Properties

Label 1690.2.c.e.1689.8
Level $1690$
Weight $2$
Character 1690.1689
Analytic conductor $13.495$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(1689,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.1689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,0,8,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.50027374224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 132x^{4} + 332x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1689.8
Root \(3.07108i\) of defining polynomial
Character \(\chi\) \(=\) 1690.1689
Dual form 1690.2.c.e.1689.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +3.07108i q^{3} +1.00000 q^{4} +(-1.36822 - 1.76861i) q^{5} -3.07108i q^{6} +3.69510 q^{7} -1.00000 q^{8} -6.43154 q^{9} +(1.36822 + 1.76861i) q^{10} -1.06735i q^{11} +3.07108i q^{12} -3.69510 q^{14} +(5.43154 - 4.20191i) q^{15} +1.00000 q^{16} -2.79940i q^{17} +6.43154 q^{18} -2.19819i q^{19} +(-1.36822 - 1.76861i) q^{20} +11.3479i q^{21} +1.06735i q^{22} +1.13083i q^{23} -3.07108i q^{24} +(-1.25595 + 4.83969i) q^{25} -10.5385i q^{27} +3.69510 q^{28} +2.73644 q^{29} +(-5.43154 + 4.20191i) q^{30} -4.20191i q^{31} -1.00000 q^{32} +3.27793 q^{33} +2.79940i q^{34} +(-5.05571 - 6.53518i) q^{35} -6.43154 q^{36} +10.3193 q^{37} +2.19819i q^{38} +(1.36822 + 1.76861i) q^{40} +4.93821i q^{41} -11.3479i q^{42} +4.39637i q^{43} -1.06735i q^{44} +(8.79976 + 11.3749i) q^{45} -1.13083i q^{46} +10.5582 q^{47} +3.07108i q^{48} +6.65376 q^{49} +(1.25595 - 4.83969i) q^{50} +8.59720 q^{51} -3.81853i q^{53} +10.5385i q^{54} +(-1.88773 + 1.46037i) q^{55} -3.69510 q^{56} +6.75081 q^{57} -2.73644 q^{58} +3.61033i q^{59} +(5.43154 - 4.20191i) q^{60} +15.2214 q^{61} +4.20191i q^{62} -23.7652 q^{63} +1.00000 q^{64} -3.27793 q^{66} -4.00000 q^{67} -2.79940i q^{68} -3.47288 q^{69} +(5.05571 + 6.53518i) q^{70} -12.2843i q^{71} +6.43154 q^{72} -1.23397 q^{73} -10.3193 q^{74} +(-14.8631 - 3.85712i) q^{75} -2.19819i q^{76} -3.94398i q^{77} +14.2237 q^{79} +(-1.36822 - 1.76861i) q^{80} +13.0701 q^{81} -4.93821i q^{82} -8.18235 q^{83} +11.3479i q^{84} +(-4.95105 + 3.83020i) q^{85} -4.39637i q^{86} +8.40383i q^{87} +1.06735i q^{88} -8.80497i q^{89} +(-8.79976 - 11.3749i) q^{90} +1.13083i q^{92} +12.9044 q^{93} -10.5582 q^{94} +(-3.88773 + 3.00760i) q^{95} -3.07108i q^{96} +8.75081 q^{97} -6.65376 q^{98} +6.86472i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{4} - 3 q^{5} + 10 q^{7} - 8 q^{8} - 16 q^{9} + 3 q^{10} - 10 q^{14} + 8 q^{15} + 8 q^{16} + 16 q^{18} - 3 q^{20} + 5 q^{25} + 10 q^{28} + 6 q^{29} - 8 q^{30} - 8 q^{32} - 20 q^{33}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 3.07108i 1.77309i 0.462643 + 0.886545i \(0.346901\pi\)
−0.462643 + 0.886545i \(0.653099\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.36822 1.76861i −0.611886 0.790946i
\(6\) 3.07108i 1.25376i
\(7\) 3.69510 1.39662 0.698308 0.715797i \(-0.253937\pi\)
0.698308 + 0.715797i \(0.253937\pi\)
\(8\) −1.00000 −0.353553
\(9\) −6.43154 −2.14385
\(10\) 1.36822 + 1.76861i 0.432669 + 0.559283i
\(11\) 1.06735i 0.321819i −0.986969 0.160910i \(-0.948557\pi\)
0.986969 0.160910i \(-0.0514427\pi\)
\(12\) 3.07108i 0.886545i
\(13\) 0 0
\(14\) −3.69510 −0.987557
\(15\) 5.43154 4.20191i 1.40242 1.08493i
\(16\) 1.00000 0.250000
\(17\) 2.79940i 0.678955i −0.940614 0.339478i \(-0.889750\pi\)
0.940614 0.339478i \(-0.110250\pi\)
\(18\) 6.43154 1.51593
\(19\) 2.19819i 0.504298i −0.967688 0.252149i \(-0.918863\pi\)
0.967688 0.252149i \(-0.0811374\pi\)
\(20\) −1.36822 1.76861i −0.305943 0.395473i
\(21\) 11.3479i 2.47633i
\(22\) 1.06735i 0.227560i
\(23\) 1.13083i 0.235795i 0.993026 + 0.117897i \(0.0376154\pi\)
−0.993026 + 0.117897i \(0.962385\pi\)
\(24\) 3.07108i 0.626882i
\(25\) −1.25595 + 4.83969i −0.251190 + 0.967938i
\(26\) 0 0
\(27\) 10.5385i 2.02814i
\(28\) 3.69510 0.698308
\(29\) 2.73644 0.508144 0.254072 0.967185i \(-0.418230\pi\)
0.254072 + 0.967185i \(0.418230\pi\)
\(30\) −5.43154 + 4.20191i −0.991659 + 0.767161i
\(31\) 4.20191i 0.754686i −0.926074 0.377343i \(-0.876838\pi\)
0.926074 0.377343i \(-0.123162\pi\)
\(32\) −1.00000 −0.176777
\(33\) 3.27793 0.570614
\(34\) 2.79940i 0.480094i
\(35\) −5.05571 6.53518i −0.854571 1.10465i
\(36\) −6.43154 −1.07192
\(37\) 10.3193 1.69648 0.848239 0.529614i \(-0.177663\pi\)
0.848239 + 0.529614i \(0.177663\pi\)
\(38\) 2.19819i 0.356593i
\(39\) 0 0
\(40\) 1.36822 + 1.76861i 0.216335 + 0.279641i
\(41\) 4.93821i 0.771220i 0.922662 + 0.385610i \(0.126009\pi\)
−0.922662 + 0.385610i \(0.873991\pi\)
\(42\) 11.3479i 1.75103i
\(43\) 4.39637i 0.670440i 0.942140 + 0.335220i \(0.108811\pi\)
−0.942140 + 0.335220i \(0.891189\pi\)
\(44\) 1.06735i 0.160910i
\(45\) 8.79976 + 11.3749i 1.31179 + 1.69567i
\(46\) 1.13083i 0.166732i
\(47\) 10.5582 1.54007 0.770034 0.638003i \(-0.220239\pi\)
0.770034 + 0.638003i \(0.220239\pi\)
\(48\) 3.07108i 0.443272i
\(49\) 6.65376 0.950537
\(50\) 1.25595 4.83969i 0.177618 0.684435i
\(51\) 8.59720 1.20385
\(52\) 0 0
\(53\) 3.81853i 0.524515i −0.964998 0.262258i \(-0.915533\pi\)
0.964998 0.262258i \(-0.0844670\pi\)
\(54\) 10.5385i 1.43411i
\(55\) −1.88773 + 1.46037i −0.254541 + 0.196917i
\(56\) −3.69510 −0.493778
\(57\) 6.75081 0.894166
\(58\) −2.73644 −0.359312
\(59\) 3.61033i 0.470025i 0.971992 + 0.235013i \(0.0755131\pi\)
−0.971992 + 0.235013i \(0.924487\pi\)
\(60\) 5.43154 4.20191i 0.701209 0.542465i
\(61\) 15.2214 1.94890 0.974448 0.224613i \(-0.0721117\pi\)
0.974448 + 0.224613i \(0.0721117\pi\)
\(62\) 4.20191i 0.533644i
\(63\) −23.7652 −2.99413
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −3.27793 −0.403485
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 2.79940i 0.339478i
\(69\) −3.47288 −0.418086
\(70\) 5.05571 + 6.53518i 0.604273 + 0.781104i
