Properties

Label 1690.2.l.m.361.6
Level $1690$
Weight $2$
Character 1690.361
Analytic conductor $13.495$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(361,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,2,6,0,0,0,0,8,-6,0,4,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.17213603549184.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.6
Root \(-1.07992 + 0.623490i\) of defining polynomial
Character \(\chi\) \(=\) 1690.361
Dual form 1690.2.l.m.1161.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.900969 + 1.56052i) q^{3} +(0.500000 - 0.866025i) q^{4} -1.00000i q^{5} +(1.56052 + 0.900969i) q^{6} +(3.12105 + 1.80194i) q^{7} -1.00000i q^{8} +(-0.123490 + 0.213891i) q^{9} +(-0.500000 - 0.866025i) q^{10} +(3.84952 - 2.22252i) q^{11} +1.80194 q^{12} +3.60388 q^{14} +(1.56052 - 0.900969i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.57942 + 2.73563i) q^{17} +0.246980i q^{18} +(-0.309081 - 0.178448i) q^{19} +(-0.866025 - 0.500000i) q^{20} +6.49396i q^{21} +(2.22252 - 3.84952i) q^{22} +(-3.24698 - 5.62393i) q^{23} +(1.56052 - 0.900969i) q^{24} -1.00000 q^{25} +4.96077 q^{27} +(3.12105 - 1.80194i) q^{28} +(1.44504 + 2.50289i) q^{29} +(0.900969 - 1.56052i) q^{30} -3.82371i q^{31} +(-0.866025 - 0.500000i) q^{32} +(6.93659 + 4.00484i) q^{33} +3.15883i q^{34} +(1.80194 - 3.12105i) q^{35} +(0.123490 + 0.213891i) q^{36} +(-6.47950 + 3.74094i) q^{37} -0.356896 q^{38} -1.00000 q^{40} +(-1.76602 + 1.01961i) q^{41} +(3.24698 + 5.62393i) q^{42} +(5.00753 - 8.67330i) q^{43} -4.44504i q^{44} +(0.213891 + 0.123490i) q^{45} +(-5.62393 - 3.24698i) q^{46} +11.7017i q^{47} +(0.900969 - 1.56052i) q^{48} +(2.99396 + 5.18569i) q^{49} +(-0.866025 + 0.500000i) q^{50} -5.69202 q^{51} -12.3720 q^{53} +(4.29615 - 2.48039i) q^{54} +(-2.22252 - 3.84952i) q^{55} +(1.80194 - 3.12105i) q^{56} -0.643104i q^{57} +(2.50289 + 1.44504i) q^{58} +(10.3902 + 5.99880i) q^{59} -1.80194i q^{60} +(6.18598 - 10.7144i) q^{61} +(-1.91185 - 3.31143i) q^{62} +(-0.770835 + 0.445042i) q^{63} -1.00000 q^{64} +8.00969 q^{66} +(-12.1223 + 6.99880i) q^{67} +(1.57942 + 2.73563i) q^{68} +(5.85086 - 10.1340i) q^{69} -3.60388i q^{70} +(11.0952 + 6.40581i) q^{71} +(0.213891 + 0.123490i) q^{72} +6.96615i q^{73} +(-3.74094 + 6.47950i) q^{74} +(-0.900969 - 1.56052i) q^{75} +(-0.309081 + 0.178448i) q^{76} +16.0194 q^{77} -5.87800 q^{79} +(-0.866025 + 0.500000i) q^{80} +(4.83997 + 8.38307i) q^{81} +(-1.01961 + 1.76602i) q^{82} -4.67456i q^{83} +(5.62393 + 3.24698i) q^{84} +(2.73563 + 1.57942i) q^{85} -10.0151i q^{86} +(-2.60388 + 4.51004i) q^{87} +(-2.22252 - 3.84952i) q^{88} +(6.94706 - 4.01089i) q^{89} +0.246980 q^{90} -6.49396 q^{92} +(5.96699 - 3.44504i) q^{93} +(5.85086 + 10.1340i) q^{94} +(-0.178448 + 0.309081i) q^{95} -1.80194i q^{96} +(3.42174 + 1.97554i) q^{97} +(5.18569 + 2.99396i) q^{98} +1.09783i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{3} + 6 q^{4} + 8 q^{9} - 6 q^{10} + 4 q^{12} + 8 q^{14} - 6 q^{16} - 2 q^{17} + 26 q^{22} - 20 q^{23} - 12 q^{25} + 8 q^{27} + 16 q^{29} + 2 q^{30} + 4 q^{35} - 8 q^{36} + 12 q^{38} - 12 q^{40}+ \cdots + 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0.900969 + 1.56052i 0.520175 + 0.900969i 0.999725 + 0.0234545i \(0.00746647\pi\)
