Properties

Label 8450.2.a.bv.1.3
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,1,3,0,-1,-2,-3,-4,0,-13,1,0,2,0,3,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1690)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.80194\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.80194 q^{3} +1.00000 q^{4} -1.80194 q^{6} -3.60388 q^{7} -1.00000 q^{8} +0.246980 q^{9} -4.44504 q^{11} +1.80194 q^{12} +3.60388 q^{14} +1.00000 q^{16} +3.15883 q^{17} -0.246980 q^{18} +0.356896 q^{19} -6.49396 q^{21} +4.44504 q^{22} +6.49396 q^{23} -1.80194 q^{24} -4.96077 q^{27} -3.60388 q^{28} -2.89008 q^{29} -3.82371 q^{31} -1.00000 q^{32} -8.00969 q^{33} -3.15883 q^{34} +0.246980 q^{36} -7.48188 q^{37} -0.356896 q^{38} -2.03923 q^{41} +6.49396 q^{42} -10.0151 q^{43} -4.44504 q^{44} -6.49396 q^{46} +11.7017 q^{47} +1.80194 q^{48} +5.98792 q^{49} +5.69202 q^{51} +12.3720 q^{53} +4.96077 q^{54} +3.60388 q^{56} +0.643104 q^{57} +2.89008 q^{58} +11.9976 q^{59} -12.3720 q^{61} +3.82371 q^{62} -0.890084 q^{63} +1.00000 q^{64} +8.00969 q^{66} +13.9976 q^{67} +3.15883 q^{68} +11.7017 q^{69} -12.8116 q^{71} -0.246980 q^{72} +6.96615 q^{73} +7.48188 q^{74} +0.356896 q^{76} +16.0194 q^{77} -5.87800 q^{79} -9.67994 q^{81} +2.03923 q^{82} +4.67456 q^{83} -6.49396 q^{84} +10.0151 q^{86} -5.20775 q^{87} +4.44504 q^{88} -8.02177 q^{89} +6.49396 q^{92} -6.89008 q^{93} -11.7017 q^{94} -1.80194 q^{96} +3.95108 q^{97} -5.98792 q^{98} -1.09783 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + q^{3} + 3 q^{4} - q^{6} - 2 q^{7} - 3 q^{8} - 4 q^{9} - 13 q^{11} + q^{12} + 2 q^{14} + 3 q^{16} + q^{17} + 4 q^{18} - 3 q^{19} - 10 q^{21} + 13 q^{22} + 10 q^{23} - q^{24} - 2 q^{27}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.80194 1.04035 0.520175 0.854060i \(-0.325867\pi\)
0.520175 + 0.854060i \(0.325867\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.80194 −0.735638
\(7\) −3.60388 −1.36214 −0.681068 0.732220i \(-0.738484\pi\)
−0.681068 + 0.732220i \(0.738484\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.246980 0.0823265
\(10\) 0 0
\(11\) −4.44504 −1.34023 −0.670115 0.742257i \(-0.733755\pi\)
−0.670115 + 0.742257i \(0.733755\pi\)
\(12\) 1.80194 0.520175
\(13\) 0 0
\(14\) 3.60388 0.963176
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.15883 0.766130 0.383065 0.923721i \(-0.374869\pi\)
0.383065 + 0.923721i \(0.374869\pi\)
\(18\) −0.246980 −0.0582137
\(19\) 0.356896 0.0818775 0.0409388 0.999162i \(-0.486965\pi\)
0.0409388 + 0.999162i \(0.486965\pi\)
\(20\) 0 0
\(21\) −6.49396 −1.41710
\(22\) 4.44504 0.947686
\(23\) 6.49396 1.35408 0.677042 0.735944i \(-0.263262\pi\)
0.677042 + 0.735944i \(0.263262\pi\)
\(24\) −1.80194 −0.367819
\(25\) 0 0
\(26\) 0 0
\(27\) −4.96077 −0.954701
\(28\) −3.60388 −0.681068
\(29\) −2.89008 −0.536675 −0.268338 0.963325i \(-0.586474\pi\)
−0.268338 + 0.963325i \(0.586474\pi\)
\(30\) 0 0
\(31\) −3.82371 −0.686758 −0.343379 0.939197i \(-0.611572\pi\)
−0.343379 + 0.939197i \(0.611572\pi\)
\(32\) −1.00000 −0.176777
\(33\) −8.00969 −1.39431
\(34\) −3.15883 −0.541735
\(35\) 0 0
\(36\) 0.246980 0.0411633
\(37\) −7.48188 −1.23001 −0.615007 0.788522i \(-0.710847\pi\)
−0.615007 + 0.788522i \(0.710847\pi\)
\(38\) −0.356896 −0.0578962
\(39\) 0 0
\(40\) 0 0
\(41\) −2.03923 −0.318474 −0.159237 0.987240i \(-0.550903\pi\)
−0.159237 + 0.987240i \(0.550903\pi\)
\(42\) 6.49396 1.00204
\(43\) −10.0151 −1.52728 −0.763642 0.645640i \(-0.776591\pi\)
−0.763642 + 0.645640i \(0.776591\pi\)
\(44\) −4.44504 −0.670115
\(45\) 0 0
\(46\) −6.49396 −0.957482
\(47\) 11.7017 1.70687 0.853435 0.521199i \(-0.174515\pi\)
0.853435 + 0.521199i \(0.174515\pi\)
\(48\) 1.80194 0.260087
\(49\) 5.98792 0.855417
\(50\) 0 0
\(51\) 5.69202 0.797042
\(52\) 0 0
\(53\) 12.3720 1.69942 0.849710 0.527251i \(-0.176777\pi\)
0.849710 + 0.527251i \(0.176777\pi\)
\(54\) 4.96077 0.675075
\(55\) 0 0
\(56\) 3.60388 0.481588
\(57\) 0.643104 0.0851812
\(58\) 2.89008 0.379487
\(59\) 11.9976 1.56196 0.780978 0.624559i \(-0.214721\pi\)
0.780978 + 0.624559i \(0.214721\pi\)
\(60\) 0 0
\(61\) −12.3720 −1.58407 −0.792034 0.610477i \(-0.790978\pi\)
−0.792034 + 0.610477i \(0.790978\pi\)
\(62\) 3.82371 0.485611
\(63\) −0.890084 −0.112140
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 8.00969 0.985925
\(67\) 13.9976 1.71008 0.855040 0.518562i \(-0.173533\pi\)
0.855040 + 0.518562i \(0.173533\pi\)
\(68\) 3.15883 0.383065
\(69\) 11.7017 1.40872
\(70\) 0 0
\(71\) −12.8116 −1.52046 −0.760230 0.649654i \(-0.774914\pi\)
−0.760230 + 0.649654i \(0.774914\pi\)
\(72\) −0.246980 −0.0291068
\(73\) 6.96615 0.815326 0.407663 0.913132i \(-0.366344\pi\)
0.407663 + 0.913132i \(0.366344\pi\)
\(74\) 7.48188 0.869751
\(75\) 0 0