\(71\) 12.2843i 1.45788i −0.684577 0.728941i \(-0.740013\pi\)
0.684577 0.728941i \(-0.259987\pi\)
\(72\) 6.43154 0.757964
\(73\) −1.23397 −0.144425 −0.0722127 0.997389i \(-0.523006\pi\)
−0.0722127 + 0.997389i \(0.523006\pi\)
\(74\) −10.3193 −1.19959
\(75\) −14.8631 3.85712i −1.71624 0.445382i
\(76\) 2.19819i 0.252149i
\(77\) 3.94398i 0.449458i
\(78\) 0 0
\(79\) 14.2237 1.60029 0.800145 0.599807i \(-0.204756\pi\)
0.800145 + 0.599807i \(0.204756\pi\)
\(80\) −1.36822 1.76861i −0.152972 0.197736i
\(81\) 13.0701 1.45223
\(82\) 4.93821i 0.545335i
\(83\) −8.18235 −0.898129 −0.449065 0.893499i \(-0.648243\pi\)
−0.449065 + 0.893499i \(0.648243\pi\)
\(84\) 11.3479i 1.23816i
\(85\) −4.95105 + 3.83020i −0.537017 + 0.415444i
\(86\) 4.39637i 0.474073i
\(87\) 8.40383i 0.900985i
\(88\) 1.06735i 0.113780i
\(89\) 8.80497i 0.933325i −0.884435 0.466663i \(-0.845456\pi\)
0.884435 0.466663i \(-0.154544\pi\)
\(90\) −8.79976 11.3749i −0.927576 1.19902i
\(91\) 0 0
\(92\) 1.13083i 0.117897i
\(93\) 12.9044 1.33813
\(94\) −10.5582 −1.08899
\(95\) −3.88773 + 3.00760i −0.398873 + 0.308573i
\(96\) 3.07108i 0.313441i
\(97\) 8.75081 0.888510 0.444255 0.895900i \(-0.353468\pi\)
0.444255 + 0.895900i \(0.353468\pi\)
\(98\) −6.65376 −0.672131
\(99\) 6.86472i 0.689931i
\(100\) −1.25595 + 4.83969i −0.125595 + 0.483969i
\(101\) 2.58283 0.257001 0.128501 0.991709i \(-0.458984\pi\)
0.128501 + 0.991709i \(0.458984\pi\)
\(102\) −8.59720 −0.851249
\(103\) 3.00760i 0.296348i 0.988961 + 0.148174i \(0.0473395\pi\)
−0.988961 + 0.148174i \(0.952660\pi\)
\(104\) 0 0
\(105\) 20.0701 15.5265i 1.95864 1.51523i
\(106\) 3.81853i 0.370888i
\(107\) 5.47595i 0.529380i 0.964334 + 0.264690i \(0.0852697\pi\)
−0.964334 + 0.264690i \(0.914730\pi\)
\(108\) 10.5385i 1.01407i
\(109\) 11.8872i 1.13859i 0.822134 + 0.569294i \(0.192783\pi\)
−0.822134 + 0.569294i \(0.807217\pi\)
\(110\) 1.88773 1.46037i 0.179988 0.139241i
\(111\) 31.6913i 3.00801i
\(112\) 3.69510 0.349154
\(113\) 9.26298i 0.871388i 0.900095 + 0.435694i \(0.143497\pi\)
−0.900095 + 0.435694i \(0.856503\pi\)
\(114\) −6.75081 −0.632271
\(115\) 2.00000 1.54723i 0.186501 0.144280i
\(116\) 2.73644 0.254072
\(117\) 0 0
\(118\) 3.61033i 0.332358i
\(119\) 10.3441i 0.948240i
\(120\) −5.43154 + 4.20191i −0.495829 + 0.383580i
\(121\) 9.86076 0.896432
\(122\) −15.2214 −1.37808
\(123\) −15.1657 −1.36744
\(124\) 4.20191i 0.377343i
\(125\) 10.2779 4.40048i 0.919286 0.393591i
\(126\) 23.7652 2.11717
\(127\) 7.40397i 0.656996i 0.944505 + 0.328498i \(0.106542\pi\)
−0.944505 + 0.328498i \(0.893458\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −13.5016 −1.18875
\(130\) 0 0
\(131\) −7.35829 −0.642897 −0.321448 0.946927i \(-0.604170\pi\)
−0.321448 + 0.946927i \(0.604170\pi\)
\(132\) 3.27793 0.285307
\(133\) 8.12252i 0.704311i
\(134\) 4.00000 0.345547
\(135\) −18.6385 + 14.4190i −1.60415 + 1.24099i
\(136\) 2.79940i 0.240047i
\(137\) −13.4046 −1.14523 −0.572615 0.819825i \(-0.694071\pi\)
−0.572615 + 0.819825i \(0.694071\pi\)
\(138\) 3.47288 0.295631
\(139\) −11.3583 −0.963397 −0.481699 0.876337i \(-0.659980\pi\)
−0.481699 + 0.876337i \(0.659980\pi\)
\(140\) −5.05571 6.53518i −0.427285 0.552324i
\(141\) 32.4250i 2.73068i
\(142\) 12.2843i 1.03088i
\(143\) 0 0
\(144\) −6.43154 −0.535962
\(145\) −3.74405 4.83969i −0.310926 0.401914i
\(146\) 1.23397 0.102124
\(147\) 20.4342i 1.68539i
\(148\) 10.3193 0.848239
\(149\) 7.00132i 0.573570i −0.957995 0.286785i \(-0.907413\pi\)
0.957995 0.286785i \(-0.0925866\pi\)
\(150\) 14.8631 + 3.85712i 1.21357 + 0.314933i
\(151\) 0.194458i 0.0158248i −0.999969 0.00791239i \(-0.997481\pi\)
0.999969 0.00791239i \(-0.00251862\pi\)
\(152\) 2.19819i 0.178296i
\(153\) 18.0045i 1.45558i
\(154\) 3.94398i 0.317815i
\(155\) −7.43154 + 5.74914i −0.596916 + 0.461782i
\(156\) 0 0
\(157\) 16.8889i 1.34788i 0.738786 + 0.673940i \(0.235399\pi\)
−0.738786 + 0.673940i \(0.764601\pi\)
\(158\) −14.2237 −1.13158
\(159\) 11.7270 0.930012
\(160\) 1.36822 + 1.76861i 0.108167 + 0.139821i
\(161\) 4.17854i 0.329315i
\(162\) −13.0701 −1.02688
\(163\) −2.23165 −0.174796 −0.0873982 0.996173i \(-0.527855\pi\)
−0.0873982 + 0.996173i \(0.527855\pi\)
\(164\) 4.93821i 0.385610i
\(165\) −4.48493 5.79737i −0.349151 0.451325i
\(166\) 8.18235 0.635073
\(167\) 2.03902 0.157784 0.0788920 0.996883i \(-0.474862\pi\)
0.0788920 + 0.996883i \(0.474862\pi\)
\(168\) 11.3479i 0.875513i
\(169\) 0 0
\(170\) 4.95105 3.83020i 0.379728 0.293763i
\(171\) 14.1377i 1.08114i
\(172\) 4.39637i 0.335220i
\(173\) 10.8722i 0.826596i 0.910596 + 0.413298i \(0.135623\pi\)
−0.910596 + 0.413298i \(0.864377\pi\)
\(174\) 8.40383i 0.637093i
\(175\) −4.64086 + 17.8831i −0.350816 + 1.35184i
\(176\) 1.06735i 0.0804548i
\(177\) −11.0876 −0.833396
\(178\) 8.80497i 0.659961i
\(179\) −3.91732 −0.292794 −0.146397 0.989226i \(-0.546768\pi\)
−0.146397 + 0.989226i \(0.546768\pi\)
\(180\) 8.79976 + 11.3749i 0.655895 + 0.847833i
\(181\) −14.1976 −1.05530 −0.527648 0.849463i \(-0.676926\pi\)
−0.527648 + 0.849463i \(0.676926\pi\)
\(182\) 0 0
\(183\) 46.7460i 3.45557i
\(184\) 1.13083i 0.0833661i
\(185\) −14.1190 18.2507i −1.03805 1.34182i
\(186\) −12.9044 −0.946198
\(187\) −2.98795 −0.218501
\(188\) 10.5582 0.770034
\(189\) 38.9409i 2.83254i
\(190\) 3.88773 3.00760i 0.282046 0.218194i
\(191\) −0.336811 −0.0243708 −0.0121854 0.999926i \(-0.503879\pi\)
−0.0121854 + 0.999926i \(0.503879\pi\)
\(192\) 3.07108i 0.221636i
\(193\) 6.76518 0.486968 0.243484 0.969905i \(-0.421710\pi\)
0.243484 + 0.969905i \(0.421710\pi\)
\(194\) −8.75081 −0.628271
\(195\) 0 0
\(196\) 6.65376 0.475269
\(197\) 14.9363 1.06417 0.532085 0.846691i \(-0.321409\pi\)
0.532085 + 0.846691i \(0.321409\pi\)
\(198\) 6.86472i 0.487855i
\(199\) −0.302580 −0.0214493 −0.0107247 0.999942i \(-0.503414\pi\)
−0.0107247 + 0.999942i \(0.503414\pi\)