−0.479550 + 0.877514i \(0.659200\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.00000i 0.447214i
\(6\) 1.56052 + 0.900969i 0.637081 + 0.367819i
\(7\) 3.12105 + 1.80194i 1.17965 + 0.681068i 0.955932 0.293587i \(-0.0948489\pi\)
0.223713 + 0.974655i \(0.428182\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −0.123490 + 0.213891i −0.0411633 + 0.0712969i
\(10\) −0.500000 0.866025i −0.158114 0.273861i
\(11\) 3.84952 2.22252i 1.16067 0.670115i 0.209208 0.977871i \(-0.432911\pi\)
0.951465 + 0.307756i \(0.0995780\pi\)
\(12\) 1.80194 0.520175
\(13\) 0 0
\(14\) 3.60388 0.963176
\(15\) 1.56052 0.900969i 0.402926 0.232629i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.57942 + 2.73563i −0.383065 + 0.663488i −0.991499 0.130117i \(-0.958465\pi\)
0.608434 + 0.793605i \(0.291798\pi\)
\(18\) 0.246980i 0.0582137i
\(19\) −0.309081 0.178448i −0.0709080 0.0409388i 0.464127 0.885769i \(-0.346368\pi\)
−0.535035 + 0.844830i \(0.679702\pi\)
\(20\) −0.866025 0.500000i −0.193649 0.111803i
\(21\) 6.49396i 1.41710i
\(22\) 2.22252 3.84952i 0.473843 0.820720i
\(23\) −3.24698 5.62393i −0.677042 1.17267i −0.975868 0.218363i \(-0.929928\pi\)
0.298825 0.954308i \(-0.403405\pi\)
\(24\) 1.56052 0.900969i 0.318541 0.183910i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 4.96077 0.954701
\(28\) 3.12105 1.80194i 0.589823 0.340534i
\(29\) 1.44504 + 2.50289i 0.268338 + 0.464774i 0.968433 0.249275i \(-0.0801924\pi\)
−0.700095 + 0.714050i \(0.746859\pi\)
\(30\) 0.900969 1.56052i 0.164494 0.284911i
\(31\) 3.82371i 0.686758i −0.939197 0.343379i \(-0.888428\pi\)
0.939197 0.343379i \(-0.111572\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 6.93659 + 4.00484i 1.20751 + 0.697154i
\(34\) 3.15883i 0.541735i
\(35\) 1.80194 3.12105i 0.304583 0.527553i
\(36\) 0.123490 + 0.213891i 0.0205816 + 0.0356484i
\(37\) −6.47950 + 3.74094i −1.06522 + 0.615007i −0.926872 0.375377i \(-0.877513\pi\)
−0.138350 + 0.990383i \(0.544180\pi\)
\(38\) −0.356896 −0.0578962
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) −1.76602 + 1.01961i −0.275807 + 0.159237i −0.631523 0.775357i \(-0.717570\pi\)
0.355717 + 0.934594i \(0.384237\pi\)
\(42\) 3.24698 + 5.62393i 0.501020 + 0.867792i
\(43\) 5.00753 8.67330i 0.763642 1.32267i −0.177320 0.984153i \(-0.556743\pi\)
0.940962 0.338513i \(-0.109924\pi\)
\(44\) 4.44504i 0.670115i
\(45\) 0.213891 + 0.123490i 0.0318849 + 0.0184088i
\(46\) −5.62393 3.24698i −0.829204 0.478741i
\(47\) 11.7017i 1.70687i 0.521199 + 0.853435i \(0.325485\pi\)
−0.521199 + 0.853435i \(0.674515\pi\)
\(48\) 0.900969 1.56052i 0.130044 0.225242i
\(49\) 2.99396 + 5.18569i 0.427708 + 0.740813i
\(50\) −0.866025 + 0.500000i −0.122474 + 0.0707107i
\(51\) −5.69202 −0.797042
\(52\) 0 0
\(53\) −12.3720 −1.69942 −0.849710 0.527251i \(-0.823223\pi\)
−0.849710 + 0.527251i \(0.823223\pi\)
\(54\) 4.29615 2.48039i 0.584633 0.337538i
\(55\) −2.22252 3.84952i −0.299685 0.519069i
\(56\) 1.80194 3.12105i 0.240794 0.417068i
\(57\) 0.643104i 0.0851812i
\(58\) 2.50289 + 1.44504i 0.328645 + 0.189743i
\(59\) 10.3902 + 5.99880i 1.35269 + 0.780978i 0.988626 0.150395i \(-0.0480546\pi\)