\(76\) 0.356896 0.0409388
\(77\) 16.0194 1.82558
\(78\) 0 0
\(79\) −5.87800 −0.661327 −0.330663 0.943749i \(-0.607272\pi\)
−0.330663 + 0.943749i \(0.607272\pi\)
\(80\) 0 0
\(81\) −9.67994 −1.07555
\(82\) 2.03923 0.225195
\(83\) 4.67456 0.513100 0.256550 0.966531i \(-0.417414\pi\)
0.256550 + 0.966531i \(0.417414\pi\)
\(84\) −6.49396 −0.708549
\(85\) 0 0
\(86\) 10.0151 1.07995
\(87\) −5.20775 −0.558330
\(88\) 4.44504 0.473843
\(89\) −8.02177 −0.850306 −0.425153 0.905122i \(-0.639780\pi\)
−0.425153 + 0.905122i \(0.639780\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.49396 0.677042
\(93\) −6.89008 −0.714468
\(94\) −11.7017 −1.20694
\(95\) 0 0
\(96\) −1.80194 −0.183910
\(97\) 3.95108 0.401172 0.200586 0.979676i \(-0.435715\pi\)
0.200586 + 0.979676i \(0.435715\pi\)
\(98\) −5.98792 −0.604871
\(99\) −1.09783 −0.110337
\(100\) 0 0
\(101\) 15.0422 1.49676 0.748378 0.663272i \(-0.230833\pi\)
0.748378 + 0.663272i \(0.230833\pi\)
\(102\) −5.69202 −0.563594
\(103\) −7.82371 −0.770893 −0.385446 0.922730i \(-0.625953\pi\)
−0.385446 + 0.922730i \(0.625953\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −12.3720 −1.20167
\(107\) −9.30127 −0.899188 −0.449594 0.893233i \(-0.648431\pi\)
−0.449594 + 0.893233i \(0.648431\pi\)
\(108\) −4.96077 −0.477350
\(109\) −0.811626 −0.0777397 −0.0388699 0.999244i \(-0.512376\pi\)
−0.0388699 + 0.999244i \(0.512376\pi\)
\(110\) 0 0
\(111\) −13.4819 −1.27964
\(112\) −3.60388 −0.340534
\(113\) −7.00969 −0.659416 −0.329708 0.944083i \(-0.606950\pi\)
−0.329708 + 0.944083i \(0.606950\pi\)
\(114\) −0.643104 −0.0602322
\(115\) 0 0
\(116\) −2.89008 −0.268338
\(117\) 0 0
\(118\) −11.9976 −1.10447
\(119\) −11.3840 −1.04357
\(120\) 0 0
\(121\) 8.75840 0.796218
\(122\) 12.3720 1.12010
\(123\) −3.67456 −0.331324
\(124\) −3.82371 −0.343379
\(125\) 0 0
\(126\) 0.890084 0.0792950
\(127\) 11.6582 1.03450 0.517248 0.855836i \(-0.326957\pi\)
0.517248 + 0.855836i \(0.326957\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −18.0465 −1.58891
\(130\) 0 0
\(131\) −1.34481 −0.117497 −0.0587485 0.998273i \(-0.518711\pi\)
−0.0587485 + 0.998273i \(0.518711\pi\)
\(132\) −8.00969 −0.697154
\(133\) −1.28621 −0.111528
\(134\) −13.9976 −1.20921
\(135\) 0 0
\(136\) −3.15883 −0.270868
\(137\) 7.80194 0.666565 0.333282 0.942827i \(-0.391844\pi\)
0.333282 + 0.942827i \(0.391844\pi\)
\(138\) −11.7017 −0.996116
\(139\) 13.8726 1.17666 0.588330 0.808621i \(-0.299785\pi\)
0.588330 + 0.808621i \(0.299785\pi\)
\(140\) 0 0
\(141\) 21.0858 1.77574
\(142\) 12.8116 1.07513
\(143\) 0 0
\(144\) 0.246980 0.0205816
\(145\) 0 0
\(146\) −6.96615 −0.576523
\(147\) 10.7899 0.889932
\(148\) −7.48188 −0.615007
\(149\) −12.6703 −1.03799 −0.518994 0.854778i \(-0.673693\pi\)
−0.518994 + 0.854778i \(0.673693\pi\)
\(150\) 0 0
\(151\) 4.86592 0.395983 0.197991 0.980204i \(-0.436558\pi\)
0.197991 + 0.980204i \(0.436558\pi\)
\(152\) −0.356896 −0.0289481
\(153\) 0.780167 0.0630728
\(154\) −16.0194 −1.29088
\(155\) 0 0
\(156\) 0 0
\(157\) 9.42758 0.752403 0.376202 0.926538i \(-0.377230\pi\)
0.376202 + 0.926538i \(0.377230\pi\)
\(158\) 5.87800 0.467629
\(159\) 22.2935 1.76799
\(160\) 0 0
\(161\) −23.4034 −1.84445
\(162\) 9.67994 0.760528
\(163\) 5.47650 0.428953 0.214476 0.976729i \(-0.431196\pi\)
0.214476 + 0.976729i \(0.431196\pi\)
\(164\) −2.03923 −0.159237
\(165\) 0 0
\(166\) −4.67456 −0.362816
\(167\) −2.68963 −0.208130 −0.104065 0.994571i \(-0.533185\pi\)
−0.104065 + 0.994571i \(0.533185\pi\)
\(168\) 6.49396 0.501020
\(169\) 0 0
\(170\) 0 0
\(171\) 0.0881460 0.00674069
\(172\) −10.0151 −0.763642
\(173\) −10.9095 −0.829431 −0.414715 0.909951i \(-0.636119\pi\)
−0.414715 + 0.909951i \(0.636119\pi\)
\(174\) 5.20775 0.394799
\(175\) 0 0
\(176\) −4.44504 −0.335058
\(177\) 21.6189 1.62498
\(178\) 8.02177 0.601257
\(179\) 12.9825 0.970361 0.485180 0.874414i \(-0.338754\pi\)
0.485180 + 0.874414i \(0.338754\pi\)
\(180\) 0 0
\(181\) 22.7332 1.68974 0.844872 0.534969i \(-0.179677\pi\)
0.844872 + 0.534969i \(0.179677\pi\)
\(182\) 0 0
\(183\) −22.2935 −1.64798
\(184\) −6.49396 −0.478741
\(185\) 0 0
\(186\) 6.89008 0.505205
\(187\) −14.0411 −1.02679
\(188\) 11.7017 0.853435
\(189\) 17.8780 1.30043
\(190\) 0 0
\(191\) 18.2198 1.31834 0.659170 0.751994i \(-0.270908\pi\)
0.659170 + 0.751994i \(0.270908\pi\)
\(192\) 1.80194 0.130044
\(193\) 18.7482 1.34953 0.674764 0.738034i \(-0.264246\pi\)
0.674764 + 0.738034i \(0.264246\pi\)
\(194\) −3.95108 −0.283671
\(195\) 0 0
\(196\) 5.98792 0.427708
\(197\) 22.4155 1.59704 0.798519 0.601969i \(-0.205617\pi\)
0.798519 + 0.601969i \(0.205617\pi\)
\(198\) 1.09783 0.0780197
\(199\) 17.0858 1.21118 0.605588 0.795778i \(-0.292938\pi\)
0.605588 + 0.795778i \(0.292938\pi\)
\(200\) 0 0
\(201\) 25.2228 1.77908