\(200\) 1.25595 4.83969i 0.0888090 0.342218i
\(201\) 12.2843i 0.866469i
\(202\) −2.58283 −0.181727
\(203\) 10.1114 0.709682
\(204\) 8.59720 0.601924
\(205\) 8.73377 6.75656i 0.609993 0.471899i
\(206\) 3.00760i 0.209550i
\(207\) 7.27299i 0.505508i
\(208\) 0 0
\(209\) −2.34624 −0.162293
\(210\) −20.0701 + 15.5265i −1.38497 + 1.07143i
\(211\) 0.404566 0.0278515 0.0139258 0.999903i \(-0.495567\pi\)
0.0139258 + 0.999903i \(0.495567\pi\)
\(212\) 3.81853i 0.262258i
\(213\) 37.7262 2.58495
\(214\) 5.47595i 0.374328i
\(215\) 7.77546 6.01520i 0.530282 0.410233i
\(216\) 10.5385i 0.717056i
\(217\) 15.5265i 1.05401i
\(218\) 11.8872i 0.805103i
\(219\) 3.78962i 0.256079i
\(220\) −1.88773 + 1.46037i −0.127271 + 0.0984584i
\(221\) 0 0
\(222\) 31.6913i 2.12698i
\(223\) 0.832022 0.0557163 0.0278581 0.999612i \(-0.491131\pi\)
0.0278581 + 0.999612i \(0.491131\pi\)
\(224\) −3.69510 −0.246889
\(225\) 8.07769 31.1266i 0.538512 2.07511i
\(226\) 9.26298i 0.616164i
\(227\) 7.77546 0.516075 0.258038 0.966135i \(-0.416924\pi\)
0.258038 + 0.966135i \(0.416924\pi\)
\(228\) 6.75081 0.447083
\(229\) 7.73762i 0.511316i −0.966767 0.255658i \(-0.917708\pi\)
0.966767 0.255658i \(-0.0822921\pi\)
\(230\) −2.00000 + 1.54723i −0.131876 + 0.102021i
\(231\) 12.1123 0.796929
\(232\) −2.73644 −0.179656
\(233\) 6.86070i 0.449460i 0.974421 + 0.224730i \(0.0721500\pi\)
−0.974421 + 0.224730i \(0.927850\pi\)
\(234\) 0 0
\(235\) −14.4459 18.6733i −0.942347 1.21811i
\(236\) 3.61033i 0.235013i
\(237\) 43.6821i 2.83746i
\(238\) 10.3441i 0.670507i
\(239\) 22.3277i 1.44426i −0.691757 0.722130i \(-0.743163\pi\)
0.691757 0.722130i \(-0.256837\pi\)
\(240\) 5.43154 4.20191i 0.350604 0.271232i
\(241\) 5.68717i 0.366343i −0.983081 0.183172i \(-0.941364\pi\)
0.983081 0.183172i \(-0.0586364\pi\)
\(242\) −9.86076 −0.633873
\(243\) 8.52366i 0.546793i
\(244\) 15.2214 0.974448
\(245\) −9.10380 11.7679i −0.581621 0.751823i
\(246\) 15.1657 0.966927
\(247\) 0 0
\(248\) 4.20191i 0.266822i
\(249\) 25.1286i 1.59246i
\(250\) −10.2779 + 4.40048i −0.650033 + 0.278311i
\(251\) 17.6162 1.11193 0.555963 0.831207i \(-0.312350\pi\)
0.555963 + 0.831207i \(0.312350\pi\)
\(252\) −23.7652 −1.49707
\(253\) 1.20700 0.0758833
\(254\) 7.40397i 0.464567i
\(255\) −11.7629 15.2051i −0.736619 0.952179i
\(256\) 1.00000 0.0625000
\(257\) 25.8167i 1.61040i −0.593001 0.805201i \(-0.702057\pi\)
0.593001 0.805201i \(-0.297943\pi\)
\(258\) 13.5016 0.840574
\(259\) 38.1307 2.36933
\(260\) 0 0
\(261\) −17.5995 −1.08938
\(262\) 7.35829 0.454597
\(263\) 21.2163i 1.30825i −0.756386 0.654125i \(-0.773037\pi\)
0.756386 0.654125i \(-0.226963\pi\)
\(264\) −3.27793 −0.201743
\(265\) −6.75348 + 5.22459i −0.414863 + 0.320944i
\(266\) 8.12252i 0.498023i
\(267\) 27.0408 1.65487
\(268\) −4.00000 −0.244339
\(269\) −14.4896 −0.883445 −0.441722 0.897152i \(-0.645632\pi\)
−0.441722 + 0.897152i \(0.645632\pi\)
\(270\) 18.6385 14.4190i 1.13431 0.877514i
\(271\) 29.0838i 1.76671i −0.468701 0.883357i \(-0.655278\pi\)
0.468701 0.883357i \(-0.344722\pi\)
\(272\) 2.79940i 0.169739i
\(273\) 0 0
\(274\) 13.4046 0.809799
\(275\) 5.16566 + 1.34054i 0.311501 + 0.0808377i
\(276\) −3.47288 −0.209043
\(277\) 2.54147i 0.152702i −0.997081 0.0763510i \(-0.975673\pi\)
0.997081 0.0763510i \(-0.0243269\pi\)
\(278\) 11.3583 0.681225
\(279\) 27.0248i 1.61793i
\(280\) 5.05571 + 6.53518i 0.302136 + 0.390552i
\(281\) 15.2066i 0.907149i 0.891218 + 0.453574i \(0.149851\pi\)
−0.891218 + 0.453574i \(0.850149\pi\)
\(282\) 32.4250i 1.93088i
\(283\) 24.7921i 1.47374i 0.676037 + 0.736868i \(0.263696\pi\)
−0.676037 + 0.736868i \(0.736304\pi\)
\(284\) 12.2843i 0.728941i
\(285\) −9.23659 11.9395i −0.547128 0.707237i
\(286\) 0 0
\(287\) 18.2472i 1.07710i
\(288\) 6.43154 0.378982
\(289\) 9.16334 0.539020
\(290\) 3.74405 + 4.83969i 0.219858 + 0.284196i
\(291\) 26.8744i 1.57541i
\(292\) −1.23397 −0.0722127
\(293\) −21.0630 −1.23051 −0.615256 0.788328i \(-0.710947\pi\)
−0.615256 + 0.788328i \(0.710947\pi\)
\(294\) 20.4342i 1.19175i
\(295\) 6.38526 4.93973i 0.371764 0.287602i
\(296\) −10.3193 −0.599795
\(297\) −11.2483 −0.652695
\(298\) 7.00132i 0.405575i
\(299\) 0 0
\(300\) −14.8631 3.85712i −0.858120 0.222691i
\(301\) 16.2450i 0.936348i
\(302\) 0.194458i 0.0111898i
\(303\) 7.93208i 0.455686i
\(304\) 2.19819i 0.126075i
\(305\) −20.8262 26.9206i −1.19250 1.54147i
\(306\) 18.0045i 1.02925i
\(307\) −8.89181 −0.507483 −0.253741 0.967272i \(-0.581661\pi\)
−0.253741 + 0.967272i \(0.581661\pi\)
\(308\) 3.94398i 0.224729i
\(309\) −9.23659 −0.525451
\(310\) 7.43154 5.74914i 0.422083 0.326529i
\(311\) 28.7015 1.62751 0.813756 0.581206i \(-0.197419\pi\)
0.813756 + 0.581206i \(0.197419\pi\)
\(312\) 0 0
\(313\) 7.84120i 0.443211i 0.975136 + 0.221606i \(0.0711297\pi\)
−0.975136 + 0.221606i \(0.928870\pi\)
\(314\) 16.8889i 0.953095i
\(315\) 32.5160 + 42.0313i 1.83207 + 2.36819i
\(316\) 14.2237 0.800145
\(317\) 6.17741 0.346958 0.173479 0.984838i \(-0.444499\pi\)
0.173479 + 0.984838i \(0.444499\pi\)
\(318\) −11.7270 −0.657618
\(319\) 2.92075i 0.163530i
\(320\) −1.36822 1.76861i −0.0764858 0.0988682i
\(321\) −16.8171 −0.938639
\(322\) 4.17854i 0.232861i
\(323\) −6.15361 −0.342396
\(324\) 13.0701 0.726115
\(325\) 0 0
\(326\) 2.23165 0.123600
\(327\) −36.5066 −2.01882
\(328\) 4.93821i 0.272667i
\(329\) 39.0135 2.15088
\(330\) 4.48493 + 5.79737i 0.246887 + 0.319135i
\(331\) 26.6566i 1.46518i −0.680670 0.732590i \(-0.738311\pi\)
0.680670 0.732590i \(-0.261689\pi\)
\(332\) −8.18235 −0.449065
\(333\) −66.3688 −3.63699
\(334\) −2.03902 −0.111570
\(335\) 5.47288 + 7.07443i 0.299015 + 0.386518i
\(336\) 11.3479i 0.619081i
\(337\) 22.4283i 1.22175i −0.791728 0.610874i \(-0.790818\pi\)
0.791728 0.610874i \(-0.209182\pi\)
\(338\) 0 0
\(339\) −28.4474 −1.54505
\(340\) −4.95105 + 3.83020i −0.268508 + 0.207722i
