Properties

Label 1040.2.df.a.849.1
Level $1040$
Weight $2$
Character 1040.849
Analytic conductor $8.304$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,2,Mod(49,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.50027374224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 132x^{4} + 332x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 849.1
Root \(-3.07108i\) of defining polynomial
Character \(\chi\) \(=\) 1040.849
Dual form 1040.2.df.a.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.65963 - 1.53554i) q^{3} +(-1.36822 + 1.76861i) q^{5} +(1.84755 + 3.20005i) q^{7} +(3.21577 + 5.56988i) q^{9} +(0.924355 + 0.533677i) q^{11} +(-3.15963 - 1.73687i) q^{13} +(6.35473 - 2.60289i) q^{15} +(2.42435 - 1.39970i) q^{17} +(-1.90368 + 1.09909i) q^{19} -11.3479i q^{21} +(-0.979330 - 0.565416i) q^{23} +(-1.25595 - 4.83969i) q^{25} -10.5385i q^{27} +(-1.36822 + 2.36983i) q^{29} -4.20191i q^{31} +(-1.63896 - 2.83877i) q^{33} +(-8.18749 - 1.11078i) q^{35} +(-5.15963 + 8.93675i) q^{37} +(5.73644 + 9.47118i) q^{39} +(4.27662 + 2.46911i) q^{41} +(3.80737 - 2.19819i) q^{43} +(-14.2508 - 1.93338i) q^{45} -10.5582 q^{47} +(-3.32688 + 5.76232i) q^{49} -8.59720 q^{51} +3.81853i q^{53} +(-2.20859 + 0.904635i) q^{55} +6.75081 q^{57} +(3.12664 - 1.80517i) q^{59} +(-7.61068 - 13.1821i) q^{61} +(-11.8826 + 20.5812i) q^{63} +(7.39491 - 3.21174i) q^{65} +(-2.00000 + 3.46410i) q^{67} +(1.73644 + 3.00760i) q^{69} +(-10.6385 + 6.14216i) q^{71} -1.23397 q^{73} +(-4.09117 + 14.8004i) q^{75} +3.94398i q^{77} -14.2237 q^{79} +(-6.53504 + 11.3190i) q^{81} +8.18235 q^{83} +(-0.841526 + 6.20283i) q^{85} +(7.27793 - 4.20191i) q^{87} +(-7.62533 - 4.40249i) q^{89} +(-0.279516 - 13.3199i) q^{91} +(-6.45221 + 11.1756i) q^{93} +(0.660795 - 4.87067i) q^{95} +(-4.37540 - 7.57842i) q^{97} +6.86472i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3 q^{5} + 5 q^{7} + 8 q^{9} + 3 q^{11} - 4 q^{13} + 10 q^{15} + 15 q^{17} - 9 q^{19} - 6 q^{23} + 5 q^{25} - 3 q^{29} + 10 q^{33} - 15 q^{35} - 20 q^{37} + 30 q^{39} + 21 q^{41} + 18 q^{43} - 36 q^{45}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.65963 1.53554i −1.53554 0.886545i −0.999092 0.0426119i \(-0.986432\pi\)
−0.536449 0.843933i \(-0.680235\pi\)
\(4\) 0 0
\(5\) −1.36822 + 1.76861i −0.611886 + 0.790946i
\(6\) 0 0
\(7\) 1.84755 + 3.20005i 0.698308 + 1.20951i 0.969053 + 0.246854i \(0.0793968\pi\)
−0.270745 + 0.962651i \(0.587270\pi\)
\(8\) 0 0
\(9\) 3.21577 + 5.56988i 1.07192 + 1.85663i
\(10\) 0 0
\(11\) 0.924355 + 0.533677i 0.278704 + 0.160910i 0.632836 0.774286i \(-0.281891\pi\)
−0.354133 + 0.935195i \(0.615224\pi\)
\(12\) 0 0
\(13\) −3.15963 1.73687i −0.876325 0.481721i
\(14\) 0 0
\(15\) 6.35473 2.60289i 1.64079 0.672064i
\(16\) 0 0
\(17\) 2.42435 1.39970i 0.587992 0.339478i −0.176311 0.984335i \(-0.556416\pi\)
0.764303 + 0.644857i \(0.223083\pi\)
\(18\) 0 0
\(19\) −1.90368 + 1.09909i −0.436735 + 0.252149i −0.702212 0.711968i \(-0.747804\pi\)
0.265477 + 0.964117i \(0.414471\pi\)
\(20\) 0 0
\(21\) 11.3479i 2.47633i
\(22\) 0 0
\(23\) −0.979330 0.565416i −0.204204 0.117897i 0.394411 0.918934i \(-0.370949\pi\)
−0.598615 + 0.801037i \(0.704282\pi\)
\(24\) 0 0
\(25\) −1.25595 4.83969i −0.251190 0.967938i
\(26\) 0 0
\(27\) 10.5385i 2.02814i
\(28\) 0 0
\(29\) −1.36822 + 2.36983i −0.254072 + 0.440066i −0.964643 0.263560i \(-0.915103\pi\)
0.710571 + 0.703625i \(0.248437\pi\)
\(30\) 0 0
\(31\) 4.20191i 0.754686i −0.926074 0.377343i \(-0.876838\pi\)
0.926074 0.377343i \(-0.123162\pi\)
\(32\) 0 0
\(33\) −1.63896 2.83877i −0.285307 0.494166i
\(34\) 0 0
\(35\) −8.18749 1.11078i −1.38394 0.187756i
\(36\) 0 0
\(37\) −5.15963 + 8.93675i −0.848239 + 1.46919i 0.0345400 + 0.999403i \(0.489003\pi\)
−0.882779 + 0.469789i \(0.844330\pi\)
\(38\) 0 0
\(39\) 5.73644 + 9.47118i 0.918565 + 1.51660i
\(40\) 0 0
\(41\) 4.27662 + 2.46911i 0.667896 + 0.385610i 0.795279 0.606244i \(-0.207324\pi\)
−0.127383 + 0.991854i \(0.540658\pi\)
\(42\) 0 0
\(43\) 3.80737 2.19819i 0.580618 0.335220i −0.180761 0.983527i \(-0.557856\pi\)
0.761379 + 0.648307i \(0.224523\pi\)
\(44\) 0 0
\(45\) −14.2508 1.93338i −2.12438 0.288211i
\(46\) 0 0
\(47\) −10.5582 −1.54007 −0.770034 0.638003i \(-0.779761\pi\)
−0.770034 + 0.638003i \(0.779761\pi\)
\(48\) 0 0
\(49\) −3.32688 + 5.76232i −0.475269 + 0.823189i
\(50\) 0 0
\(51\) −8.59720 −1.20385
\(52\) 0 0
\(53\) 3.81853i 0.524515i 0.964998 + 0.262258i \(0.0844670\pi\)
−0.964998 + 0.262258i \(0.915533\pi\)
\(54\) 0 0
\(55\) −2.20859 + 0.904635i −0.297806 + 0.121981i
\(56\) 0 0
\(57\) 6.75081 0.894166
\(58\) 0 0
\(59\) 3.12664 1.80517i 0.407054 0.235013i −0.282469 0.959276i \(-0.591154\pi\)
0.689523 + 0.724264i \(0.257820\pi\)
\(60\) 0 0
\(61\) −7.61068 13.1821i −0.974448 1.68779i −0.681744 0.731590i \(-0.738778\pi\)
−0.292704 0.956203i \(-0.594555\pi\)
\(62\) 0 0
\(63\) −11.8826 + 20.5812i −1.49707 + 2.59299i
\(64\) 0 0
\(65\) 7.39491 3.21174i 0.917226 0.398367i
\(66\) 0 0
\(67\) −2.00000 + 3.46410i −0.244339 + 0.423207i −0.961946 0.273241i \(-0.911904\pi\)
0.717607 + 0.696449i \(0.245238\pi\)
\(68\) 0 0
\(69\) 1.73644 + 3.00760i 0.209043 + 0.362073i
\(70\) 0 0
\(71\) −10.6385 + 6.14216i −1.26256 + 0.728941i −0.973570 0.228391i \(-0.926654\pi\)
−0.288993 + 0.957331i \(0.593320\pi\)
\(72\) 0 0
\(73\) −1.23397 −0.144425 −0.0722127 0.997389i \(-0.523006\pi\)
−0.0722127 + 0.997389i \(0.523006\pi\)
\(74\) 0 0
\(75\) −4.09117 + 14.8004i −0.472408 + 1.70900i
\(76\) 0 0