\(202\) −15.0422 −1.05837
\(203\) 10.4155 0.731025
\(204\) 5.69202 0.398521
\(205\) 0 0
\(206\) 7.82371 0.545104
\(207\) 1.60388 0.111477
\(208\) 0 0
\(209\) −1.58642 −0.109735
\(210\) 0 0
\(211\) −5.53079 −0.380756 −0.190378 0.981711i \(-0.560971\pi\)
−0.190378 + 0.981711i \(0.560971\pi\)
\(212\) 12.3720 0.849710
\(213\) −23.0858 −1.58181
\(214\) 9.30127 0.635822
\(215\) 0 0
\(216\) 4.96077 0.337538
\(217\) 13.7802 0.935459
\(218\) 0.811626 0.0549703
\(219\) 12.5526 0.848224
\(220\) 0 0
\(221\) 0 0
\(222\) 13.4819 0.904844
\(223\) 4.27413 0.286217 0.143108 0.989707i \(-0.454290\pi\)
0.143108 + 0.989707i \(0.454290\pi\)
\(224\) 3.60388 0.240794
\(225\) 0 0
\(226\) 7.00969 0.466278
\(227\) −9.95407 −0.660675 −0.330337 0.943863i \(-0.607162\pi\)
−0.330337 + 0.943863i \(0.607162\pi\)
\(228\) 0.643104 0.0425906
\(229\) 23.0315 1.52196 0.760981 0.648774i \(-0.224718\pi\)
0.760981 + 0.648774i \(0.224718\pi\)
\(230\) 0 0
\(231\) 28.8659 1.89924
\(232\) 2.89008 0.189743
\(233\) −18.5700 −1.21656 −0.608281 0.793721i \(-0.708141\pi\)
−0.608281 + 0.793721i \(0.708141\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 11.9976 0.780978
\(237\) −10.5918 −0.688011
\(238\) 11.3840 0.737918
\(239\) 18.9530 1.22597 0.612984 0.790095i \(-0.289969\pi\)
0.612984 + 0.790095i \(0.289969\pi\)
\(240\) 0 0
\(241\) −22.7439 −1.46506 −0.732532 0.680732i \(-0.761662\pi\)
−0.732532 + 0.680732i \(0.761662\pi\)
\(242\) −8.75840 −0.563011
\(243\) −2.56033 −0.164246
\(244\) −12.3720 −0.792034
\(245\) 0 0
\(246\) 3.67456 0.234282
\(247\) 0 0
\(248\) 3.82371 0.242806
\(249\) 8.42327 0.533803
\(250\) 0 0
\(251\) 14.5670 0.919463 0.459732 0.888058i \(-0.347946\pi\)
0.459732 + 0.888058i \(0.347946\pi\)
\(252\) −0.890084 −0.0560700
\(253\) −28.8659 −1.81478
\(254\) −11.6582 −0.731499
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −2.00431 −0.125026 −0.0625128 0.998044i \(-0.519911\pi\)
−0.0625128 + 0.998044i \(0.519911\pi\)
\(258\) 18.0465 1.12353
\(259\) 26.9638 1.67545
\(260\) 0 0
\(261\) −0.713792 −0.0441826
\(262\) 1.34481 0.0830829
\(263\) −4.41550 −0.272272 −0.136136 0.990690i \(-0.543468\pi\)
−0.136136 + 0.990690i \(0.543468\pi\)
\(264\) 8.00969 0.492962
\(265\) 0 0
\(266\) 1.28621 0.0788625
\(267\) −14.4547 −0.884615
\(268\) 13.9976 0.855040
\(269\) −18.1521 −1.10675 −0.553377 0.832931i \(-0.686661\pi\)
−0.553377 + 0.832931i \(0.686661\pi\)
\(270\) 0 0
\(271\) 19.4711 1.18279 0.591393 0.806383i \(-0.298578\pi\)
0.591393 + 0.806383i \(0.298578\pi\)
\(272\) 3.15883 0.191532
\(273\) 0 0
\(274\) −7.80194 −0.471332
\(275\) 0 0
\(276\) 11.7017 0.704360
\(277\) 18.3961 1.10532 0.552658 0.833408i \(-0.313614\pi\)
0.552658 + 0.833408i \(0.313614\pi\)
\(278\) −13.8726 −0.832025
\(279\) −0.944378 −0.0565384
\(280\) 0 0
\(281\) 15.9463 0.951276 0.475638 0.879641i \(-0.342217\pi\)
0.475638 + 0.879641i \(0.342217\pi\)
\(282\) −21.0858 −1.25564
\(283\) 27.9909 1.66389 0.831943 0.554861i \(-0.187228\pi\)
0.831943 + 0.554861i \(0.187228\pi\)
\(284\) −12.8116 −0.760230
\(285\) 0 0
\(286\) 0 0
\(287\) 7.34913 0.433805
\(288\) −0.246980 −0.0145534
\(289\) −7.02177 −0.413045
\(290\) 0 0
\(291\) 7.11960 0.417359
\(292\) 6.96615 0.407663
\(293\) −13.5603 −0.792203 −0.396102 0.918207i \(-0.629637\pi\)
−0.396102 + 0.918207i \(0.629637\pi\)
\(294\) −10.7899 −0.629277
\(295\) 0 0
\(296\) 7.48188 0.434875
\(297\) 22.0508 1.27952
\(298\) 12.6703 0.733968
\(299\) 0 0
\(300\) 0 0
\(301\) 36.0930 2.08037
\(302\) −4.86592 −0.280002
\(303\) 27.1051 1.55715
\(304\) 0.356896 0.0204694
\(305\) 0 0
\(306\) −0.780167 −0.0445992
\(307\) −15.1588 −0.865160 −0.432580 0.901595i \(-0.642397\pi\)
−0.432580 + 0.901595i \(0.642397\pi\)
\(308\) 16.0194 0.912789
\(309\) −14.0978 −0.801998
\(310\) 0 0
\(311\) 5.38404 0.305301 0.152651 0.988280i \(-0.451219\pi\)
0.152651 + 0.988280i \(0.451219\pi\)
\(312\) 0 0
\(313\) 16.5864 0.937520 0.468760 0.883326i \(-0.344701\pi\)
0.468760 + 0.883326i \(0.344701\pi\)
\(314\) −9.42758 −0.532029
\(315\) 0 0
\(316\) −5.87800 −0.330663
\(317\) 12.1086 0.680086 0.340043 0.940410i \(-0.389558\pi\)
0.340043 + 0.940410i \(0.389558\pi\)
\(318\) −22.2935 −1.25016
\(319\) 12.8465 0.719268
\(320\) 0 0
\(321\) −16.7603 −0.935470
\(322\) 23.4034 1.30422
\(323\) 1.12737 0.0627288
\(324\) −9.67994 −0.537774
\(325\) 0 0
\(326\) −5.47650 −0.303315
\(327\) −1.46250 −0.0808764
\(328\) 2.03923 0.112598
\(329\) −42.1715 −2.32499
\(330\) 0 0
\(331\) −14.6112 −0.803103 −0.401551 0.915837i \(-0.631529\pi\)
−0.401551 + 0.915837i \(0.631529\pi\)
\(332\) 4.67456 0.256550
\(333\) −1.84787 −0.101263
\(334\) 2.68963 0.147170
\(335\) 0 0
\(336\) −6.49396 −0.354275
\(337\) 4.45952 0.242925 0.121463 0.992596i \(-0.461242\pi\)