\(341\) −4.48493 −0.242872
\(342\) 14.1377i 0.764480i
\(343\) −1.27939 −0.0690808
\(344\) 4.39637i 0.237036i
\(345\) 4.75166 + 6.14216i 0.255821 + 0.330683i
\(346\) 10.8722i 0.584492i
\(347\) 0.412291i 0.0221329i 0.999939 + 0.0110665i \(0.00352264\pi\)
−0.999939 + 0.0110665i \(0.996477\pi\)
\(348\) 8.40383i 0.450492i
\(349\) 3.34125i 0.178853i 0.995993 + 0.0894264i \(0.0285034\pi\)
−0.995993 + 0.0894264i \(0.971497\pi\)
\(350\) 4.64086 17.8831i 0.248064 0.955894i
\(351\) 0 0
\(352\) 1.06735i 0.0568901i
\(353\) 21.1208 1.12415 0.562075 0.827087i \(-0.310003\pi\)
0.562075 + 0.827087i \(0.310003\pi\)
\(354\) 11.0876 0.589300
\(355\) −21.7262 + 16.8077i −1.15310 + 0.892058i
\(356\) 8.80497i 0.466663i
\(357\) 31.7675 1.68131
\(358\) 3.91732 0.207037
\(359\) 5.57954i 0.294477i 0.989101 + 0.147238i \(0.0470384\pi\)
−0.989101 + 0.147238i \(0.952962\pi\)
\(360\) −8.79976 11.3749i −0.463788 0.599508i
\(361\) 14.1680 0.745683
\(362\) 14.1976 0.746208
\(363\) 30.2832i 1.58945i
\(364\) 0 0
\(365\) 1.68834 + 2.18241i 0.0883719 + 0.114233i
\(366\) 46.7460i 2.44346i
\(367\) 1.30192i 0.0679595i −0.999423 0.0339797i \(-0.989182\pi\)
0.999423 0.0339797i \(-0.0108182\pi\)
\(368\) 1.13083i 0.0589487i
\(369\) 31.7603i 1.65338i
\(370\) 14.1190 + 18.2507i 0.734013 + 0.948811i
\(371\) 14.1098i 0.732546i
\(372\) 12.9044 0.669063
\(373\) 33.9971i 1.76030i −0.474691 0.880152i \(-0.657440\pi\)
0.474691 0.880152i \(-0.342560\pi\)
\(374\) 2.98795 0.154503
\(375\) 13.5142 + 31.5644i 0.697871 + 1.62998i
\(376\) −10.5582 −0.544496
\(377\) 0 0
\(378\) 38.9409i 2.00291i
\(379\) 4.67768i 0.240276i 0.992757 + 0.120138i \(0.0383338\pi\)
−0.992757 + 0.120138i \(0.961666\pi\)
\(380\) −3.88773 + 3.00760i −0.199436 + 0.154287i
\(381\) −22.7382 −1.16491
\(382\) 0.336811 0.0172328
\(383\) −13.7388 −0.702018 −0.351009 0.936372i \(-0.614161\pi\)
−0.351009 + 0.936372i \(0.614161\pi\)
\(384\) 3.07108i 0.156720i
\(385\) −6.97535 + 5.39623i −0.355497 + 0.275017i
\(386\) −6.76518 −0.344338
\(387\) 28.2754i 1.43732i
\(388\) 8.75081 0.444255
\(389\) 17.9138 0.908268 0.454134 0.890933i \(-0.349949\pi\)
0.454134 + 0.890933i \(0.349949\pi\)
\(390\) 0 0
\(391\) 3.16566 0.160094
\(392\) −6.65376 −0.336066
\(393\) 22.5979i 1.13991i
\(394\) −14.9363 −0.752481
\(395\) −19.4611 25.1561i −0.979196 1.26574i
\(396\) 6.86472i 0.344965i
\(397\) 0.458511 0.0230120 0.0115060 0.999934i \(-0.496337\pi\)
0.0115060 + 0.999934i \(0.496337\pi\)
\(398\) 0.302580 0.0151670
\(399\) 24.9449 1.24881
\(400\) −1.25595 + 4.83969i −0.0627975 + 0.241984i
\(401\) 26.0554i 1.30114i 0.759445 + 0.650572i \(0.225471\pi\)
−0.759445 + 0.650572i \(0.774529\pi\)
\(402\) 12.2843i 0.612686i
\(403\) 0 0
\(404\) 2.58283 0.128501
\(405\) −17.8827 23.1158i −0.888600 1.14864i
\(406\) −10.1114 −0.501821
\(407\) 11.0143i 0.545959i
\(408\) −8.59720 −0.425625
\(409\) 0.358531i 0.0177282i −0.999961 0.00886411i \(-0.997178\pi\)
0.999961 0.00886411i \(-0.00282157\pi\)
\(410\) −8.73377 + 6.75656i −0.431330 + 0.333683i
\(411\) 41.1665i 2.03059i
\(412\) 3.00760i 0.148174i
\(413\) 13.3405i 0.656445i
\(414\) 7.27299i 0.357448i
\(415\) 11.1952 + 14.4714i 0.549553 + 0.710371i
\(416\) 0 0
\(417\) 34.8822i 1.70819i
\(418\) 2.34624 0.114758
\(419\) 19.3184 0.943766 0.471883 0.881661i \(-0.343574\pi\)
0.471883 + 0.881661i \(0.343574\pi\)
\(420\) 20.0701 15.5265i 0.979319 0.757615i
\(421\) 0.220426i 0.0107429i 0.999986 + 0.00537144i \(0.00170979\pi\)
−0.999986 + 0.00537144i \(0.998290\pi\)
\(422\) −0.404566 −0.0196940
\(423\) −67.9053 −3.30167
\(424\) 3.81853i 0.185444i
\(425\) 13.5482 + 3.51591i 0.657186 + 0.170547i
\(426\) −37.7262 −1.82784
\(427\) 56.2445 2.72186
\(428\) 5.47595i 0.264690i
\(429\) 0 0
\(430\) −7.77546 + 6.01520i −0.374966 + 0.290079i
\(431\) 19.9696i 0.961902i −0.876747 0.480951i \(-0.840291\pi\)
0.876747 0.480951i \(-0.159709\pi\)
\(432\) 10.5385i 0.507035i
\(433\) 31.4155i 1.50973i −0.655878 0.754867i \(-0.727701\pi\)
0.655878 0.754867i \(-0.272299\pi\)
\(434\) 15.5265i 0.745295i
\(435\) 14.8631 11.4983i 0.712630 0.551300i
\(436\) 11.8872i 0.569294i
\(437\) 2.48578 0.118911
\(438\) 3.78962i 0.181075i
\(439\) −25.6139 −1.22248 −0.611242 0.791444i \(-0.709330\pi\)
−0.611242 + 0.791444i \(0.709330\pi\)
\(440\) 1.88773 1.46037i 0.0899940 0.0696206i
\(441\) −42.7939 −2.03781
\(442\) 0 0
\(443\) 28.4024i 1.34944i 0.738074 + 0.674719i \(0.235735\pi\)
−0.738074 + 0.674719i \(0.764265\pi\)
\(444\) 31.6913i 1.50400i
\(445\) −15.5725 + 12.0471i −0.738209 + 0.571089i
\(446\) −0.832022 −0.0393974
\(447\) 21.5016 1.01699
\(448\) 3.69510 0.174577
\(449\) 22.4217i 1.05815i 0.848576 + 0.529073i \(0.177460\pi\)
−0.848576 + 0.529073i \(0.822540\pi\)
\(450\) −8.07769 + 31.1266i −0.380786 + 1.46732i
\(451\) 5.27082 0.248193
\(452\) 9.26298i 0.435694i
\(453\) 0.597197 0.0280587
\(454\) −7.77546 −0.364920
\(455\) 0 0
\(456\) −6.75081 −0.316136
\(457\) −23.5987 −1.10390 −0.551949 0.833878i \(-0.686116\pi\)
−0.551949 + 0.833878i \(0.686116\pi\)
\(458\) 7.73762i 0.361555i
\(459\) −29.5016 −1.37702
\(460\) 2.00000 1.54723i 0.0932505 0.0721399i
\(461\) 32.5063i 1.51397i 0.653432 + 0.756986i \(0.273329\pi\)
−0.653432 + 0.756986i \(0.726671\pi\)
\(462\) −12.1123 −0.563514
\(463\) 7.70367 0.358020 0.179010 0.983847i \(-0.442711\pi\)
0.179010 + 0.983847i \(0.442711\pi\)
\(464\) 2.73644 0.127036
\(465\) −17.6561 22.8229i −0.818781 1.05838i
\(466\) 6.86070i 0.317816i
\(467\) 20.9339i 0.968704i −0.874873 0.484352i \(-0.839055\pi\)
0.874873 0.484352i \(-0.160945\pi\)
\(468\) 0 0
\(469\) −14.7804 −0.682495
\(470\) 14.4459 + 18.6733i 0.666340 + 0.861334i
\(471\) −51.8672 −2.38991
\(472\) 3.61033i 0.166179i
\(473\) 4.69248 0.215761
\(474\) 43.6821i 2.00639i
\(475\) 10.6385 + 2.76081i 0.488130 + 0.126675i