\(77\) 3.94398i 0.449458i
\(78\) 0 0
\(79\) −14.2237 −1.60029 −0.800145 0.599807i \(-0.795244\pi\)
−0.800145 + 0.599807i \(0.795244\pi\)
\(80\) 0 0
\(81\) −6.53504 + 11.3190i −0.726115 + 1.25767i
\(82\) 0 0
\(83\) 8.18235 0.898129 0.449065 0.893499i \(-0.351757\pi\)
0.449065 + 0.893499i \(0.351757\pi\)
\(84\) 0 0
\(85\) −0.841526 + 6.20283i −0.0912763 + 0.672792i
\(86\) 0 0
\(87\) 7.27793 4.20191i 0.780276 0.450492i
\(88\) 0 0
\(89\) −7.62533 4.40249i −0.808283 0.466663i 0.0380761 0.999275i \(-0.487877\pi\)
−0.846359 + 0.532612i \(0.821210\pi\)
\(90\) 0 0
\(91\) −0.279516 13.3199i −0.0293012 1.39631i
\(92\) 0 0
\(93\) −6.45221 + 11.1756i −0.669063 + 1.15885i
\(94\) 0 0
\(95\) 0.660795 4.87067i 0.0677961 0.499721i
\(96\) 0 0
\(97\) −4.37540 7.57842i −0.444255 0.769472i 0.553745 0.832686i \(-0.313198\pi\)
−0.998000 + 0.0632142i \(0.979865\pi\)
\(98\) 0 0
\(99\) 6.86472i 0.689931i
\(100\) 0 0
\(101\) −1.29141 + 2.23680i −0.128501 + 0.222569i −0.923096 0.384570i \(-0.874350\pi\)
0.794595 + 0.607139i \(0.207683\pi\)
\(102\) 0 0
\(103\) 3.00760i 0.296348i 0.988961 + 0.148174i \(0.0473395\pi\)
−0.988961 + 0.148174i \(0.952660\pi\)
\(104\) 0 0
\(105\) 20.0701 + 15.5265i 1.95864 + 1.51523i
\(106\) 0 0
\(107\) −4.74231 2.73798i −0.458457 0.264690i 0.252938 0.967482i \(-0.418603\pi\)
−0.711395 + 0.702792i \(0.751936\pi\)
\(108\) 0 0
\(109\) 11.8872i 1.13859i −0.822134 0.569294i \(-0.807217\pi\)
0.822134 0.569294i \(-0.192783\pi\)
\(110\) 0 0
\(111\) 27.4455 15.8457i 2.60501 1.50400i
\(112\) 0 0
\(113\) −8.02198 + 4.63149i −0.754644 + 0.435694i −0.827370 0.561658i \(-0.810164\pi\)
0.0727253 + 0.997352i \(0.476830\pi\)
\(114\) 0 0
\(115\) 2.33994 0.958437i 0.218200 0.0893747i
\(116\) 0 0
\(117\) −0.486514 23.1841i −0.0449782 2.14337i
\(118\) 0 0
\(119\) 8.95823 + 5.17204i 0.821200 + 0.474120i
\(120\) 0 0
\(121\) −4.93038 8.53967i −0.448216 0.776333i
\(122\) 0 0
\(123\) −7.58283 13.1338i −0.683721 1.18424i
\(124\) 0 0
\(125\) 10.2779 + 4.40048i 0.919286 + 0.393591i
\(126\) 0 0
\(127\) −6.41203 3.70199i −0.568976 0.328498i 0.187765 0.982214i \(-0.439876\pi\)
−0.756740 + 0.653716i \(0.773209\pi\)
\(128\) 0 0
\(129\) −13.5016 −1.18875
\(130\) 0 0
\(131\) 7.35829 0.642897 0.321448 0.946927i \(-0.395830\pi\)
0.321448 + 0.946927i \(0.395830\pi\)
\(132\) 0 0
\(133\) −7.03430 4.06126i −0.609952 0.352156i
\(134\) 0 0
\(135\) 18.6385 + 14.4190i 1.60415 + 1.24099i
\(136\) 0 0
\(137\) 6.70228 + 11.6087i 0.572615 + 0.991798i 0.996296 + 0.0859866i \(0.0274042\pi\)
−0.423682 + 0.905811i \(0.639262\pi\)
\(138\) 0 0
\(139\) −5.67914 9.83657i −0.481699 0.834327i 0.518081 0.855332i \(-0.326647\pi\)
−0.999779 + 0.0210051i \(0.993313\pi\)
\(140\) 0 0
\(141\) 28.0809 + 16.2125i 2.36484 + 1.36534i
\(142\) 0 0
\(143\) −1.99370 3.29171i −0.166721 0.275266i
\(144\) 0 0
\(145\) −2.31927 5.66229i −0.192605 0.470227i
\(146\) 0 0
\(147\) 17.6966 10.2171i 1.45959 0.842694i
\(148\) 0 0
\(149\) 6.06332 3.50066i 0.496726 0.286785i −0.230634 0.973041i \(-0.574080\pi\)
0.727361 + 0.686255i \(0.240747\pi\)
\(150\) 0 0
\(151\) 0.194458i 0.0158248i −0.999969 0.00791239i \(-0.997481\pi\)
0.999969 0.00791239i \(-0.00251862\pi\)
\(152\) 0 0
\(153\) 15.5923 + 9.00224i 1.26057 + 0.727788i
\(154\) 0 0
\(155\) 7.43154 + 5.74914i 0.596916 + 0.461782i
\(156\) 0 0
\(157\) 16.8889i 1.34788i −0.738786 0.673940i \(-0.764601\pi\)
0.738786 0.673940i \(-0.235399\pi\)
\(158\) 0 0
\(159\) 5.86351 10.1559i 0.465006 0.805414i
\(160\) 0 0
\(161\) 4.17854i 0.329315i
\(162\) 0 0
\(163\) −1.11582 1.93267i −0.0873982 0.151378i 0.819012 0.573776i \(-0.194522\pi\)
−0.906411 + 0.422398i \(0.861189\pi\)
\(164\) 0 0
\(165\) 7.26313 + 0.985375i 0.565434 + 0.0767113i
\(166\) 0 0
\(167\) 1.01951 1.76584i 0.0788920 0.136645i −0.823880 0.566764i \(-0.808195\pi\)
0.902772 + 0.430119i \(0.141528\pi\)
\(168\) 0 0
\(169\) 6.96658 + 10.9757i 0.535891 + 0.844287i
\(170\) 0 0
\(171\) −12.2436 7.06886i −0.936293 0.540569i
\(172\) 0 0
\(173\) −9.41558 + 5.43609i −0.715854 + 0.413298i −0.813225 0.581950i \(-0.802290\pi\)
0.0973711 + 0.995248i \(0.468957\pi\)
\(174\) 0 0
\(175\) 13.1668 12.9607i 0.995318 0.979734i
\(176\) 0 0
\(177\) −11.0876 −0.833396
\(178\) 0 0
\(179\) −1.95866 + 3.39250i −0.146397 + 0.253567i −0.929893 0.367829i \(-0.880101\pi\)
0.783496 + 0.621397i \(0.213434\pi\)
\(180\) 0 0
\(181\) −14.1976 −1.05530 −0.527648 0.849463i \(-0.676926\pi\)
−0.527648 + 0.849463i \(0.676926\pi\)
\(182\) 0 0
\(183\) 46.7460i 3.45557i
\(184\) 0 0
\(185\) −8.74609 21.3528i −0.643026 1.56989i
\(186\) 0 0
\(187\) 2.98795 0.218501
\(188\) 0 0
\(189\) 33.7238 19.4705i 2.45305 1.41627i
\(190\) 0 0
\(191\) −0.168406 0.291687i −0.0121854 0.0211057i 0.859868 0.510516i \(-0.170545\pi\)
−0.872054 + 0.489410i \(0.837212\pi\)
\(192\) 0 0
\(193\) −3.38259 + 5.85881i −0.243484 + 0.421727i −0.961704 0.274089i \(-0.911624\pi\)
0.718220 + 0.695816i \(0.244957\pi\)
\(194\) 0 0
\(195\) −24.5995 2.81314i −1.76161 0.201453i
\(196\) 0 0
\(197\) −7.46816 + 12.9352i −0.532085 + 0.921598i 0.467214 + 0.884144i \(0.345258\pi\)
−0.999298 + 0.0374533i \(0.988075\pi\)
\(198\) 0 0
\(199\) −0.151290 0.262042i −0.0107247 0.0185757i 0.860613 0.509259i \(-0.170080\pi\)
−0.871338 + 0.490683i \(0.836747\pi\)
\(200\) 0 0
\(201\) 10.6385 6.14216i 0.750385 0.433235i
\(202\) 0 0
\(203\) −10.1114 −0.709682
\(204\) 0 0
\(205\) −10.2182 + 4.18538i −0.713673 + 0.292320i
\(206\) 0 0
\(207\) 7.27299i 0.505508i
\(208\) 0 0
\(209\) −2.34624 −0.162293