0.121463 + 0.992596i \(0.461242\pi\)
\(338\) 0 0
\(339\) −12.6310 −0.686023
\(340\) 0 0
\(341\) 16.9965 0.920414
\(342\) −0.0881460 −0.00476639
\(343\) 3.64742 0.196942
\(344\) 10.0151 0.539976
\(345\) 0 0
\(346\) 10.9095 0.586496
\(347\) −28.5870 −1.53463 −0.767316 0.641270i \(-0.778408\pi\)
−0.767316 + 0.641270i \(0.778408\pi\)
\(348\) −5.20775 −0.279165
\(349\) 4.87933 0.261185 0.130592 0.991436i \(-0.458312\pi\)
0.130592 + 0.991436i \(0.458312\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.44504 0.236922
\(353\) −4.05967 −0.216074 −0.108037 0.994147i \(-0.534457\pi\)
−0.108037 + 0.994147i \(0.534457\pi\)
\(354\) −21.6189 −1.14903
\(355\) 0 0
\(356\) −8.02177 −0.425153
\(357\) −20.5133 −1.08568
\(358\) −12.9825 −0.686149
\(359\) 5.12067 0.270259 0.135129 0.990828i \(-0.456855\pi\)
0.135129 + 0.990828i \(0.456855\pi\)
\(360\) 0 0
\(361\) −18.8726 −0.993296
\(362\) −22.7332 −1.19483
\(363\) 15.7821 0.828345
\(364\) 0 0
\(365\) 0 0
\(366\) 22.2935 1.16530
\(367\) 9.28621 0.484736 0.242368 0.970184i \(-0.422076\pi\)
0.242368 + 0.970184i \(0.422076\pi\)
\(368\) 6.49396 0.338521
\(369\) −0.503648 −0.0262189
\(370\) 0 0
\(371\) −44.5870 −2.31484
\(372\) −6.89008 −0.357234
\(373\) 7.30559 0.378269 0.189134 0.981951i \(-0.439432\pi\)
0.189134 + 0.981951i \(0.439432\pi\)
\(374\) 14.0411 0.726050
\(375\) 0 0
\(376\) −11.7017 −0.603470
\(377\) 0 0
\(378\) −17.8780 −0.919545
\(379\) 30.5700 1.57028 0.785138 0.619320i \(-0.212592\pi\)
0.785138 + 0.619320i \(0.212592\pi\)
\(380\) 0 0
\(381\) 21.0073 1.07624
\(382\) −18.2198 −0.932208
\(383\) 7.93230 0.405321 0.202661 0.979249i \(-0.435041\pi\)
0.202661 + 0.979249i \(0.435041\pi\)
\(384\) −1.80194 −0.0919548
\(385\) 0 0
\(386\) −18.7482 −0.954260
\(387\) −2.47352 −0.125736
\(388\) 3.95108 0.200586
\(389\) 1.35988 0.0689486 0.0344743 0.999406i \(-0.489024\pi\)
0.0344743 + 0.999406i \(0.489024\pi\)
\(390\) 0 0
\(391\) 20.5133 1.03740
\(392\) −5.98792 −0.302436
\(393\) −2.42327 −0.122238
\(394\) −22.4155 −1.12928
\(395\) 0 0
\(396\) −1.09783 −0.0551683
\(397\) −24.6112 −1.23520 −0.617600 0.786493i \(-0.711895\pi\)
−0.617600 + 0.786493i \(0.711895\pi\)
\(398\) −17.0858 −0.856431
\(399\) −2.31767 −0.116028
\(400\) 0 0
\(401\) −4.89546 −0.244468 −0.122234 0.992501i \(-0.539006\pi\)
−0.122234 + 0.992501i \(0.539006\pi\)
\(402\) −25.2228 −1.25800
\(403\) 0 0
\(404\) 15.0422 0.748378
\(405\) 0 0
\(406\) −10.4155 −0.516913
\(407\) 33.2573 1.64850
\(408\) −5.69202 −0.281797
\(409\) 4.37435 0.216298 0.108149 0.994135i \(-0.465508\pi\)
0.108149 + 0.994135i \(0.465508\pi\)
\(410\) 0 0
\(411\) 14.0586 0.693460
\(412\) −7.82371 −0.385446
\(413\) −43.2379 −2.12760
\(414\) −1.60388 −0.0788262
\(415\) 0 0
\(416\) 0 0
\(417\) 24.9976 1.22414
\(418\) 1.58642 0.0775942
\(419\) 16.7439 0.817994 0.408997 0.912536i \(-0.365879\pi\)
0.408997 + 0.912536i \(0.365879\pi\)
\(420\) 0 0
\(421\) −0.483206 −0.0235500 −0.0117750 0.999931i \(-0.503748\pi\)
−0.0117750 + 0.999931i \(0.503748\pi\)
\(422\) 5.53079 0.269235
\(423\) 2.89008 0.140521
\(424\) −12.3720 −0.600836
\(425\) 0 0
\(426\) 23.0858 1.11851
\(427\) 44.5870 2.15772
\(428\) −9.30127 −0.449594
\(429\) 0 0
\(430\) 0 0
\(431\) 11.9758 0.576856 0.288428 0.957502i \(-0.406867\pi\)
0.288428 + 0.957502i \(0.406867\pi\)
\(432\) −4.96077 −0.238675
\(433\) 4.15452 0.199654 0.0998268 0.995005i \(-0.468171\pi\)
0.0998268 + 0.995005i \(0.468171\pi\)
\(434\) −13.7802 −0.661469
\(435\) 0 0
\(436\) −0.811626 −0.0388699
\(437\) 2.31767 0.110869
\(438\) −12.5526 −0.599785
\(439\) −12.5133 −0.597229 −0.298614 0.954374i \(-0.596524\pi\)
−0.298614 + 0.954374i \(0.596524\pi\)
\(440\) 0 0
\(441\) 1.47889 0.0704235
\(442\) 0 0
\(443\) 2.27950 0.108302 0.0541512 0.998533i \(-0.482755\pi\)
0.0541512 + 0.998533i \(0.482755\pi\)
\(444\) −13.4819 −0.639822
\(445\) 0 0
\(446\) −4.27413 −0.202386
\(447\) −22.8310 −1.07987
\(448\) −3.60388 −0.170267
\(449\) −20.4547 −0.965318 −0.482659 0.875808i \(-0.660329\pi\)
−0.482659 + 0.875808i \(0.660329\pi\)
\(450\) 0 0
\(451\) 9.06446 0.426829
\(452\) −7.00969 −0.329708
\(453\) 8.76809 0.411961
\(454\) 9.95407 0.467167
\(455\) 0 0
\(456\) −0.643104 −0.0301161
\(457\) 17.8431 0.834664 0.417332 0.908754i \(-0.362965\pi\)
0.417332 + 0.908754i \(0.362965\pi\)
\(458\) −23.0315 −1.07619
\(459\) −15.6703 −0.731425
\(460\) 0 0
\(461\) −3.52542 −0.164195 −0.0820975 0.996624i \(-0.526162\pi\)
−0.0820975 + 0.996624i \(0.526162\pi\)
\(462\) −28.8659 −1.34296
\(463\) 3.72587 0.173156 0.0865780 0.996245i \(-0.472407\pi\)
0.0865780 + 0.996245i \(0.472407\pi\)
\(464\) −2.89008 −0.134169
\(465\) 0 0
\(466\) 18.5700 0.860240
\(467\) 12.8576 0.594977 0.297488 0.954725i \(-0.403851\pi\)
0.297488 + 0.954725i \(0.403851\pi\)