\(476\) 10.3441i 0.474120i
\(477\) 24.5590i 1.12448i
\(478\) 22.3277i 1.02125i
\(479\) 0.980499i 0.0448002i −0.999749 0.0224001i \(-0.992869\pi\)
0.999749 0.0224001i \(-0.00713076\pi\)
\(480\) −5.43154 + 4.20191i −0.247915 + 0.191790i
\(481\) 0 0
\(482\) 5.68717i 0.259044i
\(483\) −12.8326 −0.583905
\(484\) 9.86076 0.448216
\(485\) −11.9730 15.4767i −0.543667 0.702763i
\(486\) 8.52366i 0.386641i
\(487\) −38.6283 −1.75041 −0.875207 0.483749i \(-0.839275\pi\)
−0.875207 + 0.483749i \(0.839275\pi\)
\(488\) −15.2214 −0.689039
\(489\) 6.85358i 0.309929i
\(490\) 9.10380 + 11.7679i 0.411268 + 0.531619i
\(491\) 17.7068 0.799099 0.399549 0.916712i \(-0.369167\pi\)
0.399549 + 0.916712i \(0.369167\pi\)
\(492\) −15.1657 −0.683721
\(493\) 7.66040i 0.345007i
\(494\) 0 0
\(495\) 12.1410 9.39245i 0.545698 0.422159i
\(496\) 4.20191i 0.188672i
\(497\) 45.3918i 2.03610i
\(498\) 25.1286i 1.12604i
\(499\) 35.5402i 1.59100i 0.605954 + 0.795499i \(0.292791\pi\)
−0.605954 + 0.795499i \(0.707209\pi\)
\(500\) 10.2779 4.40048i 0.459643 0.196795i
\(501\) 6.26199i 0.279765i
\(502\) −17.6162 −0.786250
\(503\) 44.3839i 1.97898i 0.144600 + 0.989490i \(0.453811\pi\)
−0.144600 + 0.989490i \(0.546189\pi\)
\(504\) 23.7652 1.05859
\(505\) −3.53388 4.56801i −0.157255 0.203274i
\(506\) −1.20700 −0.0536576
\(507\) 0 0
\(508\) 7.40397i 0.328498i
\(509\) 0.715949i 0.0317339i 0.999874 + 0.0158669i \(0.00505082\pi\)
−0.999874 + 0.0158669i \(0.994949\pi\)
\(510\) 11.7629 + 15.2051i 0.520868 + 0.673292i
\(511\) −4.55964 −0.201707
\(512\) −1.00000 −0.0441942
\(513\) −23.1657 −1.02279
\(514\) 25.8167i 1.13873i
\(515\) 5.31927 4.11506i 0.234395 0.181331i
\(516\) −13.5016 −0.594375
\(517\) 11.2693i 0.495623i
\(518\) −38.1307 −1.67537
\(519\) −33.3893 −1.46563
\(520\) 0 0
\(521\) 7.33132 0.321191 0.160595 0.987020i \(-0.448659\pi\)
0.160595 + 0.987020i \(0.448659\pi\)
\(522\) 17.5995 0.770310
\(523\) 11.8872i 0.519791i 0.965637 + 0.259895i \(0.0836881\pi\)
−0.965637 + 0.259895i \(0.916312\pi\)
\(524\) −7.35829 −0.321448
\(525\) −54.9205 14.2524i −2.39693 0.622028i
\(526\) 21.2163i 0.925073i
\(527\) −11.7629 −0.512398
\(528\) 3.27793 0.142654
\(529\) 21.7212 0.944401
\(530\) 6.75348 5.22459i 0.293352 0.226942i
\(531\) 23.2200i 1.00766i
\(532\) 8.12252i 0.352156i
\(533\) 0 0
\(534\) −27.0408 −1.17017
\(535\) 9.68482 7.49231i 0.418711 0.323921i
\(536\) 4.00000 0.172774
\(537\) 12.0304i 0.519150i
\(538\) 14.4896 0.624690
\(539\) 7.10191i 0.305901i
\(540\) −18.6385 + 14.4190i −0.802075 + 0.620496i
\(541\) 20.5115i 0.881856i −0.897542 0.440928i \(-0.854649\pi\)
0.897542 0.440928i \(-0.145351\pi\)
\(542\) 29.0838i 1.24925i
\(543\) 43.6019i 1.87114i
\(544\) 2.79940i 0.120023i
\(545\) 21.0238 16.2643i 0.900561 0.696686i
\(546\) 0 0
\(547\) 16.4268i 0.702358i −0.936308 0.351179i \(-0.885781\pi\)
0.936308 0.351179i \(-0.114219\pi\)
\(548\) −13.4046 −0.572615
\(549\) −97.8968 −4.17813
\(550\) −5.16566 1.34054i −0.220264 0.0571609i
\(551\) 6.01520i 0.256256i
\(552\) 3.47288 0.147816
\(553\) 52.5579 2.23499
\(554\) 2.54147i 0.107977i
\(555\) 56.0495 43.3607i 2.37917 1.84056i
\(556\) −11.3583 −0.481699
\(557\) −36.1459 −1.53155 −0.765776 0.643107i \(-0.777645\pi\)
−0.765776 + 0.643107i \(0.777645\pi\)
\(558\) 27.0248i 1.14405i
\(559\) 0 0
\(560\) −5.05571 6.53518i −0.213643 0.276162i
\(561\) 9.17625i 0.387421i
\(562\) 15.2066i 0.641451i
\(563\) 26.5601i 1.11938i −0.828703 0.559688i \(-0.810921\pi\)
0.828703 0.559688i \(-0.189079\pi\)
\(564\) 32.4250i 1.36534i
\(565\) 16.3826 12.6738i 0.689221 0.533191i
\(566\) 24.7921i 1.04209i
\(567\) 48.2952 2.02821
\(568\) 12.2843i 0.515439i
\(569\) 43.1841 1.81037 0.905186 0.425016i \(-0.139731\pi\)
0.905186 + 0.425016i \(0.139731\pi\)
\(570\) 9.23659 + 11.9395i 0.386878 + 0.500092i
\(571\) −31.5110 −1.31870 −0.659348 0.751838i \(-0.729168\pi\)
−0.659348 + 0.751838i \(0.729168\pi\)
\(572\) 0 0
\(573\) 1.03437i 0.0432116i
\(574\) 18.2472i 0.761623i
\(575\) −5.47288 1.42027i −0.228235 0.0592293i
\(576\) −6.43154 −0.267981
\(577\) −26.9555 −1.12217 −0.561086 0.827758i \(-0.689616\pi\)
−0.561086 + 0.827758i \(0.689616\pi\)
\(578\) −9.16334 −0.381145
\(579\) 20.7764i 0.863438i
\(580\) −3.74405 4.83969i −0.155463 0.200957i
\(581\) −30.2346 −1.25434
\(582\) 26.8744i 1.11398i
\(583\) −4.07572 −0.168799
\(584\) 1.23397 0.0510621
\(585\) 0 0
\(586\) 21.0630 0.870103
\(587\) −29.7262 −1.22693 −0.613465 0.789722i \(-0.710225\pi\)
−0.613465 + 0.789722i \(0.710225\pi\)
\(588\) 20.4342i 0.842694i
\(589\) −9.23659 −0.380587
\(590\) −6.38526 + 4.93973i −0.262877 + 0.203365i
\(591\) 45.8707i 1.88687i
\(592\) 10.3193 0.424119
\(593\) 15.3561 0.630600 0.315300 0.948992i \(-0.397895\pi\)
0.315300 + 0.948992i \(0.397895\pi\)
\(594\) 11.2483 0.461525
\(595\) −18.2946 + 14.1530i −0.750006 + 0.580215i
\(596\) 7.00132i 0.286785i
\(597\) 0.929248i 0.0380316i
\(598\) 0 0
\(599\) 23.6928 0.968061 0.484030 0.875051i \(-0.339172\pi\)
0.484030 + 0.875051i \(0.339172\pi\)
\(600\) 14.8631 + 3.85712i 0.606783 + 0.157466i
\(601\) −3.49668 −0.142632 −0.0713162 0.997454i \(-0.522720\pi\)
−0.0713162 + 0.997454i \(0.522720\pi\)
\(602\) 16.2450i 0.662098i
\(603\) 25.7262 1.04765
\(604\) 0.194458i 0.00791239i
\(605\) −13.4917 17.4398i −0.548515 0.709029i
\(606\) 7.93208i 0.322219i
\(607\) 37.2982i 1.51389i −0.653479 0.756944i \(-0.726691\pi\)
0.653479 0.756944i \(-0.273309\pi\)
\(608\) 2.19819i 0.0891482i
\(609\) 31.0530i 1.25833i
\(610\) 20.8262 + 26.9206i 0.843227 + 1.08998i
\(611\) 0 0
\(612\) 18.0045i 0.727788i
\(613\) 15.3242 0.618939 0.309469 0.950909i \(-0.399849\pi\)
0.309469 + 0.950909i \(0.399849\pi\)
\(614\) 8.89181 0.358844
\(615\) 20.7500 + 26.8221i 0.836719 + 1.08157i
\(616\) 3.94398i 0.158907i
\(617\) −5.07240 −0.204207 −0.102103 0.994774i \(-0.532557\pi\)