\(210\) 0 0
\(211\) 0.202283 0.350365i 0.0139258 0.0241201i −0.858979 0.512012i \(-0.828900\pi\)
0.872904 + 0.487891i \(0.162234\pi\)
\(212\) 0 0
\(213\) 37.7262 2.58495
\(214\) 0 0
\(215\) −1.32159 + 9.74135i −0.0901316 + 0.664354i
\(216\) 0 0
\(217\) 13.4463 7.76324i 0.912797 0.527003i
\(218\) 0 0
\(219\) 3.28191 + 1.89481i 0.221771 + 0.128040i
\(220\) 0 0
\(221\) −10.0912 + 0.211761i −0.678806 + 0.0142446i
\(222\) 0 0
\(223\) 0.416011 0.720552i 0.0278581 0.0482517i −0.851760 0.523932i \(-0.824465\pi\)
0.879618 + 0.475680i \(0.157798\pi\)
\(224\) 0 0
\(225\) 22.9176 22.5588i 1.52784 1.50392i
\(226\) 0 0
\(227\) 3.88773 + 6.73375i 0.258038 + 0.446934i 0.965716 0.259600i \(-0.0835908\pi\)
−0.707678 + 0.706535i \(0.750257\pi\)
\(228\) 0 0
\(229\) 7.73762i 0.511316i 0.966767 + 0.255658i \(0.0822921\pi\)
−0.966767 + 0.255658i \(0.917708\pi\)
\(230\) 0 0
\(231\) 6.05614 10.4895i 0.398464 0.690161i
\(232\) 0 0
\(233\) 6.86070i 0.449460i −0.974421 0.224730i \(-0.927850\pi\)
0.974421 0.224730i \(-0.0721500\pi\)
\(234\) 0 0
\(235\) 14.4459 18.6733i 0.942347 1.21811i
\(236\) 0 0
\(237\) 37.8298 + 21.8410i 2.45731 + 1.41873i
\(238\) 0 0
\(239\) 22.3277i 1.44426i −0.691757 0.722130i \(-0.743163\pi\)
0.691757 0.722130i \(-0.256837\pi\)
\(240\) 0 0
\(241\) 4.92524 2.84359i 0.317262 0.183172i −0.332909 0.942959i \(-0.608030\pi\)
0.650172 + 0.759787i \(0.274697\pi\)
\(242\) 0 0
\(243\) 7.38171 4.26183i 0.473537 0.273397i
\(244\) 0 0
\(245\) −5.63939 13.7681i −0.360287 0.879610i
\(246\) 0 0
\(247\) 7.92393 0.166282i 0.504187 0.0105803i
\(248\) 0 0
\(249\) −21.7620 12.5643i −1.37911 0.796232i
\(250\) 0 0
\(251\) 8.80810 + 15.2561i 0.555963 + 0.962955i 0.997828 + 0.0658740i \(0.0209835\pi\)
−0.441865 + 0.897081i \(0.645683\pi\)
\(252\) 0 0
\(253\) −0.603499 1.04529i −0.0379417 0.0657169i
\(254\) 0 0
\(255\) 11.7629 15.2051i 0.736619 0.952179i
\(256\) 0 0
\(257\) −22.3579 12.9084i −1.39465 0.805201i −0.400824 0.916155i \(-0.631276\pi\)
−0.993826 + 0.110954i \(0.964609\pi\)
\(258\) 0 0
\(259\) −38.1307 −2.36933
\(260\) 0 0
\(261\) −17.5995 −1.08938
\(262\) 0 0
\(263\) 18.3738 + 10.6081i 1.13298 + 0.654125i 0.944682 0.327987i \(-0.106370\pi\)
0.188296 + 0.982112i \(0.439704\pi\)
\(264\) 0 0
\(265\) −6.75348 5.22459i −0.414863 0.320944i
\(266\) 0 0
\(267\) 13.5204 + 23.4180i 0.827435 + 1.43316i
\(268\) 0 0
\(269\) 7.24478 + 12.5483i 0.441722 + 0.765085i 0.997817 0.0660332i \(-0.0210343\pi\)
−0.556095 + 0.831119i \(0.687701\pi\)
\(270\) 0 0
\(271\) 25.1873 + 14.5419i 1.53002 + 0.883357i 0.999360 + 0.0357709i \(0.0113887\pi\)
0.530659 + 0.847586i \(0.321945\pi\)
\(272\) 0 0
\(273\) −19.7099 + 35.8554i −1.19290 + 2.17007i
\(274\) 0 0
\(275\) 1.42189 5.14386i 0.0857429 0.310187i
\(276\) 0 0
\(277\) 2.20097 1.27073i 0.132244 0.0763510i −0.432419 0.901673i \(-0.642340\pi\)
0.564662 + 0.825322i \(0.309006\pi\)
\(278\) 0 0
\(279\) 23.4041 13.5124i 1.40117 0.808965i
\(280\) 0 0
\(281\) 15.2066i 0.907149i −0.891218 0.453574i \(-0.850149\pi\)
0.891218 0.453574i \(-0.149851\pi\)
\(282\) 0 0
\(283\) −21.4706 12.3960i −1.27629 0.736868i −0.300128 0.953899i \(-0.597029\pi\)
−0.976165 + 0.217031i \(0.930363\pi\)
\(284\) 0 0
\(285\) −9.23659 + 11.9395i −0.547128 + 0.707237i
\(286\) 0 0
\(287\) 18.2472i 1.07710i
\(288\) 0 0
\(289\) −4.58167 + 7.93568i −0.269510 + 0.466805i
\(290\) 0 0
\(291\) 26.8744i 1.57541i
\(292\) 0 0
\(293\) 10.5315 + 18.2411i 0.615256 + 1.06565i 0.990340 + 0.138663i \(0.0442806\pi\)
−0.375084 + 0.926991i \(0.622386\pi\)
\(294\) 0 0
\(295\) −1.08530 + 7.99966i −0.0631885 + 0.465758i
\(296\) 0 0
\(297\) 5.62417 9.74135i 0.326347 0.565250i
\(298\) 0 0
\(299\) 2.11227 + 3.48748i 0.122156 + 0.201686i
\(300\) 0 0
\(301\) 14.0686 + 8.12252i 0.810901 + 0.468174i
\(302\) 0 0
\(303\) 6.86938 3.96604i 0.394636 0.227843i
\(304\) 0 0
\(305\) 33.7270 + 4.57568i 1.93120 + 0.262003i
\(306\) 0 0
\(307\) 8.89181 0.507483 0.253741 0.967272i \(-0.418339\pi\)
0.253741 + 0.967272i \(0.418339\pi\)
\(308\) 0 0
\(309\) 4.61829 7.99912i 0.262726 0.455054i
\(310\) 0 0
\(311\) −28.7015 −1.62751 −0.813756 0.581206i \(-0.802581\pi\)
−0.813756 + 0.581206i \(0.802581\pi\)
\(312\) 0 0
\(313\) 7.84120i 0.443211i −0.975136 0.221606i \(-0.928870\pi\)
0.975136 0.221606i \(-0.0711297\pi\)
\(314\) 0 0
\(315\) −20.1422 49.1753i −1.13488 2.77071i
\(316\) 0 0
\(317\) 6.17741 0.346958 0.173479 0.984838i \(-0.444499\pi\)
0.173479 + 0.984838i \(0.444499\pi\)
\(318\) 0 0
\(319\) −2.52944 + 1.46037i −0.141622 + 0.0817652i
\(320\) 0 0
\(321\) 8.40855 + 14.5640i 0.469319 + 0.812885i
\(322\) 0 0
\(323\) −3.07681 + 5.32918i −0.171198 + 0.296524i
\(324\) 0 0
\(325\) −4.43756 + 17.4731i −0.246152 + 0.969231i
\(326\) 0 0
\(327\) −18.2533 + 31.6156i −1.00941 + 1.74835i
\(328\) 0 0
\(329\) −19.5068 33.7867i −1.07544 1.86272i
\(330\) 0 0
\(331\) −23.0853 + 13.3283i −1.26888 + 0.732590i −0.974777 0.223183i \(-0.928355\pi\)
−0.294106 + 0.955773i \(0.595022\pi\)
\(332\) 0 0
\(333\) −66.3688 −3.63699
\(334\) 0 0
\(335\) −3.39020 8.27687i −0.185226 0.452214i
\(336\) 0 0
\(337\) 22.4283i 1.22175i 0.791728 + 0.610874i \(0.209182\pi\)
−0.791728 + 0.610874i \(0.790818\pi\)
\(338\) 0 0
\(339\) 28.4474 1.54505
\(340\) 0 0
\(341\) 2.24246 3.88406i 0.121436 0.210334i
\(342\) 0 0
\(343\) 1.27939 0.0690808
\(344\) 0 0
\(345\) −7.69510 1.04398i −0.414290 0.0562059i
\(346\) 0 0
\(347\) 0.357054 0.206145i 0.0191677 0.0110665i −0.490386 0.871506i \(-0.663144\pi\)