0.364067 + 0.931373i \(0.381388\pi\)
\(60\) 1.80194i 0.232629i
\(61\) 6.18598 10.7144i 0.792034 1.37184i −0.132672 0.991160i \(-0.542356\pi\)
0.924706 0.380683i \(-0.124311\pi\)
\(62\) −1.91185 3.31143i −0.242806 0.420552i
\(63\) −0.770835 + 0.445042i −0.0971161 + 0.0560700i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 8.00969 0.985925
\(67\) −12.1223 + 6.99880i −1.48097 + 0.855040i −0.999767 0.0215680i \(-0.993134\pi\)
−0.481205 + 0.876608i \(0.659801\pi\)
\(68\) 1.57942 + 2.73563i 0.191532 + 0.331744i
\(69\) 5.85086 10.1340i 0.704360 1.21999i
\(70\) 3.60388i 0.430746i
\(71\) 11.0952 + 6.40581i 1.31676 + 0.760230i 0.983206 0.182502i \(-0.0584195\pi\)
0.333552 + 0.942732i \(0.391753\pi\)
\(72\) 0.213891 + 0.123490i 0.0252073 + 0.0145534i
\(73\) 6.96615i 0.815326i 0.913132 + 0.407663i \(0.133656\pi\)
−0.913132 + 0.407663i \(0.866344\pi\)
\(74\) −3.74094 + 6.47950i −0.434875 + 0.753226i
\(75\) −0.900969 1.56052i −0.104035 0.180194i
\(76\) −0.309081 + 0.178448i −0.0354540 + 0.0204694i
\(77\) 16.0194 1.82558
\(78\) 0 0
\(79\) −5.87800 −0.661327 −0.330663 0.943749i \(-0.607272\pi\)
−0.330663 + 0.943749i \(0.607272\pi\)
\(80\) −0.866025 + 0.500000i −0.0968246 + 0.0559017i
\(81\) 4.83997 + 8.38307i 0.537774 + 0.931453i
\(82\) −1.01961 + 1.76602i −0.112598 + 0.195025i
\(83\) 4.67456i 0.513100i −0.966531 0.256550i \(-0.917414\pi\)
0.966531 0.256550i \(-0.0825858\pi\)
\(84\) 5.62393 + 3.24698i 0.613621 + 0.354275i
\(85\) 2.73563 + 1.57942i 0.296721 + 0.171312i
\(86\) 10.0151i 1.07995i
\(87\) −2.60388 + 4.51004i −0.279165 + 0.483528i
\(88\) −2.22252 3.84952i −0.236922 0.410360i
\(89\) 6.94706 4.01089i 0.736387 0.425153i −0.0843675 0.996435i \(-0.526887\pi\)
0.820754 + 0.571282i \(0.193554\pi\)
\(90\) 0.246980 0.0260339
\(91\) 0 0
\(92\) −6.49396 −0.677042
\(93\) 5.96699 3.44504i 0.618748 0.357234i
\(94\) 5.85086 + 10.1340i 0.603470 + 1.04524i
\(95\) −0.178448 + 0.309081i −0.0183084 + 0.0317110i
\(96\) 1.80194i 0.183910i
\(97\) 3.42174 + 1.97554i 0.347425 + 0.200586i 0.663550 0.748132i \(-0.269049\pi\)
−0.316126 + 0.948717i \(0.602382\pi\)
\(98\) 5.18569 + 2.99396i 0.523834 + 0.302436i
\(99\) 1.09783i 0.110337i
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) 7.52111 + 13.0269i 0.748378 + 1.29623i 0.948600 + 0.316478i \(0.102500\pi\)
−0.200222 + 0.979751i \(0.564166\pi\)
\(102\) −4.92944 + 2.84601i −0.488087 + 0.281797i
\(103\) −7.82371 −0.770893 −0.385446 0.922730i \(-0.625953\pi\)
−0.385446 + 0.922730i \(0.625953\pi\)
\(104\) 0 0
\(105\) 6.49396 0.633746
\(106\) −10.7144 + 6.18598i −1.04068 + 0.600836i
\(107\) −4.65064 8.05514i −0.449594 0.778720i 0.548765 0.835976i \(-0.315098\pi\)
−0.998359 + 0.0572566i \(0.981765\pi\)
\(108\) 2.48039 4.29615i 0.238675 0.413398i
\(109\) 0.811626i 0.0777397i −0.999244 0.0388699i \(-0.987624\pi\)
0.999244 0.0388699i \(-0.0123758\pi\)
\(110\) −3.84952 2.22252i −0.367037 0.211909i
\(111\) −11.6756 6.74094i −1.10820 0.639822i
\(112\) 3.60388i 0.340534i
\(113\) −3.50484 + 6.07057i −0.329708 + 0.571071i −0.982454 0.186506i \(-0.940284\pi\)
0.652746 + 0.757577i \(0.273617\pi\)
\(114\) −0.321552 0.556945i −0.0301161 0.0521626i
\(115\) −5.62393 + 3.24698i −0.524435 + 0.302782i
