918 2.03610
\(498\) −25.1286 −1.12604
\(499\) 35.5402 1.59100 0.795499 0.605954i \(-0.207209\pi\)
0.795499 + 0.605954i \(0.207209\pi\)
\(500\) 0 0
\(501\) 6.26199 0.279765
\(502\) −17.6162 −0.786250
\(503\) 44.3839 1.97898 0.989490 0.144600i \(-0.0461894\pi\)
0.989490 + 0.144600i \(0.0461894\pi\)
\(504\) 23.7652 1.05859
\(505\) 0 0
\(506\) 1.20700 0.0536576
\(507\) 0 0
\(508\) 7.40397 0.328498
\(509\) 0.715949 0.0317339 0.0158669 0.999874i \(-0.494949\pi\)
0.0158669 + 0.999874i \(0.494949\pi\)
\(510\) 0 0
\(511\) 4.55964 0.201707
\(512\) 1.00000 0.0441942
\(513\) −23.1657 −1.02279
\(514\) −25.8167 −1.13873
\(515\) 0 0
\(516\) −13.5016 −0.594375
\(517\) −11.2693 −0.495623
\(518\) 38.1307 1.67537
\(519\) −33.3893 −1.46563
\(520\) 0 0
\(521\) 7.33132 0.321191 0.160595 0.987020i \(-0.448659\pi\)
0.160595 + 0.987020i \(0.448659\pi\)
\(522\) −17.5995 −0.770310
\(523\) 11.8872 0.519791 0.259895 0.965637i \(-0.416312\pi\)
0.259895 + 0.965637i \(0.416312\pi\)
\(524\) −7.35829 −0.321448
\(525\) 0 0
\(526\) −21.2163 −0.925073
\(527\) −11.7629 −0.512398
\(528\) −3.27793 −0.142654
\(529\) −21.7212 −0.944401
\(530\) 0 0
\(531\) −23.2200 −1.00766
\(532\) −8.12252 −0.352156
\(533\) 0 0
\(534\) 27.0408 1.17017
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) −12.0304 −0.519150
\(538\) 14.4896 0.624690
\(539\) −7.10191 −0.305901
\(540\) 0 0
\(541\) −20.5115 −0.881856 −0.440928 0.897542i \(-0.645351\pi\)
−0.440928 + 0.897542i \(0.645351\pi\)
\(542\) −29.0838 −1.24925
\(543\) 43.6019 1.87114
\(544\) −2.79940 −0.120023
\(545\) 0 0
\(546\) 0 0
\(547\) 16.4268 0.702358 0.351179 0.936308i \(-0.385781\pi\)
0.351179 + 0.936308i \(0.385781\pi\)
\(548\) −13.4046 −0.572615
\(549\) 97.8968 4.17813
\(550\) 0 0
\(551\) 6.01520 0.256256
\(552\) −3.47288 −0.147816
\(553\) −52.5579 −2.23499
\(554\) −2.54147 −0.107977
\(555\) 0 0
\(556\) 11.3583 0.481699
\(557\) −36.1459 −1.53155 −0.765776 0.643107i \(-0.777645\pi\)
−0.765776 + 0.643107i \(0.777645\pi\)
\(558\) 27.0248 1.14405
\(559\) 0 0
\(560\) 0 0
\(561\) 9.17625 0.387421
\(562\) 15.2066 0.641451
\(563\) 26.5601 1.11938 0.559688 0.828703i \(-0.310921\pi\)
0.559688 + 0.828703i \(0.310921\pi\)
\(564\) 32.4250 1.36534
\(565\) 0 0
\(566\) −24.7921 −1.04209
\(567\) 48.2952 2.02821
\(568\) 12.2843 0.515439
\(569\) 43.1841 1.81037 0.905186 0.425016i \(-0.139731\pi\)