\(468\) 0 0
\(469\) −50.4456 −2.32936
\(470\) 0 0
\(471\) 16.9879 0.782762
\(472\) −11.9976 −0.552235
\(473\) 44.5174 2.04691
\(474\) 10.5918 0.486497
\(475\) 0 0
\(476\) −11.3840 −0.521787
\(477\) 3.05562 0.139907
\(478\) −18.9530 −0.866890
\(479\) 33.9952 1.55328 0.776640 0.629944i \(-0.216922\pi\)
0.776640 + 0.629944i \(0.216922\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 22.7439 1.03596
\(483\) −42.1715 −1.91887
\(484\) 8.75840 0.398109
\(485\) 0 0
\(486\) 2.56033 0.116139
\(487\) 25.4819 1.15469 0.577347 0.816499i \(-0.304088\pi\)
0.577347 + 0.816499i \(0.304088\pi\)
\(488\) 12.3720 0.560052
\(489\) 9.86831 0.446261
\(490\) 0 0
\(491\) 25.7778 1.16333 0.581667 0.813427i \(-0.302401\pi\)
0.581667 + 0.813427i \(0.302401\pi\)
\(492\) −3.67456 −0.165662
\(493\) −9.12929 −0.411163
\(494\) 0 0
\(495\) 0 0
\(496\) −3.82371 −0.171690
\(497\) 46.1715 2.07108
\(498\) −8.42327 −0.377456
\(499\) 21.6286 0.968230 0.484115 0.875004i \(-0.339142\pi\)
0.484115 + 0.875004i \(0.339142\pi\)
\(500\) 0 0
\(501\) −4.84654 −0.216528
\(502\) −14.5670 −0.650159
\(503\) −26.7332 −1.19197 −0.595987 0.802994i \(-0.703239\pi\)
−0.595987 + 0.802994i \(0.703239\pi\)
\(504\) 0.890084 0.0396475
\(505\) 0 0
\(506\) 28.8659 1.28325
\(507\) 0 0
\(508\) 11.6582 0.517248
\(509\) −35.2814 −1.56382 −0.781911 0.623390i \(-0.785755\pi\)
−0.781911 + 0.623390i \(0.785755\pi\)
\(510\) 0 0
\(511\) −25.1051 −1.11059
\(512\) −1.00000 −0.0441942
\(513\) −1.77048 −0.0781685
\(514\) 2.00431 0.0884064
\(515\) 0 0
\(516\) −18.0465 −0.794454
\(517\) −52.0146 −2.28760
\(518\) −26.9638 −1.18472
\(519\) −19.6582 −0.862898
\(520\) 0 0
\(521\) 12.5700 0.550703 0.275351 0.961344i \(-0.411206\pi\)
0.275351 + 0.961344i \(0.411206\pi\)
\(522\) 0.713792 0.0312418
\(523\) −5.38942 −0.235663 −0.117831 0.993034i \(-0.537594\pi\)
−0.117831 + 0.993034i \(0.537594\pi\)
\(524\) −1.34481 −0.0587485
\(525\) 0 0
\(526\) 4.41550 0.192525
\(527\) −12.0785 −0.526146
\(528\) −8.00969 −0.348577
\(529\) 19.1715 0.833544
\(530\) 0 0
\(531\) 2.96316 0.128590
\(532\) −1.28621 −0.0557642
\(533\) 0 0
\(534\) 14.4547 0.625517
\(535\) 0 0
\(536\) −13.9976 −0.604605
\(537\) 23.3937 1.00951
\(538\) 18.1521 0.782594
\(539\) −26.6165 −1.14646
\(540\) 0 0
\(541\) −22.7332 −0.977375 −0.488688 0.872459i \(-0.662524\pi\)
−0.488688 + 0.872459i \(0.662524\pi\)
\(542\) −19.4711 −0.836356
\(543\) 40.9638 1.75792
\(544\) −3.15883 −0.135434
\(545\) 0 0
\(546\) 0 0
\(547\) −31.9734 −1.36709 −0.683543 0.729910i \(-0.739562\pi\)
−0.683543 + 0.729910i \(0.739562\pi\)
\(548\) 7.80194 0.333282
\(549\) −3.05562 −0.130411
\(550\) 0 0
\(551\) −1.03146 −0.0439416
\(552\) −11.7017 −0.498058
\(553\) 21.1836 0.900818
\(554\) −18.3961 −0.781576
\(555\) 0 0
\(556\) 13.8726 0.588330
\(557\) 27.2164 1.15319 0.576597 0.817028i \(-0.304380\pi\)
0.576597 + 0.817028i \(0.304380\pi\)
\(558\) 0.944378 0.0399787
\(559\) 0 0
\(560\) 0 0
\(561\) −25.3013 −1.06822
\(562\) −15.9463 −0.672654
\(563\) 11.7560 0.495457 0.247728 0.968830i \(-0.420316\pi\)
0.247728 + 0.968830i \(0.420316\pi\)
\(564\) 21.0858 0.887870
\(565\) 0 0
\(566\) −27.9909 −1.17655
\(567\) 34.8853 1.46504
\(568\) 12.8116 0.537564
\(569\) −19.2731 −0.807969 −0.403984 0.914766i \(-0.632375\pi\)
−0.403984 + 0.914766i \(0.632375\pi\)
\(570\) 0 0
\(571\) 32.6329 1.36565 0.682823 0.730584i \(-0.260752\pi\)
0.682823 + 0.730584i \(0.260752\pi\)
\(572\) 0 0
\(573\) 32.8310 1.37153
\(574\) −7.34913 −0.306747
\(575\) 0 0
\(576\) 0.246980 0.0102908
\(577\) −31.4534 −1.30942 −0.654711 0.755879i \(-0.727210\pi\)
−0.654711 + 0.755879i \(0.727210\pi\)
\(578\) 7.02177 0.292067
\(579\) 33.7832 1.40398
\(580\) 0 0
\(581\) −16.8465 −0.698912
\(582\) −7.11960 −0.295117
\(583\) −54.9939 −2.27761
\(584\) −6.96615 −0.288261
\(585\) 0 0
\(586\) 13.5603 0.560172
\(587\) −20.7616 −0.856925 −0.428462 0.903560i \(-0.640945\pi\)
−0.428462 + 0.903560i \(0.640945\pi\)
\(588\) 10.7899 0.444966
\(589\) −1.36467 −0.0562301
\(590\) 0 0
\(591\) 40.3913 1.66148
\(592\) −7.48188 −0.307503
\(593\) −31.9028 −1.31009 −0.655045 0.755590i \(-0.727350\pi\)
−0.655045 + 0.755590i \(0.727350\pi\)
\(594\) −22.0508 −0.904757
\(595\) 0 0
\(596\) −12.6703 −0.518994
\(597\) 30.7875 1.26005
\(598\) 0 0
\(599\) −8.07846 −0.330077 −0.165038 0.986287i \(-0.552775\pi\)
−0.165038 + 0.986287i \(0.552775\pi\)
\(600\) 0 0
\(601\) −19.4969 −0.795297 −0.397648 0.917538i \(-0.630174\pi\)
−0.397648 + 0.917538i \(0.630174\pi\)
\(602\) −36.0930 −1.47104
\(603\) 3.45712 0.140785
\(604\) 4.86592 0.197991
\(605\) 0 0
\(606\) −27.1051 −1.10107
\(607\) 35.9845 1.46056 0.730282 0.683146i \(-0.239389\pi\)
0.730282 + 0.683146i \(0.239389\pi\)
\(608\) −0.356896 −0.0144740