\(116\) 2.89008 0.268338
\(117\) 0 0
\(118\) 11.9976 1.10447
\(119\) −9.85887 + 5.69202i −0.903761 + 0.521787i
\(120\) −0.900969 1.56052i −0.0822468 0.142456i
\(121\) 4.37920 7.58499i 0.398109 0.689545i
\(122\) 12.3720i 1.12010i
\(123\) −3.18226 1.83728i −0.286935 0.165662i
\(124\) −3.31143 1.91185i −0.297375 0.171690i
\(125\) 1.00000i 0.0894427i
\(126\) −0.445042 + 0.770835i −0.0396475 + 0.0686715i
\(127\) −5.82908 10.0963i −0.517248 0.895899i −0.999799 0.0200317i \(-0.993623\pi\)
0.482552 0.875867i \(-0.339710\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 18.0465 1.58891
\(130\) 0 0
\(131\) −1.34481 −0.117497 −0.0587485 0.998273i \(-0.518711\pi\)
−0.0587485 + 0.998273i \(0.518711\pi\)
\(132\) 6.93659 4.00484i 0.603753 0.348577i
\(133\) −0.643104 1.11389i −0.0557642 0.0965864i
\(134\) −6.99880 + 12.1223i −0.604605 + 1.04721i
\(135\) 4.96077i 0.426955i
\(136\) 2.73563 + 1.57942i 0.234578 + 0.135434i
\(137\) −6.75668 3.90097i −0.577262 0.333282i 0.182783 0.983153i \(-0.441490\pi\)
−0.760044 + 0.649871i \(0.774823\pi\)
\(138\) 11.7017i 0.996116i
\(139\) −6.93631 + 12.0140i −0.588330 + 1.01902i 0.406121 + 0.913819i \(0.366881\pi\)
−0.994451 + 0.105199i \(0.966452\pi\)
\(140\) −1.80194 3.12105i −0.152292 0.263777i
\(141\) −18.2608 + 10.5429i −1.53784 + 0.887870i
\(142\) 12.8116 1.07513
\(143\) 0 0
\(144\) 0.246980 0.0205816
\(145\) 2.50289 1.44504i 0.207853 0.120004i
\(146\) 3.48307 + 6.03286i 0.288261 + 0.499283i
\(147\) −5.39493 + 9.34429i −0.444966 + 0.770704i
\(148\) 7.48188i 0.615007i
\(149\) 10.9728 + 6.33513i 0.898923 + 0.518994i 0.876851 0.480763i \(-0.159640\pi\)
0.0220727 + 0.999756i \(0.492973\pi\)
\(150\) −1.56052 0.900969i −0.127416 0.0735638i
\(151\) 4.86592i 0.395983i −0.980204 0.197991i \(-0.936558\pi\)
0.980204 0.197991i \(-0.0634418\pi\)
\(152\) −0.178448 + 0.309081i −0.0144740 + 0.0250698i
\(153\) −0.390084 0.675645i −0.0315364 0.0546226i
\(154\) 13.8732 8.00969i 1.11793 0.645439i
\(155\) −3.82371 −0.307128
\(156\) 0 0
\(157\) −9.42758 −0.752403 −0.376202 0.926538i \(-0.622770\pi\)
−0.376202 + 0.926538i \(0.622770\pi\)
\(158\) −5.09050 + 2.93900i −0.404978 + 0.233814i
\(159\) −11.1468 19.3067i −0.883995 1.53112i
\(160\) −0.500000 + 0.866025i −0.0395285 + 0.0684653i
\(161\) 23.4034i 1.84445i
\(162\) 8.38307 + 4.83997i 0.658636 + 0.380264i
\(163\) −4.74279 2.73825i −0.371484 0.214476i 0.302623 0.953110i \(-0.402138\pi\)
−0.674107 + 0.738634i \(0.735471\pi\)
\(164\) 2.03923i 0.159237i
\(165\) 4.00484 6.93659i 0.311777 0.540013i
\(166\) −2.33728 4.04829i −0.181408 0.314208i
\(167\) −2.32929 + 1.34481i −0.180246 + 0.104065i −0.587408 0.809291i \(-0.699852\pi\)
0.407162 + 0.913356i \(0.366518\pi\)
\(168\) 6.49396 0.501020
\(169\) 0 0
\(170\) 3.15883 0.242271
\(171\) 0.0763367 0.0440730i 0.00583761 0.00337035i
\(172\) −5.00753 8.67330i −0.381821 0.661333i
\(173\) 5.45473 9.44787i 0.414715 0.718308i −0.580683 0.814130i \(-0.697214\pi\)
0.995399 + 0.0958214i \(0.0305478\pi\)
\(174\) 5.20775i 0.394799i
\(175\) −3.12105 1.80194i −0.235929 0.136214i
\(176\) −3.84952 2.22252i −0.290168 0.167529i
\(177\) 21.6189i 1.62498i
\(178\) 4.01089 6.94706i 0.300629 0.520704i