−0.102103 + 0.994774i \(0.532557\pi\)
\(618\) 9.23659 0.371550
\(619\) 20.6770i 0.831079i 0.909575 + 0.415540i \(0.136407\pi\)
−0.909575 + 0.415540i \(0.863593\pi\)
\(620\) −7.43154 + 5.74914i −0.298458 + 0.230891i
\(621\) 11.9173 0.478226
\(622\) −28.7015 −1.15083
\(623\) 32.5352i 1.30350i
\(624\) 0 0
\(625\) −21.8452 12.1568i −0.873807 0.486272i
\(626\) 7.84120i 0.313398i
\(627\) 7.20550i 0.287760i
\(628\) 16.8889i 0.673940i
\(629\) 28.8878i 1.15183i
\(630\) −32.5160 42.0313i −1.29547 1.67457i
\(631\) 21.4904i 0.855521i 0.903892 + 0.427760i \(0.140697\pi\)
−0.903892 + 0.427760i \(0.859303\pi\)
\(632\) −14.2237 −0.565788
\(633\) 1.24246i 0.0493832i
\(634\) −6.17741 −0.245336
\(635\) 13.0947 10.1303i 0.519648 0.402007i
\(636\) 11.7270 0.465006
\(637\) 0 0
\(638\) 2.92075i 0.115634i
\(639\) 79.0071i 3.12547i
\(640\) 1.36822 + 1.76861i 0.0540836 + 0.0699104i
\(641\) −35.7724 −1.41293 −0.706463 0.707750i \(-0.749710\pi\)
−0.706463 + 0.707750i \(0.749710\pi\)
\(642\) 16.8171 0.663718
\(643\) 28.0216 1.10507 0.552533 0.833491i \(-0.313662\pi\)
0.552533 + 0.833491i \(0.313662\pi\)
\(644\) 4.17854i 0.164658i
\(645\) 18.4732 + 23.8791i 0.727381 + 0.940237i
\(646\) 6.15361 0.242111
\(647\) 19.4623i 0.765140i −0.923926 0.382570i \(-0.875039\pi\)
0.923926 0.382570i \(-0.124961\pi\)
\(648\) −13.0701 −0.513441
\(649\) 3.85350 0.151263
\(650\) 0 0
\(651\) 47.6831 1.86885
\(652\) −2.23165 −0.0873982
\(653\) 12.9628i 0.507272i 0.967300 + 0.253636i \(0.0816265\pi\)
−0.967300 + 0.253636i \(0.918373\pi\)
\(654\) 36.5066 1.42752
\(655\) 10.0678 + 13.0139i 0.393380 + 0.508496i
\(656\) 4.93821i 0.192805i
\(657\) 7.93633 0.309626
\(658\) −39.0135 −1.52091
\(659\) −2.20670 −0.0859609 −0.0429804 0.999076i \(-0.513685\pi\)
−0.0429804 + 0.999076i \(0.513685\pi\)
\(660\) −4.48493 5.79737i −0.174576 0.225662i
\(661\) 43.5415i 1.69357i −0.531937 0.846784i \(-0.678536\pi\)
0.531937 0.846784i \(-0.321464\pi\)
\(662\) 26.6566i 1.03604i
\(663\) 0 0
\(664\) 8.18235 0.317537
\(665\) −14.3655 + 11.1134i −0.557072 + 0.430959i
\(666\) 66.3688 2.57174
\(667\) 3.09446i 0.119818i
\(668\) 2.03902 0.0788920
\(669\) 2.55521i 0.0987900i
\(670\) −5.47288 7.07443i −0.211436 0.273309i
\(671\) 16.2466i 0.627192i
\(672\) 11.3479i 0.437757i
\(673\) 0.588990i 0.0227039i −0.999936 0.0113519i \(-0.996386\pi\)
0.999936 0.0113519i \(-0.00361351\pi\)
\(674\) 22.4283i 0.863907i
\(675\) 51.0032 + 13.2359i 1.96312 + 0.509449i
\(676\) 0 0
\(677\) 7.61779i 0.292775i 0.989227 + 0.146388i \(0.0467647\pi\)
−0.989227 + 0.146388i \(0.953235\pi\)
\(678\) 28.4474 1.09251
\(679\) 32.3351 1.24091
\(680\) 4.95105 3.83020i 0.189864 0.146881i
\(681\) 23.8791i 0.915048i
\(682\) 4.48493 0.171737
\(683\) −28.3647 −1.08534 −0.542672 0.839944i \(-0.682587\pi\)
−0.542672 + 0.839944i \(0.682587\pi\)
\(684\) 14.1377i 0.540569i
\(685\) 18.3404 + 23.7074i 0.700750 + 0.905814i
\(686\) 1.27939 0.0488475
\(687\) 23.7629 0.906609
\(688\) 4.39637i 0.167610i
\(689\) 0 0
\(690\) −4.75166 6.14216i −0.180893 0.233828i
\(691\) 41.3046i 1.57130i 0.618670 + 0.785651i \(0.287672\pi\)
−0.618670 + 0.785651i \(0.712328\pi\)
\(692\) 10.8722i 0.413298i
\(693\) 25.3658i 0.963568i
\(694\) 0.412291i 0.0156503i
\(695\) 15.5406 + 20.0884i 0.589490 + 0.761995i
\(696\) 8.40383i 0.318546i
\(697\) 13.8241 0.523624
\(698\) 3.34125i 0.126468i
\(699\) −21.0698 −0.796932
\(700\) −4.64086 + 17.8831i −0.175408 + 0.675919i
\(701\) −32.7428 −1.23668 −0.618340 0.785911i \(-0.712195\pi\)
−0.618340 + 0.785911i \(0.712195\pi\)
\(702\) 0 0
\(703\) 22.6837i 0.855531i
\(704\) 1.06735i 0.0402274i
\(705\) 57.3471 44.3646i 2.15982 1.67087i
\(706\) −21.1208 −0.794894
\(707\) 9.54381 0.358932
\(708\) −11.0876 −0.416698
\(709\) 21.5484i 0.809267i 0.914479 + 0.404633i \(0.132601\pi\)
−0.914479 + 0.404633i \(0.867399\pi\)
\(710\) 21.7262 16.8077i 0.815368 0.630780i
\(711\) −91.4802 −3.43078
\(712\) 8.80497i 0.329980i
\(713\) 4.75166 0.177951
\(714\) −31.7675 −1.18887
\(715\) 0 0
\(716\) −3.91732 −0.146397
\(717\) 68.5703 2.56080
\(718\) 5.57954i 0.208227i
\(719\) 42.0862 1.56955 0.784775 0.619780i \(-0.212778\pi\)
0.784775 + 0.619780i \(0.212778\pi\)
\(720\) 8.79976 + 11.3749i 0.327948 + 0.423916i
\(721\) 11.1134i 0.413884i
\(722\) −14.1680 −0.527278
\(723\) 17.4658 0.649559
\(724\) −14.1976 −0.527648
\(725\) −3.43683 + 13.2435i −0.127641 + 0.491852i
\(726\) 30.2832i 1.12391i
\(727\) 21.7707i 0.807429i 0.914885 + 0.403715i \(0.132281\pi\)
−0.914885 + 0.403715i \(0.867719\pi\)
\(728\) 0 0
\(729\) 13.0334 0.482718
\(730\) −1.68834 2.18241i −0.0624884 0.0807746i
\(731\) 12.3072 0.455199
\(732\) 46.7460i 1.72778i
\(733\) 16.2319 0.599541 0.299770 0.954011i \(-0.403090\pi\)
0.299770 + 0.954011i \(0.403090\pi\)
\(734\) 1.30192i 0.0480546i
\(735\) 36.1402 27.9585i 1.33305 1.03127i
\(736\) 1.13083i 0.0416830i
\(737\) 4.26941i 0.157266i
\(738\) 31.7603i 1.16911i
\(739\) 18.4432i 0.678445i 0.940706 + 0.339222i \(0.110164\pi\)
−0.940706 + 0.339222i \(0.889836\pi\)
\(740\) −14.1190 18.2507i −0.519026 0.670911i
\(741\) 0 0
\(742\) 14.1098i 0.517989i
\(743\) 8.21194 0.301267 0.150633 0.988590i \(-0.451869\pi\)
0.150633 + 0.988590i \(0.451869\pi\)
\(744\) −12.9044 −0.473099
\(745\) −12.3826 + 9.57934i −0.453663 + 0.350960i
\(746\) 33.9971i 1.24472i
\(747\) 52.6251 1.92545
\(748\) −2.98795 −0.109250
\(749\) 20.2342i 0.739341i
\(750\) −13.5142 31.5644i −0.493470 1.15257i
\(751\) −38.0908 −1.38995 −0.694977 0.719032i \(-0.744586\pi\)
−0.694977 + 0.719032i \(0.744586\pi\)
\(752\) 10.5582 0.385017
\(753\) 54.1008i 1.97154i
\(754\) 0 0
\(755\) −0.343920 + 0.266061i −0.0125165 + 0.00968297i
\(756\) 38.9409i 1.41627i
\(757\) 25.2668i 0.918336i 0.888350 + 0.459168i \(0.151852\pi\)
−0.888350 + 0.459168i \(0.848148\pi\)
\(758\) 4.67768i 0.169901i