0.509553 + 0.860439i \(0.329811\pi\)
\(348\) 0 0
\(349\) 2.89360 + 1.67062i 0.154891 + 0.0894264i 0.575442 0.817842i \(-0.304830\pi\)
−0.420551 + 0.907269i \(0.638163\pi\)
\(350\) 0 0
\(351\) −18.3040 + 33.2979i −0.976998 + 1.77731i
\(352\) 0 0
\(353\) −10.5604 + 18.2912i −0.562075 + 0.973542i 0.435241 + 0.900314i \(0.356663\pi\)
−0.997315 + 0.0732276i \(0.976670\pi\)
\(354\) 0 0
\(355\) 3.69278 27.2192i 0.195992 1.44465i
\(356\) 0 0
\(357\) −15.8837 27.5115i −0.840657 1.45606i
\(358\) 0 0
\(359\) 5.57954i 0.294477i 0.989101 + 0.147238i \(0.0470384\pi\)
−0.989101 + 0.147238i \(0.952962\pi\)
\(360\) 0 0
\(361\) −7.08399 + 12.2698i −0.372842 + 0.645780i
\(362\) 0 0
\(363\) 30.2832i 1.58945i
\(364\) 0 0
\(365\) 1.68834 2.18241i 0.0883719 0.114233i
\(366\) 0 0
\(367\) 1.12749 + 0.650958i 0.0588546 + 0.0339797i 0.529139 0.848535i \(-0.322515\pi\)
−0.470284 + 0.882515i \(0.655848\pi\)
\(368\) 0 0
\(369\) 31.7603i 1.65338i
\(370\) 0 0
\(371\) −12.2195 + 7.05492i −0.634404 + 0.366273i
\(372\) 0 0
\(373\) 29.4424 16.9986i 1.52447 0.880152i 0.524889 0.851171i \(-0.324107\pi\)
0.999580 0.0289815i \(-0.00922638\pi\)
\(374\) 0 0
\(375\) −20.5784 27.4858i −1.06267 1.41936i
\(376\) 0 0
\(377\) 8.43915 5.11137i 0.434638 0.263249i
\(378\) 0 0
\(379\) −4.05099 2.33884i −0.208086 0.120138i 0.392336 0.919822i \(-0.371667\pi\)
−0.600421 + 0.799684i \(0.705000\pi\)
\(380\) 0 0
\(381\) 11.3691 + 19.6919i 0.582457 + 1.00884i
\(382\) 0 0
\(383\) −6.86938 11.8981i −0.351009 0.607965i 0.635418 0.772169i \(-0.280828\pi\)
−0.986427 + 0.164203i \(0.947495\pi\)
\(384\) 0 0
\(385\) −6.97535 5.39623i −0.355497 0.275017i
\(386\) 0 0
\(387\) 24.4872 + 14.1377i 1.24476 + 0.718661i
\(388\) 0 0
\(389\) 17.9138 0.908268 0.454134 0.890933i \(-0.349949\pi\)
0.454134 + 0.890933i \(0.349949\pi\)
\(390\) 0 0
\(391\) −3.16566 −0.160094
\(392\) 0 0
\(393\) −19.5704 11.2989i −0.987194 0.569957i
\(394\) 0 0
\(395\) 19.4611 25.1561i 0.979196 1.26574i
\(396\) 0 0
\(397\) −0.229256 0.397082i −0.0115060 0.0199290i 0.860215 0.509931i \(-0.170329\pi\)
−0.871721 + 0.490002i \(0.836996\pi\)
\(398\) 0 0
\(399\) 12.4725 + 21.6029i 0.624404 + 1.08150i
\(400\) 0 0
\(401\) 22.5646 + 13.0277i 1.12682 + 0.650572i 0.943134 0.332412i \(-0.107863\pi\)
0.183690 + 0.982984i \(0.441196\pi\)
\(402\) 0 0
\(403\) −7.29817 + 13.2765i −0.363548 + 0.661350i
\(404\) 0 0
\(405\) −11.0775 27.0448i −0.550447 1.34387i
\(406\) 0 0
\(407\) −9.53867 + 5.50715i −0.472814 + 0.272979i
\(408\) 0 0
\(409\) 0.310497 0.179266i 0.0153531 0.00886411i −0.492304 0.870423i \(-0.663845\pi\)
0.507657 + 0.861559i \(0.330512\pi\)
\(410\) 0 0
\(411\) 41.1665i 2.03059i
\(412\) 0 0
\(413\) 11.5532 + 6.67027i 0.568498 + 0.328222i
\(414\) 0 0
\(415\) −11.1952 + 14.4714i −0.549553 + 0.710371i
\(416\) 0 0
\(417\) 34.8822i 1.70819i
\(418\) 0 0
\(419\) 9.65921 16.7302i 0.471883 0.817326i −0.527599 0.849493i \(-0.676908\pi\)
0.999482 + 0.0321678i \(0.0102411\pi\)
\(420\) 0 0
\(421\) 0.220426i 0.0107429i −0.999986 0.00537144i \(-0.998290\pi\)
0.999986 0.00537144i \(-0.00170979\pi\)
\(422\) 0 0
\(423\) −33.9527 58.8077i −1.65083 2.85933i
\(424\) 0 0
\(425\) −9.81899 9.97517i −0.476291 0.483867i
\(426\) 0 0
\(427\) 28.1222 48.7091i 1.36093 2.35720i
\(428\) 0 0
\(429\) 0.247959 + 11.8161i 0.0119716 + 0.570488i
\(430\) 0 0
\(431\) 17.2942 + 9.98480i 0.833032 + 0.480951i 0.854890 0.518810i \(-0.173625\pi\)
−0.0218578 + 0.999761i \(0.506958\pi\)
\(432\) 0 0
\(433\) 27.2066 15.7078i 1.30747 0.754867i 0.325795 0.945440i \(-0.394368\pi\)
0.981673 + 0.190573i \(0.0610347\pi\)
\(434\) 0 0
\(435\) −2.52627 + 18.6209i −0.121125 + 0.892806i
\(436\) 0 0
\(437\) 2.48578 0.118911
\(438\) 0 0
\(439\) −12.8069 + 22.1823i −0.611242 + 1.05870i 0.379789 + 0.925073i \(0.375996\pi\)
−0.991031 + 0.133629i \(0.957337\pi\)
\(440\) 0 0
\(441\) −42.7939 −2.03781
\(442\) 0 0
\(443\) 28.4024i 1.34944i 0.738074 + 0.674719i \(0.235735\pi\)
−0.738074 + 0.674719i \(0.764265\pi\)
\(444\) 0 0
\(445\) 18.2194 7.46265i 0.863682 0.353764i
\(446\) 0 0
\(447\) −21.5016 −1.01699
\(448\) 0 0
\(449\) −19.4178 + 11.2109i −0.916381 + 0.529073i −0.882479 0.470352i \(-0.844127\pi\)
−0.0339026 + 0.999425i \(0.510794\pi\)
\(450\) 0 0
\(451\) 2.63541 + 4.56466i 0.124097 + 0.214942i
\(452\) 0 0
\(453\) −0.298598 + 0.517187i −0.0140294 + 0.0242996i
\(454\) 0 0
\(455\) 23.9402 + 17.7302i 1.12233 + 0.831207i
\(456\) 0 0
\(457\) 11.7993 20.4370i 0.551949 0.956004i −0.446184 0.894941i \(-0.647217\pi\)
0.998134 0.0610635i \(-0.0194492\pi\)
\(458\) 0 0
\(459\) −14.7508 25.5491i −0.688509 1.19253i
\(460\) 0 0
\(461\) −28.1513 + 16.2532i −1.31114 + 0.756986i −0.982285 0.187396i \(-0.939995\pi\)
−0.328853 + 0.944381i \(0.606662\pi\)
\(462\) 0 0
\(463\) −7.70367 −0.358020 −0.179010 0.983847i \(-0.557289\pi\)
−0.179010 + 0.983847i \(0.557289\pi\)
\(464\) 0 0
\(465\) −10.9371 26.7020i −0.507197 1.23828i
\(466\) 0 0
\(467\) 20.9339i 0.968704i −0.874873 0.484352i \(-0.839055\pi\)
0.874873 0.484352i \(-0.160945\pi\)
\(468\) 0 0
\(469\) −14.7804 −0.682495
\(470\) 0 0
\(471\) −25.9336 + 44.9183i −1.19496 + 2.06973i
\(472\) 0 0
\(473\) 4.69248 0.215761
\(474\) 0 0
\(475\) 7.71020 + 7.83284i 0.353768 + 0.359395i
\(476\) 0 0
\(477\) −21.2687 + 12.2795i −0.973828 + 0.562240i
\(478\) 0 0
\(479\) 0.849137 + 0.490250i 0.0387981 + 0.0224001i 0.519274 0.854608i \(-0.326203\pi\)
−0.480476 + 0.877008i \(0.659536\pi\)
\(480\) 0 0
\(481\) 31.8245 19.2753i 1.45107 0.878876i
\(482\) 0 0