\(179\) 6.49127 + 11.2432i 0.485180 + 0.840357i 0.999855 0.0170285i \(-0.00542061\pi\)
−0.514675 + 0.857386i \(0.672087\pi\)
\(180\) 0.213891 0.123490i 0.0159425 0.00920439i
\(181\) −22.7332 −1.68974 −0.844872 0.534969i \(-0.820323\pi\)
−0.844872 + 0.534969i \(0.820323\pi\)
\(182\) 0 0
\(183\) 22.2935 1.64798
\(184\) −5.62393 + 3.24698i −0.414602 + 0.239371i
\(185\) 3.74094 + 6.47950i 0.275039 + 0.476382i
\(186\) 3.44504 5.96699i 0.252603 0.437521i
\(187\) 14.0411i 1.02679i
\(188\) 10.1340 + 5.85086i 0.739096 + 0.426717i
\(189\) 15.4828 + 8.93900i 1.12621 + 0.650217i
\(190\) 0.356896i 0.0258919i
\(191\) −9.10992 + 15.7788i −0.659170 + 1.14172i 0.321660 + 0.946855i \(0.395759\pi\)
−0.980831 + 0.194862i \(0.937574\pi\)
\(192\) −0.900969 1.56052i −0.0650218 0.112621i
\(193\) 16.2364 9.37412i 1.16873 0.674764i 0.215346 0.976538i \(-0.430912\pi\)
0.953379 + 0.301774i \(0.0975789\pi\)
\(194\) 3.95108 0.283671
\(195\) 0 0
\(196\) 5.98792 0.427708
\(197\) −19.4124 + 11.2078i −1.38308 + 0.798519i −0.992523 0.122061i \(-0.961050\pi\)
−0.390553 + 0.920580i \(0.627716\pi\)
\(198\) 0.548917 + 0.950753i 0.0390099 + 0.0675671i
\(199\) 8.54288 14.7967i 0.605588 1.04891i −0.386370 0.922344i \(-0.626271\pi\)
0.991958 0.126566i \(-0.0403956\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) −21.8436 12.6114i −1.54073 0.889540i
\(202\) 13.0269 + 7.52111i 0.916572 + 0.529183i
\(203\) 10.4155i 0.731025i
\(204\) −2.84601 + 4.92944i −0.199261 + 0.345129i
\(205\) 1.01961 + 1.76602i 0.0712130 + 0.123344i
\(206\) −6.77553 + 3.91185i −0.472074 + 0.272552i
\(207\) 1.60388 0.111477
\(208\) 0 0
\(209\) −1.58642 −0.109735
\(210\) 5.62393 3.24698i 0.388088 0.224063i
\(211\) 2.76540 + 4.78981i 0.190378 + 0.329744i 0.945375 0.325983i \(-0.105695\pi\)
−0.754998 + 0.655727i \(0.772362\pi\)
\(212\) −6.18598 + 10.7144i −0.424855 + 0.735870i
\(213\) 23.0858i 1.58181i
\(214\) −8.05514 4.65064i −0.550638 0.317911i
\(215\) −8.67330 5.00753i −0.591514 0.341511i
\(216\) 4.96077i 0.337538i
\(217\) 6.89008 11.9340i 0.467729 0.810131i
\(218\) −0.405813 0.702889i −0.0274851 0.0476057i
\(219\) −10.8708 + 6.27628i −0.734583 + 0.424112i
\(220\) −4.44504 −0.299685
\(221\) 0 0
\(222\) −13.4819 −0.904844
\(223\) −3.70150 + 2.13706i −0.247871 + 0.143108i −0.618789 0.785557i \(-0.712376\pi\)
0.370918 + 0.928666i \(0.379043\pi\)
\(224\) −1.80194 3.12105i −0.120397 0.208534i
\(225\) 0.123490 0.213891i 0.00823265 0.0142594i
\(226\) 7.00969i 0.466278i
\(227\) −8.62047 4.97703i −0.572161 0.330337i 0.185851 0.982578i \(-0.440496\pi\)
−0.758012 + 0.652241i \(0.773829\pi\)
\(228\) −0.556945 0.321552i −0.0368846 0.0212953i
\(229\) 23.0315i 1.52196i −0.648774 0.760981i \(-0.724718\pi\)
0.648774 0.760981i \(-0.275282\pi\)
\(230\) −3.24698 + 5.62393i −0.214099 + 0.370831i
\(231\) 14.4330 + 24.9986i 0.949619 + 1.64479i
\(232\) 2.50289 1.44504i 0.164323 0.0948716i
\(233\) −18.5700 −1.21656 −0.608281 0.793721i \(-0.708141\pi\)
−0.608281 + 0.793721i \(0.708141\pi\)
\(234\) 0 0
\(235\) 11.7017 0.763335
\(236\) 10.3902 5.99880i 0.676347 0.390489i
\(237\) −5.29590 9.17276i −0.344005 0.595835i
\(238\) −5.69202 + 9.85887i −0.368959 + 0.639056i
\(239\) 18.9530i 1.22597i 0.790095 + 0.612984i \(0.210031\pi\)