\(609\) 18.7681 0.760521
\(610\) 0 0
\(611\) 0 0
\(612\) 0.780167 0.0315364
\(613\) 18.1763 0.734134 0.367067 0.930195i \(-0.380362\pi\)
0.367067 + 0.930195i \(0.380362\pi\)
\(614\) 15.1588 0.611761
\(615\) 0 0
\(616\) −16.0194 −0.645439
\(617\) 43.0532 1.73326 0.866629 0.498953i \(-0.166282\pi\)
0.866629 + 0.498953i \(0.166282\pi\)
\(618\) 14.0978 0.567098
\(619\) −39.5120 −1.58812 −0.794061 0.607838i \(-0.792037\pi\)
−0.794061 + 0.607838i \(0.792037\pi\)
\(620\) 0 0
\(621\) −32.2150 −1.29275
\(622\) −5.38404 −0.215880
\(623\) 28.9095 1.15823
\(624\) 0 0
\(625\) 0 0
\(626\) −16.5864 −0.662927
\(627\) −2.85862 −0.114162
\(628\) 9.42758 0.376202
\(629\) −23.6340 −0.942350
\(630\) 0 0
\(631\) −23.0616 −0.918067 −0.459034 0.888419i \(-0.651804\pi\)
−0.459034 + 0.888419i \(0.651804\pi\)
\(632\) 5.87800 0.233814
\(633\) −9.96615 −0.396119
\(634\) −12.1086 −0.480893
\(635\) 0 0
\(636\) 22.2935 0.883995
\(637\) 0 0
\(638\) −12.8465 −0.508600
\(639\) −3.16421 −0.125174
\(640\) 0 0
\(641\) 34.7047 1.37075 0.685377 0.728189i \(-0.259638\pi\)
0.685377 + 0.728189i \(0.259638\pi\)
\(642\) 16.7603 0.661477
\(643\) 34.2107 1.34914 0.674570 0.738211i \(-0.264329\pi\)
0.674570 + 0.738211i \(0.264329\pi\)
\(644\) −23.4034 −0.922224
\(645\) 0 0
\(646\) −1.12737 −0.0443560
\(647\) −4.45904 −0.175303 −0.0876515 0.996151i \(-0.527936\pi\)
−0.0876515 + 0.996151i \(0.527936\pi\)
\(648\) 9.67994 0.380264
\(649\) −53.3299 −2.09338
\(650\) 0 0
\(651\) 24.8310 0.973204
\(652\) 5.47650 0.214476
\(653\) −9.44696 −0.369688 −0.184844 0.982768i \(-0.559178\pi\)
−0.184844 + 0.982768i \(0.559178\pi\)
\(654\) 1.46250 0.0571883
\(655\) 0 0
\(656\) −2.03923 −0.0796185
\(657\) 1.72050 0.0671230
\(658\) 42.1715 1.64402
\(659\) −17.7778 −0.692524 −0.346262 0.938138i \(-0.612549\pi\)
−0.346262 + 0.938138i \(0.612549\pi\)
\(660\) 0 0
\(661\) −31.2814 −1.21671 −0.608353 0.793666i \(-0.708170\pi\)
−0.608353 + 0.793666i \(0.708170\pi\)
\(662\) 14.6112 0.567879
\(663\) 0 0
\(664\) −4.67456 −0.181408
\(665\) 0 0
\(666\) 1.84787 0.0716036
\(667\) −18.7681 −0.726703
\(668\) −2.68963 −0.104065
\(669\) 7.70171 0.297765
\(670\) 0 0
\(671\) 54.9939 2.12302
\(672\) 6.49396 0.250510
\(673\) 14.4614 0.557447 0.278724 0.960371i \(-0.410089\pi\)
0.278724 + 0.960371i \(0.410089\pi\)
\(674\) −4.45952 −0.171774
\(675\) 0 0
\(676\) 0 0
\(677\) −19.8974 −0.764718 −0.382359 0.924014i \(-0.624888\pi\)
−0.382359 + 0.924014i \(0.624888\pi\)
\(678\) 12.6310 0.485091
\(679\) −14.2392 −0.546451
\(680\) 0 0
\(681\) −17.9366 −0.687332
\(682\) −16.9965 −0.650831
\(683\) −40.3038 −1.54218 −0.771091 0.636725i \(-0.780289\pi\)
−0.771091 + 0.636725i \(0.780289\pi\)
\(684\) 0.0881460 0.00337035
\(685\) 0 0
\(686\) −3.64742 −0.139259
\(687\) 41.5013 1.58337
\(688\) −10.0151 −0.381821
\(689\) 0 0
\(690\) 0 0
\(691\) −0.748235 −0.0284642 −0.0142321 0.999899i \(-0.504530\pi\)
−0.0142321 + 0.999899i \(0.504530\pi\)
\(692\) −10.9095 −0.414715
\(693\) 3.95646 0.150293
\(694\) 28.5870 1.08515
\(695\) 0 0
\(696\) 5.20775 0.197399
\(697\) −6.44158 −0.243992
\(698\) −4.87933 −0.184685
\(699\) −33.4620 −1.26565
\(700\) 0 0
\(701\) −27.5555 −1.04076 −0.520379 0.853935i \(-0.674209\pi\)
−0.520379 + 0.853935i \(0.674209\pi\)
\(702\) 0 0
\(703\) −2.67025 −0.100710
\(704\) −4.44504 −0.167529
\(705\) 0 0
\(706\) 4.05967 0.152788
\(707\) −54.2103 −2.03879
\(708\) 21.6189 0.812490
\(709\) −7.09054 −0.266291 −0.133145 0.991097i \(-0.542508\pi\)
−0.133145 + 0.991097i \(0.542508\pi\)
\(710\) 0 0
\(711\) −1.45175 −0.0544448
\(712\) 8.02177 0.300629
\(713\) −24.8310 −0.929928
\(714\) 20.5133 0.767692
\(715\) 0 0
\(716\) 12.9825 0.485180
\(717\) 34.1521 1.27543
\(718\) −5.12067 −0.191102
\(719\) −10.7138 −0.399557 −0.199779 0.979841i \(-0.564022\pi\)
−0.199779 + 0.979841i \(0.564022\pi\)
\(720\) 0 0
\(721\) 28.1957 1.05006
\(722\) 18.8726 0.702366
\(723\) −40.9831 −1.52418
\(724\) 22.7332 0.844872
\(725\) 0 0
\(726\) −15.7821 −0.585728
\(727\) −1.37329 −0.0509325 −0.0254662 0.999676i \(-0.508107\pi\)
−0.0254662 + 0.999676i \(0.508107\pi\)
\(728\) 0 0
\(729\) 24.4263 0.904676
\(730\) 0 0
\(731\) −31.6359 −1.17010
\(732\) −22.2935 −0.823992
\(733\) −12.6160 −0.465981 −0.232991 0.972479i \(-0.574851\pi\)
−0.232991 + 0.972479i \(0.574851\pi\)
\(734\) −9.28621 −0.342760
\(735\) 0 0
\(736\) −6.49396 −0.239371
\(737\) −62.2199 −2.29190
\(738\) 0.503648 0.0185395
\(739\) −37.1377 −1.36613 −0.683065 0.730357i \(-0.739354\pi\)
−0.683065 + 0.730357i \(0.739354\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 44.5870 1.63684
\(743\) 15.0530 0.552240 0.276120 0.961123i \(-0.410951\pi\)
0.276120 + 0.961123i \(0.410951\pi\)
\(744\) 6.89008 0.252603
\(745\) 0 0
\(746\) −7.30559 −0.267476