\(483\) −6.41632 + 11.1134i −0.291953 + 0.505677i
\(484\) 0 0
\(485\) 19.3898 + 2.63057i 0.880444 + 0.119448i
\(486\) 0 0
\(487\) −19.3141 33.4530i −0.875207 1.51590i −0.856542 0.516077i \(-0.827392\pi\)
−0.0186641 0.999826i \(-0.505941\pi\)
\(488\) 0 0
\(489\) 6.85358i 0.309929i
\(490\) 0 0
\(491\) 8.85342 15.3346i 0.399549 0.692040i −0.594121 0.804376i \(-0.702500\pi\)
0.993670 + 0.112336i \(0.0358332\pi\)
\(492\) 0 0
\(493\) 7.66040i 0.345007i
\(494\) 0 0
\(495\) −12.1410 9.39245i −0.545698 0.422159i
\(496\) 0 0
\(497\) −39.3105 22.6959i −1.76331 1.01805i
\(498\) 0 0
\(499\) 35.5402i 1.59100i 0.605954 + 0.795499i \(0.292791\pi\)
−0.605954 + 0.795499i \(0.707209\pi\)
\(500\) 0 0
\(501\) −5.42305 + 3.13100i −0.242284 + 0.139883i
\(502\) 0 0
\(503\) 38.4376 22.1920i 1.71385 0.989490i 0.784624 0.619972i \(-0.212856\pi\)
0.929223 0.369518i \(-0.120477\pi\)
\(504\) 0 0
\(505\) −2.18908 5.34443i −0.0974126 0.237824i
\(506\) 0 0
\(507\) −1.67486 39.8889i −0.0743830 1.77153i
\(508\) 0 0
\(509\) 0.620030 + 0.357975i 0.0274824 + 0.0158669i 0.513678 0.857983i \(-0.328283\pi\)
−0.486196 + 0.873850i \(0.661616\pi\)
\(510\) 0 0
\(511\) −2.27982 3.94877i −0.100853 0.174683i
\(512\) 0 0
\(513\) 11.5828 + 20.0620i 0.511394 + 0.885761i
\(514\) 0 0
\(515\) −5.31927 4.11506i −0.234395 0.181331i
\(516\) 0 0
\(517\) −9.75950 5.63465i −0.429222 0.247812i
\(518\) 0 0
\(519\) 33.3893 1.46563
\(520\) 0 0
\(521\) 7.33132 0.321191 0.160595 0.987020i \(-0.448659\pi\)
0.160595 + 0.987020i \(0.448659\pi\)
\(522\) 0 0
\(523\) −10.2946 5.94360i −0.450152 0.259895i 0.257742 0.966214i \(-0.417021\pi\)
−0.707894 + 0.706318i \(0.750355\pi\)
\(524\) 0 0
\(525\) −54.9205 + 14.2524i −2.39693 + 0.622028i
\(526\) 0 0
\(527\) −5.88143 10.1869i −0.256199 0.443750i
\(528\) 0 0
\(529\) −10.8606 18.8111i −0.472200 0.817875i
\(530\) 0 0
\(531\) 20.1091 + 11.6100i 0.872660 + 0.503831i
\(532\) 0 0
\(533\) −9.22404 15.2294i −0.399537 0.659659i
\(534\) 0 0
\(535\) 11.3309 4.64114i 0.489879 0.200654i
\(536\) 0 0
\(537\) 10.4186 6.01520i 0.449597 0.259575i
\(538\) 0 0
\(539\) −6.15044 + 3.55096i −0.264918 + 0.152950i
\(540\) 0 0
\(541\) 20.5115i 0.881856i 0.897542 + 0.440928i \(0.145351\pi\)
−0.897542 + 0.440928i \(0.854649\pi\)
\(542\) 0 0
\(543\) 37.7603 + 21.8009i 1.62045 + 0.935568i
\(544\) 0 0
\(545\) 21.0238 + 16.2643i 0.900561 + 0.696686i
\(546\) 0 0
\(547\) 16.4268i 0.702358i −0.936308 0.351179i \(-0.885781\pi\)
0.936308 0.351179i \(-0.114219\pi\)
\(548\) 0 0
\(549\) 48.9484 84.7811i 2.08907 3.61837i
\(550\) 0 0
\(551\) 6.01520i 0.256256i
\(552\) 0 0
\(553\) −26.2790 45.5165i −1.11750 1.93556i
\(554\) 0 0
\(555\) −9.52669 + 70.2206i −0.404386 + 2.98070i
\(556\) 0 0
\(557\) 18.0730 31.3033i 0.765776 1.32636i −0.174059 0.984735i \(-0.555688\pi\)
0.939835 0.341628i \(-0.110978\pi\)
\(558\) 0 0
\(559\) −15.8479 + 0.332564i −0.670293 + 0.0140659i
\(560\) 0 0
\(561\) −7.94686 4.58812i −0.335517 0.193711i
\(562\) 0 0
\(563\) −23.0018 + 13.2801i −0.969409 + 0.559688i −0.899056 0.437834i \(-0.855746\pi\)
−0.0703528 + 0.997522i \(0.522413\pi\)
\(564\) 0 0
\(565\) 2.78454 20.5246i 0.117146 0.863478i
\(566\) 0 0
\(567\) −48.2952 −2.02821
\(568\) 0 0
\(569\) −21.5921 + 37.3985i −0.905186 + 1.56783i −0.0845187 + 0.996422i \(0.526935\pi\)
−0.820667 + 0.571406i \(0.806398\pi\)
\(570\) 0 0
\(571\) 31.5110 1.31870 0.659348 0.751838i \(-0.270832\pi\)
0.659348 + 0.751838i \(0.270832\pi\)
\(572\) 0 0
\(573\) 1.03437i 0.0432116i
\(574\) 0 0
\(575\) −1.50645 + 5.44979i −0.0628233 + 0.227272i
\(576\) 0 0
\(577\) −26.9555 −1.12217 −0.561086 0.827758i \(-0.689616\pi\)
−0.561086 + 0.827758i \(0.689616\pi\)
\(578\) 0 0
\(579\) 17.9929 10.3882i 0.747759 0.431719i
\(580\) 0 0
\(581\) 15.1173 + 26.1839i 0.627171 + 1.08629i
\(582\) 0 0
\(583\) −2.03786 + 3.52968i −0.0843995 + 0.146184i
\(584\) 0 0
\(585\) 41.6693 + 30.8605i 1.72281 + 1.27593i
\(586\) 0 0
\(587\) −14.8631 + 25.7436i −0.613465 + 1.06255i 0.377187 + 0.926137i \(0.376891\pi\)
−0.990652 + 0.136415i \(0.956442\pi\)
\(588\) 0 0
\(589\) 4.61829 + 7.99912i 0.190293 + 0.329598i
\(590\) 0 0
\(591\) 39.7252 22.9353i 1.63408 0.943434i
\(592\) 0 0
\(593\) 15.3561 0.630600 0.315300 0.948992i \(-0.397895\pi\)
0.315300 + 0.948992i \(0.397895\pi\)
\(594\) 0 0
\(595\) −21.4041 + 8.76712i −0.877484 + 0.359417i
\(596\) 0 0
\(597\) 0.929248i 0.0380316i
\(598\) 0 0
\(599\) −23.6928 −0.968061 −0.484030 0.875051i \(-0.660828\pi\)
−0.484030 + 0.875051i \(0.660828\pi\)
\(600\) 0 0
\(601\) 1.74834 3.02821i 0.0713162 0.123523i −0.828162 0.560489i \(-0.810613\pi\)
0.899478 + 0.436965i \(0.143947\pi\)
\(602\) 0 0
\(603\) −25.7262 −1.04765
\(604\) 0 0
\(605\) 21.8492 + 2.96423i 0.888295 + 0.120513i
\(606\) 0 0
\(607\) −32.3012 + 18.6491i −1.31107 + 0.756944i −0.982273 0.187457i \(-0.939975\pi\)
−0.328794 + 0.944402i \(0.606642\pi\)
\(608\) 0 0
\(609\) 26.8927 + 15.5265i 1.08975 + 0.629165i
\(610\) 0 0
\(611\) 33.3600 + 18.3382i 1.34960 + 0.741883i
\(612\) 0 0
\(613\) −7.66210 + 13.2712i −0.309469 + 0.536017i −0.978246 0.207446i \(-0.933485\pi\)
0.668777 + 0.743463i \(0.266818\pi\)
\(614\) 0 0
\(615\) 33.6036 + 4.55893i 1.35503 + 0.183834i
\(616\) 0 0
\(617\) 2.53620 + 4.39282i 0.102103 + 0.176848i 0.912551 0.408963i \(-0.134109\pi\)
−0.810448 + 0.585811i \(0.800776\pi\)
\(618\) 0 0
\(619\) 20.6770i 0.831079i 0.909575 + 0.415540i \(0.136407\pi\)
−0.909575 + 0.415540i \(0.863593\pi\)
\(620\) 0 0
\(621\) −5.95866 + 10.3207i −0.239113 + 0.414155i