0.905186 + 0.425016i \(0.139731\pi\)
\(570\) 0 0
\(571\) 31.5110 1.31870 0.659348 0.751838i \(-0.270832\pi\)
0.659348 + 0.751838i \(0.270832\pi\)
\(572\) 0 0
\(573\) −1.03437 −0.0432116
\(574\) −18.2472 −0.761623
\(575\) 0 0
\(576\) 6.43154 0.267981
\(577\) 26.9555 1.12217 0.561086 0.827758i \(-0.310384\pi\)
0.561086 + 0.827758i \(0.310384\pi\)
\(578\) −9.16334 −0.381145
\(579\) −20.7764 −0.863438
\(580\) 0 0
\(581\) −30.2346 −1.25434
\(582\) −26.8744 −1.11398
\(583\) 4.07572 0.168799
\(584\) 1.23397 0.0510621
\(585\) 0 0
\(586\) 21.0630 0.870103
\(587\) 29.7262 1.22693 0.613465 0.789722i \(-0.289775\pi\)
0.613465 + 0.789722i \(0.289775\pi\)
\(588\) 20.4342 0.842694
\(589\) −9.23659 −0.380587
\(590\) 0 0
\(591\) −45.8707 −1.88687
\(592\) 10.3193 0.424119
\(593\) −15.3561 −0.630600 −0.315300 0.948992i \(-0.602105\pi\)
−0.315300 + 0.948992i \(0.602105\pi\)
\(594\) −11.2483 −0.461525
\(595\) 0 0
\(596\) −7.00132 −0.286785
\(597\) −0.929248 −0.0380316
\(598\) 0 0
\(599\) −23.6928 −0.968061 −0.484030 0.875051i \(-0.660828\pi\)
−0.484030 + 0.875051i \(0.660828\pi\)
\(600\) 0 0
\(601\) −3.49668 −0.142632 −0.0713162 0.997454i \(-0.522720\pi\)
−0.0713162 + 0.997454i \(0.522720\pi\)
\(602\) −16.2450 −0.662098
\(603\) 25.7262 1.04765
\(604\) −0.194458 −0.00791239
\(605\) 0 0
\(606\) −7.93208 −0.322219
\(607\) 37.2982 1.51389 0.756944 0.653479i \(-0.226691\pi\)
0.756944 + 0.653479i \(0.226691\pi\)
\(608\) −2.19819 −0.0891482
\(609\) −31.0530 −1.25833
\(610\) 0 0
\(611\) 0 0
\(612\) −18.0045 −0.727788
\(613\) 15.3242 0.618939 0.309469 0.950909i \(-0.399849\pi\)
0.309469 + 0.950909i \(0.399849\pi\)
\(614\) −8.89181 −0.358844
\(615\) 0 0
\(616\) −3.94398 −0.158907
\(617\) 5.07240 0.204207 0.102103 0.994774i \(-0.467443\pi\)
0.102103 + 0.994774i \(0.467443\pi\)
\(618\) −9.23659 −0.371550
\(619\) −20.6770 −0.831079 −0.415540 0.909575i \(-0.636407\pi\)
−0.415540 + 0.909575i \(0.636407\pi\)
\(620\) 0 0
\(621\) −11.9173 −0.478226
\(622\) −28.7015 −1.15083
\(623\) 32.5352 1.30350
\(624\) 0 0
\(625\) 0 0
\(626\) 7.84120 0.313398
\(627\) 7.20550 0.287760
\(628\) −16.8889 −0.673940
\(629\) −28.8878 −1.15183
\(630\) 0 0
\(631\) 21.4904 0.855521 0.427760 0.903892i \(-0.359303\pi\)
0.427760 + 0.903892i \(0.359303\pi\)
\(632\) −14.2237 −0.565788
\(633\) 1.24246 0.0493832
\(634\) −6.17741 −0.245336
\(635\) 0 0
\(636\) −11.7270 −0.465006