\(747\) 1.15452 0.0422417
\(748\) −14.0411 −0.513395
\(749\) 33.5206 1.22482
\(750\) 0 0
\(751\) −22.3913 −0.817072 −0.408536 0.912742i \(-0.633960\pi\)
−0.408536 + 0.912742i \(0.633960\pi\)
\(752\) 11.7017 0.426717
\(753\) 26.2489 0.956563
\(754\) 0 0
\(755\) 0 0
\(756\) 17.8780 0.650217
\(757\) 15.8732 0.576922 0.288461 0.957492i \(-0.406856\pi\)
0.288461 + 0.957492i \(0.406856\pi\)
\(758\) −30.5700 −1.11035
\(759\) −52.0146 −1.88801
\(760\) 0 0
\(761\) 38.5682 1.39810 0.699048 0.715074i \(-0.253607\pi\)
0.699048 + 0.715074i \(0.253607\pi\)
\(762\) −21.0073 −0.761014
\(763\) 2.92500 0.105892
\(764\) 18.2198 0.659170
\(765\) 0 0
\(766\) −7.93230 −0.286606
\(767\) 0 0
\(768\) 1.80194 0.0650218
\(769\) 49.0320 1.76814 0.884070 0.467354i \(-0.154793\pi\)
0.884070 + 0.467354i \(0.154793\pi\)
\(770\) 0 0
\(771\) −3.61165 −0.130070
\(772\) 18.7482 0.674764
\(773\) −11.8888 −0.427609 −0.213804 0.976876i \(-0.568586\pi\)
−0.213804 + 0.976876i \(0.568586\pi\)
\(774\) 2.47352 0.0889087
\(775\) 0 0
\(776\) −3.95108 −0.141836
\(777\) 48.5870 1.74305
\(778\) −1.35988 −0.0487541
\(779\) −0.727792 −0.0260759
\(780\) 0 0
\(781\) 56.9482 2.03777
\(782\) −20.5133 −0.733555
\(783\) 14.3370 0.512364
\(784\) 5.98792 0.213854
\(785\) 0 0
\(786\) 2.42327 0.0864352
\(787\) −3.25667 −0.116088 −0.0580438 0.998314i \(-0.518486\pi\)
−0.0580438 + 0.998314i \(0.518486\pi\)
\(788\) 22.4155 0.798519
\(789\) −7.95646 −0.283257
\(790\) 0 0
\(791\) 25.2620 0.898215
\(792\) 1.09783 0.0390099
\(793\) 0 0
\(794\) 24.6112 0.873418
\(795\) 0 0
\(796\) 17.0858 0.605588
\(797\) −36.9530 −1.30894 −0.654471 0.756087i \(-0.727109\pi\)
−0.654471 + 0.756087i \(0.727109\pi\)
\(798\) 2.31767 0.0820445
\(799\) 36.9638 1.30768
\(800\) 0 0
\(801\) −1.98121 −0.0700027
\(802\) 4.89546 0.172865
\(803\) −30.9648 −1.09272
\(804\) 25.2228 0.889540
\(805\) 0 0
\(806\) 0 0
\(807\) −32.7090 −1.15141
\(808\) −15.0422 −0.529183
\(809\) −4.17198 −0.146679 −0.0733395 0.997307i \(-0.523366\pi\)
−0.0733395 + 0.997307i \(0.523366\pi\)
\(810\) 0 0
\(811\) −17.0696 −0.599396 −0.299698 0.954034i \(-0.596886\pi\)
−0.299698 + 0.954034i \(0.596886\pi\)
\(812\) 10.4155 0.365512
\(813\) 35.0858 1.23051
\(814\) −33.2573 −1.16567
\(815\) 0 0
\(816\) 5.69202 0.199261
\(817\) −3.57434 −0.125050
\(818\) −4.37435 −0.152946
\(819\) 0 0
\(820\) 0 0
\(821\) −37.8297 −1.32026 −0.660132 0.751149i \(-0.729500\pi\)
−0.660132 + 0.751149i \(0.729500\pi\)
\(822\) −14.0586 −0.490350
\(823\) −41.0723 −1.43169 −0.715846 0.698258i \(-0.753959\pi\)
−0.715846 + 0.698258i \(0.753959\pi\)
\(824\) 7.82371 0.272552
\(825\) 0 0
\(826\) 43.2379 1.50444
\(827\) 26.9855 0.938379 0.469189 0.883098i \(-0.344546\pi\)
0.469189 + 0.883098i \(0.344546\pi\)
\(828\) 1.60388 0.0557385
\(829\) −12.1655 −0.422527 −0.211263 0.977429i \(-0.567758\pi\)
−0.211263 + 0.977429i \(0.567758\pi\)
\(830\) 0 0
\(831\) 33.1487 1.14991
\(832\) 0 0
\(833\) 18.9148 0.655360
\(834\) −24.9976 −0.865596
\(835\) 0 0
\(836\) −1.58642 −0.0548674
\(837\) 18.9685 0.655649
\(838\) −16.7439 −0.578409
\(839\) −1.86725 −0.0644646 −0.0322323 0.999480i \(-0.510262\pi\)
−0.0322323 + 0.999480i \(0.510262\pi\)
\(840\) 0 0
\(841\) −20.6474 −0.711980
\(842\) 0.483206 0.0166524
\(843\) 28.7342 0.989660
\(844\) −5.53079 −0.190378
\(845\) 0 0
\(846\) −2.89008 −0.0993631
\(847\) −31.5642 −1.08456
\(848\) 12.3720 0.424855
\(849\) 50.4379 1.73102
\(850\) 0 0
\(851\) −48.5870 −1.66554
\(852\) −23.0858 −0.790905
\(853\) 27.7453 0.949979 0.474990 0.879991i \(-0.342452\pi\)
0.474990 + 0.879991i \(0.342452\pi\)
\(854\) −44.5870 −1.52574
\(855\) 0 0
\(856\) 9.30127 0.317911
\(857\) 24.2553 0.828547 0.414273 0.910153i \(-0.364036\pi\)
0.414273 + 0.910153i \(0.364036\pi\)
\(858\) 0 0
\(859\) 26.1089 0.890823 0.445411 0.895326i \(-0.353057\pi\)
0.445411 + 0.895326i \(0.353057\pi\)
\(860\) 0 0
\(861\) 13.2427 0.451309
\(862\) −11.9758 −0.407899
\(863\) 39.5905 1.34768 0.673838 0.738880i \(-0.264645\pi\)
0.673838 + 0.738880i \(0.264645\pi\)
\(864\) 4.96077 0.168769
\(865\) 0 0
\(866\) −4.15452 −0.141176
\(867\) −12.6528 −0.429711
\(868\) 13.7802 0.467729
\(869\) 26.1280 0.886331
\(870\) 0 0
\(871\) 0 0
\(872\) 0.811626 0.0274851
\(873\) 0.975837 0.0330271
\(874\) −2.31767 −0.0783963
\(875\) 0 0
\(876\) 12.5526 0.424112
\(877\) −40.5086 −1.36788 −0.683938 0.729540i \(-0.739734\pi\)
−0.683938 + 0.729540i \(0.739734\pi\)
\(878\) 12.5133 0.422305
\(879\) −24.4349 −0.824168
\(880\) 0 0
\(881\) −36.3752 −1.22551 −0.612756 0.790272i \(-0.709939\pi\)
−0.612756 + 0.790272i \(0.709939\pi\)
\(882\) −1.47889 −0.0497969
\(883\) −6.51275 −0.219171 −0.109586 0.993977i \(-0.534952\pi\)
−0.109586 + 0.993977i \(0.534952\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −2.27950 −0.0765814