\(759\) 3.70679i 0.134548i
\(760\) 3.88773 3.00760i 0.141023 0.109097i
\(761\) 36.5040i 1.32327i −0.749827 0.661634i \(-0.769863\pi\)
0.749827 0.661634i \(-0.230137\pi\)
\(762\) 22.7382 0.823718
\(763\) 43.9244i 1.59017i
\(764\) −0.336811 −0.0121854
\(765\) 31.8429 24.6341i 1.15128 0.890647i
\(766\) 13.7388 0.496402
\(767\) 0 0
\(768\) 3.07108i 0.110818i
\(769\) 27.7956i 1.00234i −0.865350 0.501168i \(-0.832904\pi\)
0.865350 0.501168i \(-0.167096\pi\)
\(770\) 6.97535 5.39623i 0.251374 0.194466i
\(771\) 79.2852 2.85539
\(772\) 6.76518 0.243484
\(773\) 3.09705 0.111393 0.0556965 0.998448i \(-0.482262\pi\)
0.0556965 + 0.998448i \(0.482262\pi\)
\(774\) 28.2754i 1.01634i
\(775\) 20.3360 + 5.27739i 0.730489 + 0.189569i
\(776\) −8.75081 −0.314136
\(777\) 117.103i 4.20103i
\(778\) −17.9138 −0.642243
\(779\) 10.8551 0.388925
\(780\) 0 0
\(781\) −13.1117 −0.469174
\(782\) −3.16566 −0.113204
\(783\) 28.8381i 1.03059i
\(784\) 6.65376 0.237634
\(785\) 29.8698 23.1077i 1.06610 0.824750i
\(786\) 22.5979i 0.806040i
\(787\) 30.4310 1.08475 0.542374 0.840137i \(-0.317526\pi\)
0.542374 + 0.840137i \(0.317526\pi\)
\(788\) 14.9363 0.532085
\(789\) 65.1568 2.31964
\(790\) 19.4611 + 25.1561i 0.692396 + 0.895015i
\(791\) 34.2276i 1.21699i
\(792\) 6.86472i 0.243927i
\(793\) 0 0
\(794\) −0.458511 −0.0162720
\(795\) −16.0451 20.7405i −0.569062 0.735589i
\(796\) −0.302580 −0.0107247
\(797\) 47.5544i 1.68446i 0.539116 + 0.842231i \(0.318758\pi\)
−0.539116 + 0.842231i \(0.681242\pi\)
\(798\) −24.9449 −0.883040
\(799\) 29.5566i 1.04564i
\(800\) 1.25595 4.83969i 0.0444045 0.171109i
\(801\) 56.6295i 2.00091i
\(802\) 26.0554i 0.920048i
\(803\) 1.31708i 0.0464788i
\(804\) 12.2843i 0.433235i
\(805\) 7.39020 5.71716i 0.260470 0.201503i
\(806\) 0 0
\(807\) 44.4986i 1.56643i
\(808\) −2.58283 −0.0908636
\(809\) 36.0836 1.26863 0.634316 0.773074i \(-0.281282\pi\)
0.634316 + 0.773074i \(0.281282\pi\)
\(810\) 17.8827 + 23.1158i 0.628335 + 0.812208i
\(811\) 36.3456i 1.27627i −0.769926 0.638134i \(-0.779707\pi\)
0.769926 0.638134i \(-0.220293\pi\)
\(812\) 10.1114 0.354841
\(813\) 89.3186 3.13254
\(814\) 11.0143i 0.386051i
\(815\) 3.05339 + 3.94691i 0.106955 + 0.138254i
\(816\) 8.59720 0.300962
\(817\) 9.66404 0.338102
\(818\) 0.358531i 0.0125357i
\(819\) 0 0
\(820\) 8.73377 6.75656i 0.304996 0.235949i
\(821\) 21.3321i 0.744494i 0.928134 + 0.372247i \(0.121413\pi\)
−0.928134 + 0.372247i \(0.878587\pi\)
\(822\) 41.1665i 1.43585i
\(823\) 19.9585i 0.695708i −0.937549 0.347854i \(-0.886910\pi\)
0.937549 0.347854i \(-0.113090\pi\)
\(824\) 3.00760i 0.104775i
\(825\) −4.11691 + 15.8642i −0.143332 + 0.552319i
\(826\) 13.3405i 0.464176i
\(827\) −28.9529 −1.00679 −0.503395 0.864056i \(-0.667916\pi\)
−0.503395 + 0.864056i \(0.667916\pi\)
\(828\) 7.27299i 0.252754i
\(829\) 27.1011 0.941261 0.470631 0.882330i \(-0.344026\pi\)
0.470631 + 0.882330i \(0.344026\pi\)
\(830\) −11.1952 14.4714i −0.388593 0.502308i
\(831\) 7.80505 0.270754
\(832\) 0 0
\(833\) 18.6266i 0.645372i
\(834\) 34.8822i 1.20787i
\(835\) −2.78983 3.60623i −0.0965459 0.124799i
\(836\) −2.34624 −0.0811464
\(837\) −44.2820 −1.53061
\(838\) −19.3184 −0.667344
\(839\) 33.7213i 1.16419i −0.813121 0.582095i \(-0.802233\pi\)
0.813121 0.582095i \(-0.197767\pi\)
\(840\) −20.0701 + 15.5265i −0.692483 + 0.535715i
\(841\) −21.5119 −0.741790
\(842\) 0.220426i 0.00759637i
\(843\) −46.7006 −1.60846
\(844\) 0.404566 0.0139258
\(845\) 0 0
\(846\) 67.9053 2.33463
\(847\) 36.4365 1.25197
\(848\) 3.81853i 0.131129i
\(849\) −76.1384 −2.61306
\(850\) −13.5482 3.51591i −0.464701 0.120595i
\(851\) 11.6694i 0.400021i
\(852\) 37.7262 1.29248
\(853\) −30.0853 −1.03010 −0.515050 0.857160i \(-0.672227\pi\)
−0.515050 + 0.857160i \(0.672227\pi\)
\(854\) −56.2445 −1.92465
\(855\) 25.0041 19.3435i 0.855122 0.661534i
\(856\) 5.47595i 0.187164i
\(857\) 21.6341i 0.739006i −0.929230 0.369503i \(-0.879528\pi\)
0.929230 0.369503i \(-0.120472\pi\)
\(858\) 0 0
\(859\) −6.57516 −0.224342 −0.112171 0.993689i \(-0.535780\pi\)
−0.112171 + 0.993689i \(0.535780\pi\)
\(860\) 7.77546 6.01520i 0.265141 0.205117i
\(861\) −56.0386 −1.90979
\(862\) 19.9696i 0.680168i
\(863\) −45.3471 −1.54363 −0.771817 0.635844i \(-0.780652\pi\)
−0.771817 + 0.635844i \(0.780652\pi\)
\(864\) 10.5385i 0.358528i
\(865\) 19.2286 14.8755i 0.653793 0.505783i
\(866\) 31.4155i 1.06754i
\(867\) 28.1414i 0.955730i
\(868\) 15.5265i 0.527003i
\(869\) 15.1817i 0.515004i
\(870\) −14.8631 + 11.4983i −0.503906 + 0.389828i
\(871\) 0 0
\(872\) 11.8872i 0.402551i
\(873\) −56.2812 −1.90483
\(874\) −2.48578 −0.0840828
\(875\) 37.9780 16.2602i 1.28389 0.549695i
\(876\) 3.78962i 0.128040i
\(877\) −47.7890 −1.61372 −0.806859 0.590743i \(-0.798835\pi\)
−0.806859 + 0.590743i \(0.798835\pi\)
\(878\) 25.6139 0.864427
\(879\) 64.6861i 2.18181i
\(880\) −1.88773 + 1.46037i −0.0636354 + 0.0492292i
\(881\) −12.4378 −0.419040 −0.209520 0.977804i \(-0.567190\pi\)
−0.209520 + 0.977804i \(0.567190\pi\)
\(882\) 42.7939 1.44095
\(883\) 16.6655i 0.560840i −0.959877 0.280420i \(-0.909526\pi\)
0.959877 0.280420i \(-0.0904737\pi\)
\(884\) 0 0
\(885\) 15.1703 + 19.6097i 0.509944 + 0.659171i
\(886\) 28.4024i 0.954197i
\(887\) 39.8662i 1.33857i 0.743004 + 0.669287i \(0.233400\pi\)
−0.743004 + 0.669287i \(0.766600\pi\)
\(888\) 31.6913i 1.06349i
\(889\) 27.3584i 0.917572i
\(890\) 15.5725 12.0471i 0.521993 0.403821i
\(891\) 13.9504i 0.467356i
\(892\) 0.832022 0.0278581
\(893\) 23.2088i 0.776654i
\(894\) −21.5016 −0.719122
\(895\) 5.35975 + 6.92820i 0.179157 + 0.231584i
\(896\) −3.69510 −0.123445
\(897\) 0 0
\(898\) 22.4217i 0.748222i
\(899\) 11.4983i 0.383489i
\(900\) 8.07769 31.1266i 0.269256 1.03755i
\(901\) −10.6896 −0.356122
\(902\) −5.27082 −0.175499
\(903\) −49.8898 −1.66023
\(904\) 9.26298i 0.308082i