\(637\) 0 0
\(638\) 2.92075 0.115634
\(639\) 79.0071 3.12547
\(640\) 0 0
\(641\) 35.7724 1.41293 0.706463 0.707750i \(-0.250290\pi\)
0.706463 + 0.707750i \(0.250290\pi\)
\(642\) −16.8171 −0.663718
\(643\) 28.0216 1.10507 0.552533 0.833491i \(-0.313662\pi\)
0.552533 + 0.833491i \(0.313662\pi\)
\(644\) −4.17854 −0.164658
\(645\) 0 0
\(646\) 6.15361 0.242111
\(647\) −19.4623 −0.765140 −0.382570 0.923926i \(-0.624961\pi\)
−0.382570 + 0.923926i \(0.624961\pi\)
\(648\) 13.0701 0.513441
\(649\) 3.85350 0.151263
\(650\) 0 0
\(651\) 47.6831 1.86885
\(652\) 2.23165 0.0873982
\(653\) 12.9628 0.507272 0.253636 0.967300i \(-0.418373\pi\)
0.253636 + 0.967300i \(0.418373\pi\)
\(654\) 36.5066 1.42752
\(655\) 0 0
\(656\) −4.93821 −0.192805
\(657\) 7.93633 0.309626
\(658\) 39.0135 1.52091
\(659\) 2.20670 0.0859609 0.0429804 0.999076i \(-0.486315\pi\)
0.0429804 + 0.999076i \(0.486315\pi\)
\(660\) 0 0
\(661\) −43.5415 −1.69357 −0.846784 0.531937i \(-0.821464\pi\)
−0.846784 + 0.531937i \(0.821464\pi\)
\(662\) 26.6566 1.03604
\(663\) 0 0
\(664\) −8.18235 −0.317537
\(665\) 0 0
\(666\) 66.3688 2.57174
\(667\) 3.09446 0.119818
\(668\) 2.03902 0.0788920
\(669\) 2.55521 0.0987900
\(670\) 0 0
\(671\) −16.2466 −0.627192
\(672\) 11.3479 0.437757
\(673\) 0.588990 0.0227039 0.0113519 0.999936i \(-0.496386\pi\)
0.0113519 + 0.999936i \(0.496386\pi\)
\(674\) −22.4283 −0.863907
\(675\) 0 0
\(676\) 0 0
\(677\) −7.61779 −0.292775 −0.146388 0.989227i \(-0.546765\pi\)
−0.146388 + 0.989227i \(0.546765\pi\)
\(678\) 28.4474 1.09251
\(679\) −32.3351 −1.24091
\(680\) 0 0
\(681\) −23.8791 −0.915048
\(682\) −4.48493 −0.171737
\(683\) 28.3647 1.08534 0.542672 0.839944i \(-0.317413\pi\)
0.542672 + 0.839944i \(0.317413\pi\)
\(684\) −14.1377 −0.540569
\(685\) 0 0
\(686\) −1.27939 −0.0488475
\(687\) 23.7629 0.906609
\(688\) −4.39637 −0.167610
\(689\) 0 0
\(690\) 0 0
\(691\) −41.3046 −1.57130 −0.785651 0.618670i \(-0.787672\pi\)
−0.785651 + 0.618670i \(0.787672\pi\)
\(692\) −10.8722 −0.413298
\(693\) −25.3658 −0.963568
\(694\) −0.412291 −0.0156503
\(695\) 0 0
\(696\) −8.40383 −0.318546
\(697\) 13.8241 0.523624
\(698\) −3.34125 −0.126468
\(699\) −21.0698 −0.796932
\(700\) 0 0
\(701\) 32.7428 1.23668 0.618340 0.785911i \(-0.287805\pi\)
0.618340 + 0.785911i \(0.287805\pi\)
\(702\) 0 0
\(703\) −22.6837 −0.855531
\(704\) −1.06735 −0.0402274