\(622\) 0 0
\(623\) 32.5352i 1.30350i
\(624\) 0 0
\(625\) −21.8452 + 12.1568i −0.873807 + 0.486272i
\(626\) 0 0
\(627\) 6.24014 + 3.60275i 0.249207 + 0.143880i
\(628\) 0 0
\(629\) 28.8878i 1.15183i
\(630\) 0 0
\(631\) 18.6113 10.7452i 0.740903 0.427760i −0.0814946 0.996674i \(-0.525969\pi\)
0.822397 + 0.568913i \(0.192636\pi\)
\(632\) 0 0
\(633\) −1.07600 + 0.621228i −0.0427671 + 0.0246916i
\(634\) 0 0
\(635\) 15.3204 6.27524i 0.607973 0.249025i
\(636\) 0 0
\(637\) 20.5201 12.4285i 0.813037 0.492435i
\(638\) 0 0
\(639\) −68.4222 39.5036i −2.70674 1.56274i
\(640\) 0 0
\(641\) 17.8862 + 30.9798i 0.706463 + 1.22363i 0.966161 + 0.257940i \(0.0830437\pi\)
−0.259698 + 0.965690i \(0.583623\pi\)
\(642\) 0 0
\(643\) 14.0108 + 24.2674i 0.552533 + 0.957014i 0.998091 + 0.0617616i \(0.0196718\pi\)
−0.445558 + 0.895253i \(0.646995\pi\)
\(644\) 0 0
\(645\) 18.4732 23.8791i 0.727381 0.940237i
\(646\) 0 0
\(647\) 16.8548 + 9.73113i 0.662631 + 0.382570i 0.793279 0.608859i \(-0.208372\pi\)
−0.130648 + 0.991429i \(0.541706\pi\)
\(648\) 0 0
\(649\) 3.85350 0.151263
\(650\) 0 0
\(651\) −47.6831 −1.86885
\(652\) 0 0
\(653\) 11.2261 + 6.48138i 0.439310 + 0.253636i 0.703305 0.710888i \(-0.251707\pi\)
−0.263995 + 0.964524i \(0.585040\pi\)
\(654\) 0 0
\(655\) −10.0678 + 13.0139i −0.393380 + 0.508496i
\(656\) 0 0
\(657\) −3.96816 6.87306i −0.154813 0.268144i
\(658\) 0 0
\(659\) −1.10335 1.91106i −0.0429804 0.0744443i 0.843735 0.536760i \(-0.180352\pi\)
−0.886715 + 0.462316i \(0.847019\pi\)
\(660\) 0 0
\(661\) −37.7080 21.7707i −1.46667 0.846784i −0.467367 0.884063i \(-0.654797\pi\)
−0.999305 + 0.0372795i \(0.988131\pi\)
\(662\) 0 0
\(663\) 27.1640 + 14.9322i 1.05496 + 0.579919i
\(664\) 0 0
\(665\) 16.8072 6.88424i 0.651757 0.266959i
\(666\) 0 0
\(667\) 2.67988 1.54723i 0.103765 0.0599089i
\(668\) 0 0
\(669\) −2.21287 + 1.27760i −0.0855546 + 0.0493950i
\(670\) 0 0
\(671\) 16.2466i 0.627192i
\(672\) 0 0
\(673\) −0.510080 0.294495i −0.0196621 0.0113519i 0.490137 0.871646i \(-0.336947\pi\)
−0.509799 + 0.860294i \(0.670280\pi\)
\(674\) 0 0
\(675\) −51.0032 + 13.2359i −1.96312 + 0.509449i
\(676\) 0 0
\(677\) 7.61779i 0.292775i −0.989227 0.146388i \(-0.953235\pi\)
0.989227 0.146388i \(-0.0467647\pi\)
\(678\) 0 0
\(679\) 16.1676 28.0030i 0.620454 1.07466i
\(680\) 0 0
\(681\) 23.8791i 0.915048i
\(682\) 0 0
\(683\) −14.1823 24.5645i −0.542672 0.939936i −0.998749 0.0499959i \(-0.984079\pi\)
0.456077 0.889940i \(-0.349254\pi\)
\(684\) 0 0
\(685\) −29.7014 4.02953i −1.13483 0.153961i
\(686\) 0 0
\(687\) 11.8814 20.5792i 0.453305 0.785147i
\(688\) 0 0
\(689\) 6.63228 12.0652i 0.252670 0.459646i
\(690\) 0 0
\(691\) −35.7708 20.6523i −1.36079 0.785651i −0.371058 0.928610i \(-0.621005\pi\)
−0.989729 + 0.142959i \(0.954338\pi\)
\(692\) 0 0
\(693\) −21.9675 + 12.6829i −0.834475 + 0.481784i
\(694\) 0 0
\(695\) 25.1673 + 3.41440i 0.954652 + 0.129516i
\(696\) 0 0
\(697\) 13.8241 0.523624
\(698\) 0 0
\(699\) −10.5349 + 18.2470i −0.398466 + 0.690164i
\(700\) 0 0
\(701\) −32.7428 −1.23668 −0.618340 0.785911i \(-0.712195\pi\)
−0.618340 + 0.785911i \(0.712195\pi\)
\(702\) 0 0
\(703\) 22.6837i 0.855531i
\(704\) 0 0
\(705\) −67.0944 + 27.4818i −2.52692 + 1.03502i
\(706\) 0 0
\(707\) −9.54381 −0.358932
\(708\) 0 0
\(709\) −18.6615 + 10.7742i −0.700846 + 0.404633i −0.807662 0.589645i \(-0.799268\pi\)
0.106817 + 0.994279i \(0.465934\pi\)
\(710\) 0 0
\(711\) −45.7401 79.2242i −1.71539 2.97114i
\(712\) 0 0
\(713\) −2.37583 + 4.11506i −0.0889756 + 0.154110i
\(714\) 0 0
\(715\) 8.54955 + 0.977707i 0.319735 + 0.0365642i
\(716\) 0 0
\(717\) −34.2851 + 59.3836i −1.28040 + 2.21772i
\(718\) 0 0
\(719\) 21.0431 + 36.4477i 0.784775 + 1.35927i 0.929133 + 0.369745i \(0.120555\pi\)
−0.144358 + 0.989526i \(0.546112\pi\)
\(720\) 0 0
\(721\) −9.62447 + 5.55669i −0.358434 + 0.206942i
\(722\) 0 0
\(723\) −17.4658 −0.649559
\(724\) 0 0
\(725\) 13.1876 + 3.64538i 0.489777 + 0.135386i
\(726\) 0 0
\(727\) 21.7707i 0.807429i 0.914885 + 0.403715i \(0.132281\pi\)
−0.914885 + 0.403715i \(0.867719\pi\)
\(728\) 0 0
\(729\) 13.0334 0.482718
\(730\) 0 0
\(731\) 6.15361 10.6584i 0.227600 0.394214i
\(732\) 0 0
\(733\) 16.2319 0.599541 0.299770 0.954011i \(-0.403090\pi\)
0.299770 + 0.954011i \(0.403090\pi\)
\(734\) 0 0
\(735\) −6.14272 + 45.2776i −0.226577 + 1.67009i
\(736\) 0 0
\(737\) −3.69742 + 2.13471i −0.136196 + 0.0786329i
\(738\) 0 0
\(739\) −15.9723 9.22161i −0.587550 0.339222i 0.176578 0.984287i \(-0.443497\pi\)
−0.764128 + 0.645064i \(0.776831\pi\)
\(740\) 0 0
\(741\) −21.3301 11.7253i −0.783580 0.430738i
\(742\) 0 0
\(743\) 4.10597 7.11175i 0.150633 0.260905i −0.780827 0.624747i \(-0.785202\pi\)
0.931460 + 0.363843i \(0.118535\pi\)
\(744\) 0 0
\(745\) −2.10466 + 15.5133i −0.0771088 + 0.568364i
\(746\) 0 0
\(747\) 26.3125 + 45.5747i 0.962725 + 1.66749i
\(748\) 0 0
\(749\) 20.2342i 0.739341i
\(750\) 0 0
\(751\) −19.0454 + 32.9876i −0.694977 + 1.20374i 0.275211 + 0.961384i \(0.411252\pi\)
−0.970188 + 0.242352i \(0.922081\pi\)
\(752\) 0 0
\(753\) 54.1008i 1.97154i
\(754\) 0 0
\(755\) 0.343920 + 0.266061i 0.0125165 + 0.00968297i
\(756\) 0 0
\(757\) 21.8817 + 12.6334i 0.795302 + 0.459168i 0.841826 0.539749i \(-0.181481\pi\)
−0.0465237 + 0.998917i \(0.514814\pi\)
\(758\) 0 0
\(759\) 3.70679i 0.134548i
\(760\) 0 0
\(761\) 31.6134 18.2520i 1.14598 0.661634i 0.198079 0.980186i \(-0.436530\pi\)
0.947905 + 0.318552i \(0.103196\pi\)
\(762\) 0 0