\(905\) 19.4254 + 25.1099i 0.645722 + 0.834682i
\(906\) −0.597197 −0.0198405
\(907\) 12.2772i 0.407658i −0.979007 0.203829i \(-0.934661\pi\)
0.979007 0.203829i \(-0.0653386\pi\)
\(908\) 7.77546 0.258038
\(909\) −16.6116 −0.550971
\(910\) 0 0
\(911\) −47.4729 −1.57285 −0.786423 0.617688i \(-0.788070\pi\)
−0.786423 + 0.617688i \(0.788070\pi\)
\(912\) 6.75081 0.223542
\(913\) 8.73345i 0.289035i
\(914\) 23.5987 0.780574
\(915\) 82.6754 63.9589i 2.73317 2.11441i
\(916\) 7.73762i 0.255658i
\(917\) −27.1896 −0.897880
\(918\) 29.5016 0.973698
\(919\) −12.0621 −0.397892 −0.198946 0.980010i \(-0.563752\pi\)
−0.198946 + 0.980010i \(0.563752\pi\)
\(920\) −2.00000 + 1.54723i −0.0659380 + 0.0510106i
\(921\) 27.3075i 0.899812i
\(922\) 32.5063i 1.07054i
\(923\) 0 0
\(924\) 12.1123 0.398464
\(925\) −12.9605 + 49.9421i −0.426138 + 1.64208i
\(926\) −7.70367 −0.253158
\(927\) 19.3435i 0.635324i
\(928\) −2.73644 −0.0898280
\(929\) 19.2582i 0.631840i −0.948786 0.315920i \(-0.897687\pi\)
0.948786 0.315920i \(-0.102313\pi\)
\(930\) 17.6561 + 22.8229i 0.578966 + 0.748391i
\(931\) 14.6262i 0.479354i
\(932\) 6.86070i 0.224730i
\(933\) 88.1446i 2.88573i
\(934\) 20.9339i 0.684977i
\(935\) 4.08818 + 5.28452i 0.133698 + 0.172822i
\(936\) 0 0
\(937\) 17.1012i 0.558671i 0.960194 + 0.279335i \(0.0901141\pi\)
−0.960194 + 0.279335i \(0.909886\pi\)
\(938\) 14.7804 0.482597
\(939\) −24.0810 −0.785853
\(940\) −14.4459 18.6733i −0.471174 0.609055i
\(941\) 12.5077i 0.407741i 0.978998 + 0.203870i \(0.0653521\pi\)
−0.978998 + 0.203870i \(0.934648\pi\)
\(942\) 51.8672 1.68992
\(943\) −5.58430 −0.181850
\(944\) 3.61033i 0.117506i
\(945\) −68.8712 + 53.2798i −2.24038 + 1.73319i
\(946\) −4.69248 −0.152566
\(947\) −60.2398 −1.95753 −0.978766 0.204983i \(-0.934286\pi\)
−0.978766 + 0.204983i \(0.934286\pi\)
\(948\) 43.6821i 1.41873i
\(949\) 0 0
\(950\) −10.6385 2.76081i −0.345160 0.0895725i
\(951\) 18.9713i 0.615187i
\(952\) 10.3441i 0.335253i
\(953\) 11.6460i 0.377251i 0.982049 + 0.188625i \(0.0604032\pi\)
−0.982049 + 0.188625i \(0.939597\pi\)
\(954\) 24.5590i 0.795127i
\(955\) 0.460832 + 0.595687i 0.0149122 + 0.0192760i
\(956\) 22.3277i 0.722130i
\(957\) 8.96985 0.289954
\(958\) 0.980499i 0.0316785i
\(959\) −49.5312 −1.59945
\(960\) 5.43154 4.20191i 0.175302 0.135616i
\(961\) 13.3439 0.430449
\(962\) 0 0
\(963\) 35.2188i 1.13491i
\(964\) 5.68717i 0.183172i
\(965\) −9.25625 11.9649i −0.297969 0.385165i
\(966\) 12.8326 0.412883
\(967\) −2.95604 −0.0950599 −0.0475300 0.998870i \(-0.515135\pi\)
−0.0475300 + 0.998870i \(0.515135\pi\)
\(968\) −9.86076 −0.316937
\(969\) 18.8982i 0.607099i
\(970\) 11.9730 + 15.4767i 0.384431 + 0.496928i
\(971\) 32.2421 1.03470 0.517350 0.855774i \(-0.326919\pi\)
0.517350 + 0.855774i \(0.326919\pi\)
\(972\) 8.52366i 0.273397i
\(973\) −41.9700 −1.34550
\(974\) 38.6283 1.23773
\(975\) 0 0
\(976\) 15.2214 0.487224
\(977\) −37.2619 −1.19211 −0.596056 0.802943i \(-0.703266\pi\)
−0.596056 + 0.802943i \(0.703266\pi\)
\(978\) 6.85358i 0.219153i
\(979\) −9.39802 −0.300362
\(980\) −9.10380 11.7679i −0.290810 0.375912i
\(981\) 76.4530i 2.44096i
\(982\) −17.7068 −0.565048
\(983\) 31.3081 0.998574 0.499287 0.866437i \(-0.333595\pi\)
0.499287 + 0.866437i \(0.333595\pi\)
\(984\) 15.1657 0.483464
\(985\) −20.4362 26.4165i −0.651151 0.841700i
\(986\) 7.66040i 0.243957i
\(987\) 119.814i 3.81371i
\(988\) 0 0
\(989\) −4.97156 −0.158086
\(990\) −12.1410 + 9.39245i −0.385867 + 0.298512i
\(991\) −8.16536 −0.259381 −0.129691 0.991555i \(-0.541398\pi\)
−0.129691 + 0.991555i \(0.541398\pi\)
\(992\) 4.20191i 0.133411i
\(993\) 81.8646 2.59789
\(994\) 45.3918i 1.43974i
\(995\) 0.413996 + 0.535145i 0.0131246 + 0.0169653i
\(996\) 25.1286i 0.796232i
\(997\) 47.5225i 1.50505i −0.658563 0.752526i \(-0.728835\pi\)
0.658563 0.752526i \(-0.271165\pi\)
\(998\) 35.5402i 1.12501i
\(999\) 108.750i 3.44070i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.c.e.1689.8 8
5.4 even 2 1690.2.c.f.1689.1 8
13.5 odd 4 1690.2.b.e.339.16 16
13.8 odd 4 1690.2.b.e.339.8 16
13.9 even 3 130.2.m.b.49.4 yes 8
13.10 even 6 130.2.m.a.69.1 yes 8
13.12 even 2 1690.2.c.f.1689.8 8
39.23 odd 6 1170.2.bj.b.199.2 8
39.35 odd 6 1170.2.bj.a.829.3 8
52.23 odd 6 1040.2.df.c.849.4 8
52.35 odd 6 1040.2.df.a.49.1 8
65.8 even 4 8450.2.a.cr.1.1 8
65.9 even 6 130.2.m.a.49.1 8
65.18 even 4 8450.2.a.cs.1.1 8
65.22 odd 12 650.2.m.e.101.1 16
65.23 odd 12 650.2.m.e.251.8 16
65.34 odd 4 1690.2.b.e.339.9 16
65.44 odd 4 1690.2.b.e.339.1 16
65.47 even 4 8450.2.a.cs.1.8 8
65.48 odd 12 650.2.m.e.101.8 16
65.49 even 6 130.2.m.b.69.4 yes 8
65.57 even 4 8450.2.a.cr.1.8 8
65.62 odd 12 650.2.m.e.251.1 16
65.64 even 2 inner 1690.2.c.e.1689.1 8
195.74 odd 6 1170.2.bj.b.829.2 8
195.179 odd 6 1170.2.bj.a.199.3 8
260.139 odd 6 1040.2.df.c.49.4 8
260.179 odd 6 1040.2.df.a.849.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.m.a.49.1 8 65.9 even 6
130.2.m.a.69.1 yes 8 13.10 even 6
130.2.m.b.49.4 yes 8 13.9 even 3
130.2.m.b.69.4 yes 8 65.49 even 6
650.2.m.e.101.1 16 65.22 odd 12
650.2.m.e.101.8 16 65.48 odd 12
650.2.m.e.251.1 16 65.62 odd 12
650.2.m.e.251.8 16 65.23 odd 12
1040.2.df.a.49.1 8 52.35 odd 6
1040.2.df.a.849.1 8 260.179 odd 6
1040.2.df.c.49.4 8 260.139 odd 6
1040.2.df.c.849.4 8 52.23 odd 6
1170.2.bj.a.199.3 8 195.179 odd 6
1170.2.bj.a.829.3 8 39.35 odd 6
1170.2.bj.b.199.2 8 39.23 odd 6
1170.2.bj.b.829.2 8 195.74 odd 6
1690.2.b.e.339.1 16 65.44 odd 4
1690.2.b.e.339.8 16 13.8 odd 4
1690.2.b.e.339.9 16 65.34 odd 4
1690.2.b.e.339.16 16 13.5 odd 4
1690.2.c.e.1689.1 8 65.64 even 2 inner
1690.2.c.e.1689.8 8 1.1 even 1 trivial
1690.2.c.f.1689.1 8 5.4 even 2
1690.2.c.f.1689.8 8 13.12 even 2
8450.2.a.cr.1.1 8 65.8 even 4
8450.2.a.cr.1.8 8 65.57 even 4
8450.2.a.cs.1.1 8 65.18 even 4
8450.2.a.cs.1.8 8 65.47 even 4