\(705\) 0 0
\(706\) 21.1208 0.794894
\(707\) −9.54381 −0.358932
\(708\) −11.0876 −0.416698
\(709\) −21.5484 −0.809267 −0.404633 0.914479i \(-0.632601\pi\)
−0.404633 + 0.914479i \(0.632601\pi\)
\(710\) 0 0
\(711\) −91.4802 −3.43078
\(712\) 8.80497 0.329980
\(713\) −4.75166 −0.177951
\(714\) −31.7675 −1.18887
\(715\) 0 0
\(716\) −3.91732 −0.146397
\(717\) −68.5703 −2.56080
\(718\) −5.57954 −0.208227
\(719\) 42.0862 1.56955 0.784775 0.619780i \(-0.212778\pi\)
0.784775 + 0.619780i \(0.212778\pi\)
\(720\) 0 0
\(721\) −11.1134 −0.413884
\(722\) −14.1680 −0.527278
\(723\) −17.4658 −0.649559
\(724\) 14.1976 0.527648
\(725\) 0 0
\(726\) −30.2832 −1.12391
\(727\) 21.7707 0.807429 0.403715 0.914885i \(-0.367719\pi\)
0.403715 + 0.914885i \(0.367719\pi\)
\(728\) 0 0
\(729\) −13.0334 −0.482718
\(730\) 0 0
\(731\) 12.3072 0.455199
\(732\) 46.7460 1.72778
\(733\) 16.2319 0.599541 0.299770 0.954011i \(-0.403090\pi\)
0.299770 + 0.954011i \(0.403090\pi\)
\(734\) 1.30192 0.0480546
\(735\) 0 0
\(736\) −1.13083 −0.0416830
\(737\) −4.26941 −0.157266
\(738\) −31.7603 −1.16911
\(739\) −18.4432 −0.678445 −0.339222 0.940706i \(-0.610164\pi\)
−0.339222 + 0.940706i \(0.610164\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −14.1098 −0.517989
\(743\) 8.21194 0.301267 0.150633 0.988590i \(-0.451869\pi\)
0.150633 + 0.988590i \(0.451869\pi\)
\(744\) 12.9044 0.473099
\(745\) 0 0
\(746\) −33.9971 −1.24472
\(747\) −52.6251 −1.92545
\(748\) 2.98795 0.109250
\(749\) −20.2342 −0.739341
\(750\) 0 0
\(751\) 38.0908 1.38995 0.694977 0.719032i \(-0.255414\pi\)
0.694977 + 0.719032i \(0.255414\pi\)
\(752\) 10.5582 0.385017
\(753\) −54.1008 −1.97154
\(754\) 0 0
\(755\) 0 0
\(756\) 38.9409 1.41627
\(757\) −25.2668 −0.918336 −0.459168 0.888350i \(-0.651852\pi\)
−0.459168 + 0.888350i \(0.651852\pi\)
\(758\) 4.67768 0.169901
\(759\) 3.70679 0.134548
\(760\) 0 0
\(761\) −36.5040 −1.32327 −0.661634 0.749827i \(-0.730137\pi\)
−0.661634 + 0.749827i \(0.730137\pi\)
\(762\) 22.7382 0.823718
\(763\) 43.9244 1.59017
\(764\) −0.336811 −0.0121854
\(765\) 0 0
\(766\) −13.7388 −0.496402
\(767\) 0 0
\(768\) 3.07108 0.110818
\(769\) −27.7956 −1.00234 −0.501168 0.865350i \(-0.667096\pi\)
−0.501168 + 0.865350i \(0.667096\pi\)
\(770\) 0 0
\(771\) −79.2852 −2.85539
\(772\) −6.76518 −0.243484
\(773\) 3.09705 0.111393 0.0556965 0.998448i \(-0.482262\pi\)