\(763\) 38.0396 21.9622i 1.37713 0.795085i
\(764\) 0 0
\(765\) −37.2552 + 15.2597i −1.34696 + 0.551715i
\(766\) 0 0
\(767\) −13.0144 + 0.273103i −0.469922 + 0.00986120i
\(768\) 0 0
\(769\) −24.0717 13.8978i −0.868049 0.501168i −0.00134961 0.999999i \(-0.500430\pi\)
−0.866699 + 0.498831i \(0.833763\pi\)
\(770\) 0 0
\(771\) 39.6426 + 68.6630i 1.42769 + 2.47284i
\(772\) 0 0
\(773\) −1.54852 2.68212i −0.0556965 0.0964692i 0.836833 0.547458i \(-0.184405\pi\)
−0.892529 + 0.450989i \(0.851071\pi\)
\(774\) 0 0
\(775\) −20.3360 + 5.27739i −0.730489 + 0.189569i
\(776\) 0 0
\(777\) 101.414 + 58.5513i 3.63820 + 2.10052i
\(778\) 0 0
\(779\) −10.8551 −0.388925
\(780\) 0 0
\(781\) −13.1117 −0.469174
\(782\) 0 0
\(783\) 24.9745 + 14.4190i 0.892516 + 0.515294i
\(784\) 0 0
\(785\) 29.8698 + 23.1077i 1.06610 + 0.824750i
\(786\) 0 0
\(787\) 15.2155 + 26.3540i 0.542374 + 0.939419i 0.998767 + 0.0496407i \(0.0158076\pi\)
−0.456393 + 0.889778i \(0.650859\pi\)
\(788\) 0 0
\(789\) −32.5784 56.4275i −1.15982 2.00887i
\(790\) 0 0
\(791\) −29.6420 17.1138i −1.05395 0.608497i
\(792\) 0 0
\(793\) 1.15142 + 54.8693i 0.0408881 + 1.94847i
\(794\) 0 0
\(795\) 9.93922 + 24.2657i 0.352508 + 0.860617i
\(796\) 0 0
\(797\) −41.1833 + 23.7772i −1.45879 + 0.842231i −0.998952 0.0457728i \(-0.985425\pi\)
−0.459836 + 0.888004i \(0.652092\pi\)
\(798\) 0 0
\(799\) −25.5968 + 14.7783i −0.905549 + 0.522819i
\(800\) 0 0
\(801\) 56.6295i 2.00091i
\(802\) 0 0
\(803\) −1.14063 0.658541i −0.0402518 0.0232394i
\(804\) 0 0
\(805\) 7.39020 + 5.71716i 0.260470 + 0.201503i
\(806\) 0 0
\(807\) 44.4986i 1.56643i
\(808\) 0 0
\(809\) −18.0418 + 31.2493i −0.634316 + 1.09867i 0.352344 + 0.935871i \(0.385385\pi\)
−0.986660 + 0.162796i \(0.947949\pi\)
\(810\) 0 0
\(811\) 36.3456i 1.27627i −0.769926 0.638134i \(-0.779707\pi\)
0.769926 0.638134i \(-0.220293\pi\)
\(812\) 0 0
\(813\) −44.6593 77.3522i −1.56627 2.71286i
\(814\) 0 0
\(815\) 4.94482 + 0.670854i 0.173210 + 0.0234990i
\(816\) 0 0
\(817\) −4.83202 + 8.36931i −0.169051 + 0.292805i
\(818\) 0 0
\(819\) 73.2915 44.3907i 2.56101 1.55114i
\(820\) 0 0
\(821\) 18.4741 + 10.6660i 0.644751 + 0.372247i 0.786442 0.617664i \(-0.211921\pi\)
−0.141691 + 0.989911i \(0.545254\pi\)
\(822\) 0 0
\(823\) −17.2845 + 9.97923i −0.602501 + 0.347854i −0.770025 0.638014i \(-0.779756\pi\)
0.167524 + 0.985868i \(0.446423\pi\)
\(824\) 0 0
\(825\) −11.6803 + 11.4974i −0.406656 + 0.400289i
\(826\) 0 0
\(827\) 28.9529 1.00679 0.503395 0.864056i \(-0.332084\pi\)
0.503395 + 0.864056i \(0.332084\pi\)
\(828\) 0 0
\(829\) −13.5506 + 23.4703i −0.470631 + 0.815156i −0.999436 0.0335871i \(-0.989307\pi\)
0.528805 + 0.848743i \(0.322640\pi\)
\(830\) 0 0
\(831\) −7.80505 −0.270754
\(832\) 0 0
\(833\) 18.6266i 0.645372i
\(834\) 0 0
\(835\) 1.72817 + 4.21917i 0.0598058 + 0.146011i
\(836\) 0 0
\(837\) −44.2820 −1.53061
\(838\) 0 0
\(839\) −29.2035 + 16.8607i −1.00822 + 0.582095i −0.910670 0.413136i \(-0.864434\pi\)
−0.0975488 + 0.995231i \(0.531100\pi\)
\(840\) 0 0
\(841\) 10.7559 + 18.6299i 0.370895 + 0.642409i
\(842\) 0 0
\(843\) −23.3503 + 40.4439i −0.804228 + 1.39296i
\(844\) 0 0
\(845\) −28.9436 2.69608i −0.995690 0.0927479i
\(846\) 0 0
\(847\) 18.2182 31.5549i 0.625986 1.08424i
\(848\) 0 0
\(849\) 38.0692 + 65.9378i 1.30653 + 2.26298i
\(850\) 0 0
\(851\) 10.1060 5.83468i 0.346428 0.200010i
\(852\) 0 0
\(853\) −30.0853 −1.03010 −0.515050 0.857160i \(-0.672227\pi\)
−0.515050 + 0.857160i \(0.672227\pi\)
\(854\) 0 0
\(855\) 29.2540 11.9824i 1.00047 0.409790i
\(856\) 0 0
\(857\) 21.6341i 0.739006i 0.929230 + 0.369503i \(0.120472\pi\)
−0.929230 + 0.369503i \(0.879528\pi\)
\(858\) 0 0
\(859\) 6.57516 0.224342 0.112171 0.993689i \(-0.464220\pi\)
0.112171 + 0.993689i \(0.464220\pi\)
\(860\) 0 0
\(861\) 28.0193 48.5309i 0.954895 1.65393i
\(862\) 0 0
\(863\) 45.3471 1.54363 0.771817 0.635844i \(-0.219348\pi\)
0.771817 + 0.635844i \(0.219348\pi\)
\(864\) 0 0
\(865\) 3.26828 24.0902i 0.111125 0.819093i
\(866\) 0 0
\(867\) 24.3711 14.0707i 0.827687 0.477865i
\(868\) 0 0
\(869\) −13.1477 7.59085i −0.446006 0.257502i
\(870\) 0 0
\(871\) 12.3360 7.47156i 0.417988 0.253164i
\(872\) 0 0
\(873\) 28.1406 48.7409i 0.952414 1.64963i
\(874\) 0 0
\(875\) 4.90724 + 41.0200i 0.165895 + 1.38673i
\(876\) 0 0
\(877\) 23.8945 + 41.3865i 0.806859 + 1.39752i 0.915029 + 0.403389i \(0.132168\pi\)
−0.108169 + 0.994133i \(0.534499\pi\)
\(878\) 0 0
\(879\) 64.6861i 2.18181i
\(880\) 0 0
\(881\) 6.21890 10.7714i 0.209520 0.362899i −0.742043 0.670352i \(-0.766143\pi\)
0.951563 + 0.307453i \(0.0994765\pi\)
\(882\) 0 0
\(883\) 16.6655i 0.560840i −0.959877 0.280420i \(-0.909526\pi\)
0.959877 0.280420i \(-0.0904737\pi\)
\(884\) 0 0
\(885\) 15.1703 19.6097i 0.509944 0.659171i
\(886\) 0 0
\(887\) −34.5251 19.9331i −1.15924 0.669287i −0.208118 0.978104i \(-0.566734\pi\)
−0.951122 + 0.308816i \(0.900067\pi\)
\(888\) 0 0
\(889\) 27.3584i 0.917572i
\(890\) 0 0
\(891\) −12.0814 + 6.97519i −0.404742 + 0.233678i
\(892\) 0 0
\(893\) 20.0994 11.6044i 0.672602 0.388327i
\(894\) 0 0
\(895\) −3.32012 8.10578i −0.110979 0.270947i
\(896\) 0 0
\(897\) −0.262706 12.5189i −0.00877150 0.417993i
\(898\) 0 0
\(899\) 9.95781 + 5.74914i 0.332111 + 0.191745i
\(900\) 0 0
\(901\) 5.34480 + 9.25747i 0.178061 + 0.308411i
\(902\) 0 0
\(903\) −24.9449 43.2058i −0.830114 1.43780i
\(904\) 0 0
\(905\) 19.4254 25.1099i 0.645722 0.834682i
\(906\) 0 0
\(907\) 10.6324 + 6.13860i 0.353042 + 0.203829i 0.666024 0.745930i \(-0.267995\pi\)