\(887\) −3.31634 −0.111352 −0.0556759 0.998449i \(-0.517731\pi\)
−0.0556759 + 0.998449i \(0.517731\pi\)
\(888\) 13.4819 0.452422
\(889\) −42.0146 −1.40912
\(890\) 0 0
\(891\) 43.0277 1.44148
\(892\) 4.27413 0.143108
\(893\) 4.17629 0.139754
\(894\) 22.8310 0.763583
\(895\) 0 0
\(896\) 3.60388 0.120397
\(897\) 0 0
\(898\) 20.4547 0.682583
\(899\) 11.0508 0.368566
\(900\) 0 0
\(901\) 39.0810 1.30198
\(902\) −9.06446 −0.301813
\(903\) 65.0374 2.16431
\(904\) 7.00969 0.233139
\(905\) 0 0
\(906\) −8.76809 −0.291300
\(907\) 48.3648 1.60593 0.802963 0.596029i \(-0.203256\pi\)
0.802963 + 0.596029i \(0.203256\pi\)
\(908\) −9.95407 −0.330337
\(909\) 3.71512 0.123223
\(910\) 0 0
\(911\) −18.2634 −0.605093 −0.302546 0.953135i \(-0.597837\pi\)
−0.302546 + 0.953135i \(0.597837\pi\)
\(912\) 0.643104 0.0212953
\(913\) −20.7786 −0.687672
\(914\) −17.8431 −0.590197
\(915\) 0 0
\(916\) 23.0315 0.760981
\(917\) 4.84654 0.160047
\(918\) 15.6703 0.517195
\(919\) 22.1608 0.731016 0.365508 0.930808i \(-0.380895\pi\)
0.365508 + 0.930808i \(0.380895\pi\)
\(920\) 0 0
\(921\) −27.3153 −0.900069
\(922\) 3.52542 0.116103
\(923\) 0 0
\(924\) 28.8659 0.949619
\(925\) 0 0
\(926\) −3.72587 −0.122440
\(927\) −1.93230 −0.0634649
\(928\) 2.89008 0.0948716
\(929\) −7.92798 −0.260109 −0.130054 0.991507i \(-0.541515\pi\)
−0.130054 + 0.991507i \(0.541515\pi\)
\(930\) 0 0
\(931\) 2.13706 0.0700394
\(932\) −18.5700 −0.608281
\(933\) 9.70171 0.317620
\(934\) −12.8576 −0.420712
\(935\) 0 0
\(936\) 0 0
\(937\) −28.1758 −0.920464 −0.460232 0.887799i \(-0.652234\pi\)
−0.460232 + 0.887799i \(0.652234\pi\)
\(938\) 50.4456 1.64711
\(939\) 29.8877 0.975348
\(940\) 0 0
\(941\) 31.4228 1.02435 0.512177 0.858880i \(-0.328839\pi\)
0.512177 + 0.858880i \(0.328839\pi\)
\(942\) −16.9879 −0.553496
\(943\) −13.2427 −0.431241
\(944\) 11.9976 0.390489
\(945\) 0 0
\(946\) −44.5174 −1.44739
\(947\) −7.96077 −0.258690 −0.129345 0.991600i \(-0.541288\pi\)
−0.129345 + 0.991600i \(0.541288\pi\)
\(948\) −10.5918 −0.344005
\(949\) 0 0
\(950\) 0 0
\(951\) 21.8189 0.707527
\(952\) 11.3840 0.368959
\(953\) 6.90515 0.223680 0.111840 0.993726i \(-0.464326\pi\)
0.111840 + 0.993726i \(0.464326\pi\)
\(954\) −3.05562 −0.0989294
\(955\) 0 0
\(956\) 18.9530 0.612984
\(957\) 23.1487 0.748290
\(958\) −33.9952 −1.09834
\(959\) −28.1172 −0.907952
\(960\) 0 0
\(961\) −16.3793 −0.528363
\(962\) 0 0
\(963\) −2.29722 −0.0740270
\(964\) −22.7439 −0.732532
\(965\) 0 0
\(966\) 42.1715 1.35685
\(967\) 31.3297 1.00750 0.503748 0.863850i \(-0.331954\pi\)
0.503748 + 0.863850i \(0.331954\pi\)
\(968\) −8.75840 −0.281506
\(969\) 2.03146 0.0652599
\(970\) 0 0
\(971\) −4.90515 −0.157414 −0.0787069 0.996898i \(-0.525079\pi\)
−0.0787069 + 0.996898i \(0.525079\pi\)
\(972\) −2.56033 −0.0821228
\(973\) −49.9952 −1.60277
\(974\) −25.4819 −0.816492
\(975\) 0 0
\(976\) −12.3720 −0.396017
\(977\) 13.5163 0.432425 0.216213 0.976346i \(-0.430630\pi\)
0.216213 + 0.976346i \(0.430630\pi\)
\(978\) −9.86831 −0.315554
\(979\) 35.6571 1.13961
\(980\) 0 0
\(981\) −0.200455 −0.00640004
\(982\) −25.7778 −0.822602
\(983\) 31.7453 1.01252 0.506258 0.862382i \(-0.331028\pi\)
0.506258 + 0.862382i \(0.331028\pi\)
\(984\) 3.67456 0.117141
\(985\) 0 0
\(986\) 9.12929 0.290736
\(987\) −75.9904 −2.41880
\(988\) 0 0
\(989\) −65.0374 −2.06807
\(990\) 0 0
\(991\) 13.6098 0.432331 0.216165 0.976357i \(-0.430645\pi\)
0.216165 + 0.976357i \(0.430645\pi\)
\(992\) 3.82371 0.121403
\(993\) −26.3284 −0.835507
\(994\) −46.1715 −1.46447
\(995\) 0 0
\(996\) 8.42327 0.266902
\(997\) 39.4120 1.24819 0.624096 0.781348i \(-0.285467\pi\)
0.624096 + 0.781348i \(0.285467\pi\)
\(998\) −21.6286 −0.684642
\(999\) 37.1159 1.17429
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.bv.1.3 3
5.4 even 2 1690.2.a.r.1.1 yes 3
13.12 even 2 8450.2.a.cg.1.3 3
65.4 even 6 1690.2.e.r.991.3 6
65.9 even 6 1690.2.e.p.991.3 6
65.19 odd 12 1690.2.l.m.361.3 12
65.24 odd 12 1690.2.l.m.1161.3 12
65.29 even 6 1690.2.e.p.191.3 6
65.34 odd 4 1690.2.d.i.1351.4 6
65.44 odd 4 1690.2.d.i.1351.1 6
65.49 even 6 1690.2.e.r.191.3 6
65.54 odd 12 1690.2.l.m.1161.6 12
65.59 odd 12 1690.2.l.m.361.6 12
65.64 even 2 1690.2.a.p.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.a.p.1.1 3 65.64 even 2
1690.2.a.r.1.1 yes 3 5.4 even 2
1690.2.d.i.1351.1 6 65.44 odd 4
1690.2.d.i.1351.4 6 65.34 odd 4
1690.2.e.p.191.3 6 65.29 even 6
1690.2.e.p.991.3 6 65.9 even 6
1690.2.e.r.191.3 6 65.49 even 6
1690.2.e.r.991.3 6 65.4 even 6
1690.2.l.m.361.3 12 65.19 odd 12
1690.2.l.m.361.6 12 65.59 odd 12
1690.2.l.m.1161.3 12 65.24 odd 12
1690.2.l.m.1161.6 12 65.54 odd 12
8450.2.a.bv.1.3 3 1.1 even 1 trivial
8450.2.a.cg.1.3 3 13.12 even 2