0.0556965 + 0.998448i \(0.482262\pi\)
\(774\) −28.2754 −1.01634
\(775\) 0 0
\(776\) −8.75081 −0.314136
\(777\) 117.103 4.20103
\(778\) 17.9138 0.642243
\(779\) 10.8551 0.388925
\(780\) 0 0
\(781\) −13.1117 −0.469174
\(782\) 3.16566 0.113204
\(783\) −28.8381 −1.03059
\(784\) 6.65376 0.237634
\(785\) 0 0
\(786\) −22.5979 −0.806040
\(787\) 30.4310 1.08475 0.542374 0.840137i \(-0.317526\pi\)
0.542374 + 0.840137i \(0.317526\pi\)
\(788\) −14.9363 −0.532085
\(789\) −65.1568 −2.31964
\(790\) 0 0
\(791\) 34.2276 1.21699
\(792\) −6.86472 −0.243927
\(793\) 0 0
\(794\) 0.458511 0.0162720
\(795\) 0 0
\(796\) −0.302580 −0.0107247
\(797\) 47.5544 1.68446 0.842231 0.539116i \(-0.181242\pi\)
0.842231 + 0.539116i \(0.181242\pi\)
\(798\) −24.9449 −0.883040
\(799\) −29.5566 −1.04564
\(800\) 0 0
\(801\) 56.6295 2.00091
\(802\) 26.0554 0.920048
\(803\) −1.31708 −0.0464788
\(804\) 12.2843 0.433235
\(805\) 0 0
\(806\) 0 0
\(807\) 44.4986 1.56643
\(808\) −2.58283 −0.0908636
\(809\) −36.0836 −1.26863 −0.634316 0.773074i \(-0.718718\pi\)
−0.634316 + 0.773074i \(0.718718\pi\)
\(810\) 0 0
\(811\) 36.3456 1.27627 0.638134 0.769926i \(-0.279707\pi\)
0.638134 + 0.769926i \(0.279707\pi\)
\(812\) −10.1114 −0.354841
\(813\) −89.3186 −3.13254
\(814\) −11.0143 −0.386051
\(815\) 0 0
\(816\) −8.59720 −0.300962
\(817\) 9.66404 0.338102
\(818\) −0.358531 −0.0125357
\(819\) 0 0
\(820\) 0 0
\(821\) −21.3321 −0.744494 −0.372247 0.928134i \(-0.621413\pi\)
−0.372247 + 0.928134i \(0.621413\pi\)
\(822\) −41.1665 −1.43585
\(823\) 19.9585 0.695708 0.347854 0.937549i \(-0.386910\pi\)
0.347854 + 0.937549i \(0.386910\pi\)
\(824\) −3.00760 −0.104775
\(825\) 0 0
\(826\) −13.3405 −0.464176
\(827\) −28.9529 −1.00679 −0.503395 0.864056i \(-0.667916\pi\)
−0.503395 + 0.864056i \(0.667916\pi\)
\(828\) −7.27299 −0.252754
\(829\) 27.1011 0.941261 0.470631 0.882330i \(-0.344026\pi\)
0.470631 + 0.882330i \(0.344026\pi\)
\(830\) 0 0
\(831\) −7.80505 −0.270754
\(832\) 0 0
\(833\) −18.6266 −0.645372
\(834\) 34.8822 1.20787
\(835\) 0 0
\(836\) 2.34624 0.0811464
\(837\) 44.2820 1.53061
\(838\) −19.3184 −0.667344
\(839\) 33.7213 1.16419 0.582095 0.813121i \(-0.302233\pi\)
0.582095 + 0.813121i \(0.302233\pi\)
\(840\) 0 0
\(841\) −21.5119 −0.741790
\(842\) −0.220426 −0.00759637
\(843\) 46.7006 1.60846
\(844\) 0.404566 0.0139258
\(845\) 0 0
\(846\) 67.9053 2.33463