−0.790095 + 0.612984i \(0.789969\pi\)
\(240\) −1.56052 0.900969i −0.100731 0.0581573i
\(241\) −19.6968 11.3720i −1.26878 0.732532i −0.294026 0.955798i \(-0.594995\pi\)
−0.974758 + 0.223265i \(0.928328\pi\)
\(242\) 8.75840i 0.563011i
\(243\) −1.28017 + 2.21732i −0.0821228 + 0.142241i
\(244\) −6.18598 10.7144i −0.396017 0.685921i
\(245\) 5.18569 2.99396i 0.331302 0.191277i
\(246\) −3.67456 −0.234282
\(247\) 0 0
\(248\) −3.82371 −0.242806
\(249\) 7.29477 4.21164i 0.462287 0.266902i
\(250\) 0.500000 + 0.866025i 0.0316228 + 0.0547723i
\(251\) 7.28352 12.6154i 0.459732 0.796279i −0.539215 0.842168i \(-0.681279\pi\)
0.998947 + 0.0458896i \(0.0146122\pi\)
\(252\) 0.890084i 0.0560700i
\(253\) −24.9986 14.4330i −1.57165 0.907392i
\(254\) −10.0963 5.82908i −0.633496 0.365749i
\(255\) 5.69202i 0.356448i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 1.00216 + 1.73578i 0.0625128 + 0.108275i 0.895588 0.444884i \(-0.146755\pi\)
−0.833075 + 0.553160i \(0.813422\pi\)
\(258\) 15.6287 9.02326i 0.973003 0.561764i
\(259\) −26.9638 −1.67545
\(260\) 0 0
\(261\) −0.713792 −0.0441826
\(262\) −1.16464 + 0.672407i −0.0719519 + 0.0415415i
\(263\) −2.20775 3.82394i −0.136136 0.235794i 0.789895 0.613242i \(-0.210135\pi\)
−0.926031 + 0.377448i \(0.876802\pi\)
\(264\) 4.00484 6.93659i 0.246481 0.426918i
\(265\) 12.3720i 0.760004i
\(266\) −1.11389 0.643104i −0.0682969 0.0394312i
\(267\) 12.5182 + 7.22737i 0.766099 + 0.442308i
\(268\) 13.9976i 0.855040i
\(269\) 9.07606 15.7202i 0.553377 0.958478i −0.444650 0.895704i \(-0.646672\pi\)
0.998028 0.0627736i \(-0.0199946\pi\)
\(270\) −2.48039 4.29615i −0.150951 0.261456i
\(271\) −16.8625 + 9.73556i −1.02432 + 0.591393i −0.915353 0.402652i \(-0.868089\pi\)
−0.108970 + 0.994045i \(0.534755\pi\)
\(272\) 3.15883 0.191532
\(273\) 0 0
\(274\) −7.80194 −0.471332
\(275\) −3.84952 + 2.22252i −0.232135 + 0.134023i
\(276\) −5.85086 10.1340i −0.352180 0.609994i
\(277\) −9.19806 + 15.9315i −0.552658 + 0.957232i 0.445424 + 0.895320i \(0.353053\pi\)
−0.998082 + 0.0619118i \(0.980280\pi\)
\(278\) 13.8726i 0.832025i
\(279\) 0.817855 + 0.472189i 0.0489637 + 0.0282692i
\(280\) −3.12105 1.80194i −0.186518 0.107686i
\(281\) 15.9463i 0.951276i −0.879641 0.475638i \(-0.842217\pi\)
0.879641 0.475638i \(-0.157783\pi\)
\(282\) −10.5429 + 18.2608i −0.627819 + 1.08741i
\(283\) −13.9955 24.2408i −0.831943 1.44097i −0.896495 0.443054i \(-0.853895\pi\)
0.0645519 0.997914i \(-0.479438\pi\)
\(284\) 11.0952 6.40581i 0.658379 0.380115i
\(285\) −0.643104 −0.0380942
\(286\) 0 0
\(287\) −7.34913 −0.433805
\(288\) 0.213891 0.123490i 0.0126036 0.00727671i
\(289\) 3.51089 + 6.08103i 0.206523 + 0.357708i
\(290\) 1.44504 2.50289i 0.0848558 0.146975i
\(291\) 7.11960i 0.417359i
\(292\) 6.03286 + 3.48307i 0.353047 + 0.203831i
\(293\) 11.7436 + 6.78017i 0.686068 + 0.396102i 0.802137 0.597140i \(-0.203696\pi\)
−0.116069 + 0.993241i \(0.537029\pi\)
\(294\) 10.7899i 0.629277i
\(295\) 5.99880 10.3902i 0.349264 0.604943i
\(296\) 3.74094 + 6.47950i 0.217438 + 0.376613i
\(297\) 19.0966 11.0254i 1.10810 0.639760i
\(298\) 12.6703 0.733968
\(299\) 0 0
\(300\) −1.80194 −0.104035
\(301\) 31.2575 18.0465i 1.80165 1.04018i