−0.312982 + 0.949759i \(0.601328\pi\)
\(908\) 0 0
\(909\) −16.6116 −0.550971
\(910\) 0 0
\(911\) 47.4729 1.57285 0.786423 0.617688i \(-0.211930\pi\)
0.786423 + 0.617688i \(0.211930\pi\)
\(912\) 0 0
\(913\) 7.56339 + 4.36673i 0.250312 + 0.144518i
\(914\) 0 0
\(915\) −82.6754 63.9589i −2.73317 2.11441i
\(916\) 0 0
\(917\) 13.5948 + 23.5469i 0.448940 + 0.777587i
\(918\) 0 0
\(919\) −6.03106 10.4461i −0.198946 0.344585i 0.749241 0.662298i \(-0.230419\pi\)
−0.948187 + 0.317713i \(0.897085\pi\)
\(920\) 0 0
\(921\) −23.6490 13.6537i −0.779260 0.449906i
\(922\) 0 0
\(923\) 44.2820 0.929248i 1.45756 0.0305866i
\(924\) 0 0
\(925\) 49.7313 + 13.7469i 1.63516 + 0.451996i
\(926\) 0 0
\(927\) −16.7520 + 9.67175i −0.550207 + 0.317662i
\(928\) 0 0
\(929\) 16.6781 9.62908i 0.547189 0.315920i −0.200798 0.979633i \(-0.564354\pi\)
0.747988 + 0.663713i \(0.231020\pi\)
\(930\) 0 0
\(931\) 14.6262i 0.479354i
\(932\) 0 0
\(933\) 76.3355 + 44.0723i 2.49911 + 1.44286i
\(934\) 0 0
\(935\) −4.08818 + 5.28452i −0.133698 + 0.172822i
\(936\) 0 0
\(937\) 17.1012i 0.558671i −0.960194 0.279335i \(-0.909886\pi\)
0.960194 0.279335i \(-0.0901141\pi\)
\(938\) 0 0
\(939\) −12.0405 + 20.8547i −0.392926 + 0.680568i
\(940\) 0 0
\(941\) 12.5077i 0.407741i −0.978998 0.203870i \(-0.934648\pi\)
0.978998 0.203870i \(-0.0653521\pi\)
\(942\) 0 0
\(943\) −2.79215 4.83614i −0.0909248 0.157486i
\(944\) 0 0
\(945\) −11.7060 + 86.2841i −0.380796 + 2.80682i
\(946\) 0 0
\(947\) −30.1199 + 52.1692i −0.978766 + 1.69527i −0.311862 + 0.950127i \(0.600953\pi\)
−0.666903 + 0.745144i \(0.732381\pi\)
\(948\) 0 0
\(949\) 3.89890 + 2.14324i 0.126563 + 0.0695726i
\(950\) 0 0
\(951\) −16.4296 9.48566i −0.532768 0.307594i
\(952\) 0 0
\(953\) −10.0857 + 5.82300i −0.326709 + 0.188625i −0.654379 0.756167i \(-0.727070\pi\)
0.327670 + 0.944792i \(0.393737\pi\)
\(954\) 0 0
\(955\) 0.746296 + 0.101249i 0.0241496 + 0.00327633i
\(956\) 0 0
\(957\) 8.96985 0.289954
\(958\) 0 0
\(959\) −24.7656 + 42.8953i −0.799723 + 1.38516i
\(960\) 0 0
\(961\) 13.3439 0.430449
\(962\) 0 0
\(963\) 35.2188i 1.13491i
\(964\) 0 0
\(965\) −5.73382 13.9986i −0.184578 0.450631i
\(966\) 0 0
\(967\) 2.95604 0.0950599 0.0475300 0.998870i \(-0.484865\pi\)
0.0475300 + 0.998870i \(0.484865\pi\)
\(968\) 0 0
\(969\) 16.3664 9.44912i 0.525763 0.303549i
\(970\) 0 0
\(971\) 16.1211 + 27.9225i 0.517350 + 0.896076i 0.999797 + 0.0201510i \(0.00641469\pi\)
−0.482447 + 0.875925i \(0.660252\pi\)
\(972\) 0 0
\(973\) 20.9850 36.3471i 0.672748 1.16523i
\(974\) 0 0
\(975\) 38.6329 39.6579i 1.23724 1.27007i
\(976\) 0 0
\(977\) 18.6309 32.2697i 0.596056 1.03240i −0.397341 0.917671i \(-0.630067\pi\)
0.993397 0.114728i \(-0.0365998\pi\)
\(978\) 0 0
\(979\) −4.69901 8.13892i −0.150181 0.260121i
\(980\) 0 0
\(981\) 66.2102 38.2265i 2.11393 1.22048i
\(982\) 0 0
\(983\) −31.3081 −0.998574 −0.499287 0.866437i \(-0.666405\pi\)
−0.499287 + 0.866437i \(0.666405\pi\)
\(984\) 0 0
\(985\) −12.6593 30.9065i −0.403358 0.984763i
\(986\) 0 0
\(987\) 119.814i 3.81371i
\(988\) 0 0
\(989\) −4.97156 −0.158086
\(990\) 0 0
\(991\) −4.08268 + 7.07141i −0.129691 + 0.224631i −0.923557 0.383462i \(-0.874732\pi\)
0.793866 + 0.608093i \(0.208065\pi\)
\(992\) 0 0
\(993\) 81.8646 2.59789
\(994\) 0 0
\(995\) 0.670448 + 0.0909583i 0.0212546 + 0.00288357i
\(996\) 0 0
\(997\) 41.1557 23.7612i 1.30341 0.752526i 0.322425 0.946595i \(-0.395502\pi\)
0.980988 + 0.194069i \(0.0621687\pi\)
\(998\) 0 0
\(999\) 94.1802 + 54.3750i 2.97973 + 1.72035i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.df.a.849.1 8
4.3 odd 2 130.2.m.b.69.4 yes 8
5.4 even 2 1040.2.df.c.849.4 8
12.11 even 2 1170.2.bj.a.199.3 8
13.10 even 6 1040.2.df.c.49.4 8
20.3 even 4 650.2.m.e.251.1 16
20.7 even 4 650.2.m.e.251.8 16
20.19 odd 2 130.2.m.a.69.1 yes 8
52.7 even 12 1690.2.b.e.339.1 16
52.19 even 12 1690.2.b.e.339.9 16
52.23 odd 6 130.2.m.a.49.1 8
52.35 odd 6 1690.2.c.e.1689.1 8
52.43 odd 6 1690.2.c.f.1689.1 8
60.59 even 2 1170.2.bj.b.199.2 8
65.49 even 6 inner 1040.2.df.a.49.1 8
156.23 even 6 1170.2.bj.b.829.2 8
260.7 odd 12 8450.2.a.cs.1.1 8
260.19 even 12 1690.2.b.e.339.8 16
260.23 even 12 650.2.m.e.101.1 16
260.59 even 12 1690.2.b.e.339.16 16
260.123 odd 12 8450.2.a.cs.1.8 8
260.127 even 12 650.2.m.e.101.8 16
260.139 odd 6 1690.2.c.f.1689.8 8
260.163 odd 12 8450.2.a.cr.1.8 8
260.179 odd 6 130.2.m.b.49.4 yes 8
260.199 odd 6 1690.2.c.e.1689.8 8
260.227 odd 12 8450.2.a.cr.1.1 8
780.179 even 6 1170.2.bj.a.829.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.m.a.49.1 8 52.23 odd 6
130.2.m.a.69.1 yes 8 20.19 odd 2
130.2.m.b.49.4 yes 8 260.179 odd 6
130.2.m.b.69.4 yes 8 4.3 odd 2
650.2.m.e.101.1 16 260.23 even 12
650.2.m.e.101.8 16 260.127 even 12
650.2.m.e.251.1 16 20.3 even 4
650.2.m.e.251.8 16 20.7 even 4
1040.2.df.a.49.1 8 65.49 even 6 inner
1040.2.df.a.849.1 8 1.1 even 1 trivial
1040.2.df.c.49.4 8 13.10 even 6
1040.2.df.c.849.4 8 5.4 even 2
1170.2.bj.a.199.3 8 12.11 even 2
1170.2.bj.a.829.3 8 780.179 even 6
1170.2.bj.b.199.2 8 60.59 even 2
1170.2.bj.b.829.2 8 156.23 even 6
1690.2.b.e.339.1 16 52.7 even 12
1690.2.b.e.339.8 16 260.19 even 12
1690.2.b.e.339.9 16 52.19 even 12
1690.2.b.e.339.16 16 260.59 even 12
1690.2.c.e.1689.1 8 52.35 odd 6
1690.2.c.e.1689.8 8 260.199 odd 6
1690.2.c.f.1689.1 8 52.43 odd 6
1690.2.c.f.1689.8 8 260.139 odd 6
8450.2.a.cr.1.1 8 260.227 odd 12
8450.2.a.cr.1.8 8 260.163 odd 12
8450.2.a.cs.1.1 8 260.7 odd 12
8450.2.a.cs.1.8 8 260.123 odd 12