\(847\) −36.4365 −1.25197
\(848\) −3.81853 −0.131129
\(849\) −76.1384 −2.61306
\(850\) 0 0
\(851\) −11.6694 −0.400021
\(852\) 37.7262 1.29248
\(853\) 30.0853 1.03010 0.515050 0.857160i \(-0.327773\pi\)
0.515050 + 0.857160i \(0.327773\pi\)
\(854\) 56.2445 1.92465
\(855\) 0 0
\(856\) −5.47595 −0.187164
\(857\) −21.6341 −0.739006 −0.369503 0.929230i \(-0.620472\pi\)
−0.369503 + 0.929230i \(0.620472\pi\)
\(858\) 0 0
\(859\) 6.57516 0.224342 0.112171 0.993689i \(-0.464220\pi\)
0.112171 + 0.993689i \(0.464220\pi\)
\(860\) 0 0
\(861\) −56.0386 −1.90979
\(862\) 19.9696 0.680168
\(863\) −45.3471 −1.54363 −0.771817 0.635844i \(-0.780652\pi\)
−0.771817 + 0.635844i \(0.780652\pi\)
\(864\) 10.5385 0.358528
\(865\) 0 0
\(866\) 31.4155 1.06754
\(867\) −28.1414 −0.955730
\(868\) 15.5265 0.527003
\(869\) 15.1817 0.515004
\(870\) 0 0
\(871\) 0 0
\(872\) 11.8872 0.402551
\(873\) −56.2812 −1.90483
\(874\) 2.48578 0.0840828
\(875\) 0 0
\(876\) 3.78962 0.128040
\(877\) 47.7890 1.61372 0.806859 0.590743i \(-0.201165\pi\)
0.806859 + 0.590743i \(0.201165\pi\)
\(878\) −25.6139 −0.864427
\(879\) 64.6861 2.18181
\(880\) 0 0
\(881\) 12.4378 0.419040 0.209520 0.977804i \(-0.432810\pi\)
0.209520 + 0.977804i \(0.432810\pi\)
\(882\) 42.7939 1.44095
\(883\) 16.6655 0.560840 0.280420 0.959877i \(-0.409526\pi\)
0.280420 + 0.959877i \(0.409526\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 28.4024 0.954197
\(887\) −39.8662 −1.33857 −0.669287 0.743004i \(-0.733400\pi\)
−0.669287 + 0.743004i \(0.733400\pi\)
\(888\) 31.6913 1.06349
\(889\) 27.3584 0.917572
\(890\) 0 0
\(891\) −13.9504 −0.467356
\(892\) 0.832022 0.0278581
\(893\) −23.2088 −0.776654
\(894\) −21.5016 −0.719122
\(895\) 0 0
\(896\) 3.69510 0.123445
\(897\) 0 0
\(898\) −22.4217 −0.748222
\(899\) −11.4983 −0.383489
\(900\) 0 0
\(901\) 10.6896 0.356122
\(902\) 5.27082 0.175499
\(903\) −49.8898 −1.66023
\(904\) 9.26298 0.308082
\(905\) 0 0
\(906\) −0.597197 −0.0198405
\(907\) −12.2772 −0.407658 −0.203829 0.979007i \(-0.565339\pi\)
−0.203829 + 0.979007i \(0.565339\pi\)
\(908\) −7.77546 −0.258038
\(909\) −16.6116 −0.550971
\(910\) 0 0
\(911\) −47.4729 −1.57285 −0.786423 0.617688i \(-0.788070\pi\)
−0.786423 + 0.617688i \(0.788070\pi\)
\(912\) −6.75081 −0.223542
\(913\) 8.73345 0.289035
\(914\) 23.5987 0.780574
\(915\) 0 0
\(916\) 7.73762 0.255658
\(917\) −27.1896 −0.897880