\(302\) −2.43296 4.21401i −0.140001 0.242489i
\(303\) −13.5526 + 23.4737i −0.778575 + 1.34853i
\(304\) 0.356896i 0.0204694i
\(305\) −10.7144 6.18598i −0.613507 0.354208i
\(306\) −0.675645 0.390084i −0.0386240 0.0222996i
\(307\) 15.1588i 0.865160i −0.901595 0.432580i \(-0.857603\pi\)
0.901595 0.432580i \(-0.142397\pi\)
\(308\) 8.00969 13.8732i 0.456394 0.790498i
\(309\) −7.04892 12.2091i −0.400999 0.694550i
\(310\) −3.31143 + 1.91185i −0.188076 + 0.108586i
\(311\) −5.38404 −0.305301 −0.152651 0.988280i \(-0.548781\pi\)
−0.152651 + 0.988280i \(0.548781\pi\)
\(312\) 0 0
\(313\) −16.5864 −0.937520 −0.468760 0.883326i \(-0.655299\pi\)
−0.468760 + 0.883326i \(0.655299\pi\)
\(314\) −8.16453 + 4.71379i −0.460751 + 0.266015i
\(315\) 0.445042 + 0.770835i 0.0250753 + 0.0434316i
\(316\) −2.93900 + 5.09050i −0.165332 + 0.286363i
\(317\) 12.1086i 0.680086i −0.940410 0.340043i \(-0.889558\pi\)
0.940410 0.340043i \(-0.110442\pi\)
\(318\) −19.3067 11.1468i −1.08267 0.625079i
\(319\) 11.1254 + 6.42327i 0.622905 + 0.359634i
\(320\) 1.00000i 0.0559017i
\(321\) 8.38016 14.5149i 0.467735 0.810140i
\(322\) −11.7017 20.2680i −0.652111 1.12949i
\(323\) 0.976335 0.563687i 0.0543247 0.0313644i
\(324\) 9.67994 0.537774
\(325\) 0 0
\(326\) −5.47650 −0.303315
\(327\) 1.26656 0.731250i 0.0700411 0.0404382i
\(328\) 1.01961 + 1.76602i 0.0562988 + 0.0975124i
\(329\) −21.0858 + 36.5216i −1.16250 + 2.01350i
\(330\) 8.00969i 0.440919i
\(331\) 12.6536 + 7.30559i 0.695507 + 0.401551i 0.805672 0.592362i \(-0.201804\pi\)
−0.110165 + 0.993913i \(0.535138\pi\)
\(332\) −4.04829 2.33728i −0.222179 0.128275i
\(333\) 1.84787i 0.101263i
\(334\) −1.34481 + 2.32929i −0.0735850 + 0.127453i
\(335\) 6.99880 + 12.1223i 0.382385 + 0.662311i
\(336\) 5.62393 3.24698i 0.306811 0.177137i
\(337\) 4.45952 0.242925 0.121463 0.992596i \(-0.461242\pi\)
0.121463 + 0.992596i \(0.461242\pi\)
\(338\) 0 0
\(339\) −12.6310 −0.686023
\(340\) 2.73563 1.57942i 0.148360 0.0856559i
\(341\) −8.49827 14.7194i −0.460207 0.797102i
\(342\) 0.0440730 0.0763367i 0.00238319 0.00412781i
\(343\) 3.64742i 0.196942i
\(344\) −8.67330 5.00753i −0.467633 0.269988i
\(345\) −10.1340 5.85086i −0.545595 0.314999i
\(346\) 10.9095i 0.586496i
\(347\) −14.2935 + 24.7571i −0.767316 + 1.32903i 0.171698 + 0.985150i \(0.445075\pi\)
−0.939014 + 0.343880i \(0.888259\pi\)
\(348\) 2.60388 + 4.51004i 0.139582 + 0.241764i
\(349\) −4.22562 + 2.43967i −0.226192 + 0.130592i −0.608814 0.793313i \(-0.708355\pi\)
0.382622 + 0.923905i \(0.375021\pi\)
\(350\) −3.60388 −0.192635
\(351\) 0 0
\(352\) −4.44504 −0.236922
\(353\) 3.51578 2.02984i 0.187126 0.108037i −0.403510 0.914975i \(-0.632210\pi\)
0.590636 + 0.806938i \(0.298877\pi\)
\(354\) 10.8095 + 18.7226i 0.574517 + 0.995092i
\(355\) 6.40581 11.0952i 0.339985 0.588872i
\(356\) 8.02177i 0.425153i
\(357\) −17.7651 10.2567i −0.940227 0.542840i
\(358\) 11.2432 + 6.49127i 0.594222 + 0.343074i
\(359\) 5.12067i 0.270259i −0.990828 0.135129i \(-0.956855\pi\)
0.990828 0.135129i \(-0.0431450\pi\)
\(360\) 0.123490 0.213891i 0.00650848 0.0112730i
\(361\) −9.43631 16.3442i −0.496648 0.860220i
\(362\) −19.6875 + 11.3666i −1.03475 + 0.597414i
\(363\) 15.7821 0.828345
\(364\) 0 0