\(918\) −29.5016 −0.973698
\(919\) 12.0621 0.397892 0.198946 0.980010i \(-0.436248\pi\)
0.198946 + 0.980010i \(0.436248\pi\)
\(920\) 0 0
\(921\) −27.3075 −0.899812
\(922\) −32.5063 −1.07054
\(923\) 0 0
\(924\) −12.1123 −0.398464
\(925\) 0 0
\(926\) −7.70367 −0.253158
\(927\) −19.3435 −0.635324
\(928\) −2.73644 −0.0898280
\(929\) −19.2582 −0.631840 −0.315920 0.948786i \(-0.602313\pi\)
−0.315920 + 0.948786i \(0.602313\pi\)
\(930\) 0 0
\(931\) −14.6262 −0.479354
\(932\) −6.86070 −0.224730
\(933\) −88.1446 −2.88573
\(934\) −20.9339 −0.684977
\(935\) 0 0
\(936\) 0 0
\(937\) −17.1012 −0.558671 −0.279335 0.960194i \(-0.590114\pi\)
−0.279335 + 0.960194i \(0.590114\pi\)
\(938\) 14.7804 0.482597
\(939\) 24.0810 0.785853
\(940\) 0 0
\(941\) −12.5077 −0.407741 −0.203870 0.978998i \(-0.565352\pi\)
−0.203870 + 0.978998i \(0.565352\pi\)
\(942\) −51.8672 −1.68992
\(943\) 5.58430 0.181850
\(944\) −3.61033 −0.117506
\(945\) 0 0
\(946\) 4.69248 0.152566
\(947\) −60.2398 −1.95753 −0.978766 0.204983i \(-0.934286\pi\)
−0.978766 + 0.204983i \(0.934286\pi\)
\(948\) −43.6821 −1.41873
\(949\) 0 0
\(950\) 0 0
\(951\) −18.9713 −0.615187
\(952\) −10.3441 −0.335253
\(953\) −11.6460 −0.377251 −0.188625 0.982049i \(-0.560403\pi\)
−0.188625 + 0.982049i \(0.560403\pi\)
\(954\) −24.5590 −0.795127
\(955\) 0 0
\(956\) −22.3277 −0.722130
\(957\) 8.96985 0.289954
\(958\) 0.980499 0.0316785
\(959\) −49.5312 −1.59945
\(960\) 0 0
\(961\) −13.3439 −0.430449
\(962\) 0 0
\(963\) −35.2188 −1.13491
\(964\) −5.68717 −0.183172
\(965\) 0 0
\(966\) −12.8326 −0.412883
\(967\) 2.95604 0.0950599 0.0475300 0.998870i \(-0.484865\pi\)
0.0475300 + 0.998870i \(0.484865\pi\)
\(968\) −9.86076 −0.316937
\(969\) 18.8982 0.607099
\(970\) 0 0
\(971\) 32.2421 1.03470 0.517350 0.855774i \(-0.326919\pi\)
0.517350 + 0.855774i \(0.326919\pi\)
\(972\) 8.52366 0.273397
\(973\) 41.9700 1.34550
\(974\) 38.6283 1.23773
\(975\) 0 0
\(976\) 15.2214 0.487224
\(977\) 37.2619 1.19211 0.596056 0.802943i \(-0.296734\pi\)
0.596056 + 0.802943i \(0.296734\pi\)
\(978\) 6.85358 0.219153
\(979\) −9.39802 −0.300362
\(980\) 0 0
\(981\) 76.4530 2.44096
\(982\) −17.7068 −0.565048
\(983\) −31.3081 −0.998574 −0.499287 0.866437i \(-0.666405\pi\)
−0.499287 + 0.866437i \(0.666405\pi\)
\(984\) −15.1657 −0.483464
\(985\) 0 0
\(986\) 7.66040 0.243957
\(987\) 119.814 3.81371
\(988\) 0 0
\(989\) 4.97156 0.158086
\(990\) 0 0
\(991\) −8.16536 −0.259381 −0.129691 0.991555i \(-0.541398\pi\)
−0.129691 + 0.991555i \(0.541398\pi\)
\(992\) 4.20191 0.133411
\(993\) 81.8646 2.59789
\(994\) 45.3918 1.43974
\(995\) 0 0
\(996\) −25.1286 −0.796232
\(997\) 47.5225 1.50505 0.752526 0.658563i \(-0.228835\pi\)
0.752526 + 0.658563i \(0.228835\pi\)
\(998\) 35.5402 1.12501
\(999\) 108.750 3.44070
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.cs.1.8 8
5.2 odd 4 1690.2.b.e.339.9 16
5.3 odd 4 1690.2.b.e.339.8 16
5.4 even 2 8450.2.a.cr.1.1 8
13.6 odd 12 650.2.m.e.101.1 16
13.11 odd 12 650.2.m.e.251.1 16
13.12 even 2 8450.2.a.cr.1.8 8
65.8 even 4 1690.2.c.f.1689.8 8
65.12 odd 4 1690.2.b.e.339.1 16
65.18 even 4 1690.2.c.e.1689.8 8
65.19 odd 12 650.2.m.e.101.8 16
65.24 odd 12 650.2.m.e.251.8 16
65.32 even 12 130.2.m.a.49.1 8
65.37 even 12 130.2.m.b.69.4 yes 8
65.38 odd 4 1690.2.b.e.339.16 16
65.47 even 4 1690.2.c.e.1689.1 8
65.57 even 4 1690.2.c.f.1689.1 8
65.58 even 12 130.2.m.b.49.4 yes 8
65.63 even 12 130.2.m.a.69.1 yes 8
65.64 even 2 inner 8450.2.a.cs.1.1 8
195.32 odd 12 1170.2.bj.b.829.2 8
195.128 odd 12 1170.2.bj.b.199.2 8
195.167 odd 12 1170.2.bj.a.199.3 8
195.188 odd 12 1170.2.bj.a.829.3 8
260.63 odd 12 1040.2.df.c.849.4 8
260.123 odd 12 1040.2.df.a.49.1 8
260.167 odd 12 1040.2.df.a.849.1 8
260.227 odd 12 1040.2.df.c.49.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.m.a.49.1 8 65.32 even 12
130.2.m.a.69.1 yes 8 65.63 even 12
130.2.m.b.49.4 yes 8 65.58 even 12
130.2.m.b.69.4 yes 8 65.37 even 12
650.2.m.e.101.1 16 13.6 odd 12
650.2.m.e.101.8 16 65.19 odd 12
650.2.m.e.251.1 16 13.11 odd 12
650.2.m.e.251.8 16 65.24 odd 12
1040.2.df.a.49.1 8 260.123 odd 12
1040.2.df.a.849.1 8 260.167 odd 12
1040.2.df.c.49.4 8 260.227 odd 12
1040.2.df.c.849.4 8 260.63 odd 12
1170.2.bj.a.199.3 8 195.167 odd 12
1170.2.bj.a.829.3 8 195.188 odd 12
1170.2.bj.b.199.2 8 195.128 odd 12
1170.2.bj.b.829.2 8 195.32 odd 12
1690.2.b.e.339.1 16 65.12 odd 4
1690.2.b.e.339.8 16 5.3 odd 4
1690.2.b.e.339.9 16 5.2 odd 4
1690.2.b.e.339.16 16 65.38 odd 4
1690.2.c.e.1689.1 8 65.47 even 4
1690.2.c.e.1689.8 8 65.18 even 4
1690.2.c.f.1689.1 8 65.57 even 4
1690.2.c.f.1689.8 8 65.8 even 4
8450.2.a.cr.1.1 8 5.4 even 2
8450.2.a.cr.1.8 8 13.12 even 2
8450.2.a.cs.1.1 8 65.64 even 2 inner
8450.2.a.cs.1.8 8 1.1 even 1 trivial