\(365\) 6.96615 0.364625
\(366\) 19.3067 11.1468i 1.00918 0.582650i
\(367\) 4.64310 + 8.04209i 0.242368 + 0.419794i 0.961388 0.275195i \(-0.0887425\pi\)
−0.719020 + 0.694989i \(0.755409\pi\)
\(368\) −3.24698 + 5.62393i −0.169261 + 0.293168i
\(369\) 0.503648i 0.0262189i
\(370\) 6.47950 + 3.74094i 0.336853 + 0.194482i
\(371\) −38.6135 22.2935i −2.00471 1.15742i
\(372\) 6.89008i 0.357234i
\(373\) 3.65279 6.32682i 0.189134 0.327590i −0.755827 0.654771i \(-0.772765\pi\)
0.944962 + 0.327180i \(0.106098\pi\)
\(374\) 7.02057 + 12.1600i 0.363025 + 0.628778i
\(375\) −1.56052 + 0.900969i −0.0805851 + 0.0465258i
\(376\) 11.7017 0.603470
\(377\) 0 0
\(378\) 17.8780 0.919545
\(379\) 26.4744 15.2850i 1.35990 0.785138i 0.370290 0.928916i \(-0.379258\pi\)
0.989610 + 0.143778i \(0.0459252\pi\)
\(380\) 0.178448 + 0.309081i 0.00915419 + 0.0158555i
\(381\) 10.5036 18.1929i 0.538118 0.932048i
\(382\) 18.2198i 0.932208i
\(383\) 6.86957 + 3.96615i 0.351019 + 0.202661i 0.665134 0.746724i \(-0.268374\pi\)
−0.314115 + 0.949385i \(0.601708\pi\)
\(384\) −1.56052 0.900969i −0.0796351 0.0459774i
\(385\) 16.0194i 0.816423i
\(386\) 9.37412 16.2364i 0.477130 0.826413i
\(387\) 1.23676 + 2.14213i 0.0628680 + 0.108891i
\(388\) 3.42174 1.97554i 0.173712 0.100293i
\(389\) −1.35988 −0.0689486 −0.0344743 0.999406i \(-0.510976\pi\)
−0.0344743 + 0.999406i \(0.510976\pi\)
\(390\) 0 0
\(391\) 20.5133 1.03740
\(392\) 5.18569 2.99396i 0.261917 0.151218i
\(393\) −1.21164 2.09861i −0.0611189 0.105861i
\(394\) −11.2078 + 19.4124i −0.564638 + 0.977982i
\(395\) 5.87800i 0.295754i
\(396\) 0.950753 + 0.548917i 0.0477771 + 0.0275841i
\(397\) 21.3139 + 12.3056i 1.06971 + 0.617600i 0.928103 0.372323i \(-0.121439\pi\)
0.141611 + 0.989922i \(0.454772\pi\)
\(398\) 17.0858i 0.856431i
\(399\) 1.15883 2.00716i 0.0580142 0.100484i
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) 4.23959 2.44773i 0.211715 0.122234i −0.390393 0.920648i \(-0.627661\pi\)
0.602108 + 0.798414i \(0.294328\pi\)
\(402\) −25.2228 −1.25800
\(403\) 0 0
\(404\) 15.0422 0.748378
\(405\) 8.38307 4.83997i 0.416558 0.240500i
\(406\) 5.20775 + 9.02009i 0.258456 + 0.447660i
\(407\) −16.6286 + 28.8016i −0.824251 + 1.42764i
\(408\) 5.69202i 0.281797i
\(409\) −3.78830 2.18718i −0.187319 0.108149i 0.403408 0.915020i \(-0.367826\pi\)
−0.590727 + 0.806871i \(0.701159\pi\)
\(410\) 1.76602 + 1.01961i 0.0872177 + 0.0503552i
\(411\) 14.0586i 0.693460i
\(412\) −3.91185 + 6.77553i −0.192723 + 0.333806i
\(413\) 21.6189 + 37.4451i 1.06380 + 1.84255i
\(414\) 1.38900 0.801938i 0.0682655 0.0394131i
\(415\) −4.67456 −0.229465
\(416\) 0 0
\(417\) −24.9976 −1.22414
\(418\) −1.37388 + 0.793209i −0.0671985 + 0.0387971i
\(419\) −8.37196 14.5007i −0.408997 0.708404i 0.585781 0.810470i \(-0.300788\pi\)
−0.994778 + 0.102066i \(0.967455\pi\)
\(420\) 3.24698 5.62393i 0.158436 0.274420i
\(421\) 0.483206i 0.0235500i −0.999931 0.0117750i \(-0.996252\pi\)
0.999931 0.0117750i \(-0.00374819\pi\)
\(422\) 4.78981 + 2.76540i 0.233164 + 0.134617i
\(423\) −2.50289 1.44504i −0.121694 0.0702603i
\(424\) 12.3720i 0.600836i
\(425\) 1.57942 2.73563i 0.0766130 0.132698i
\(426\) 11.5429 + 19.9928i 0.559254 + 0.968657i
\(427\) 38.6135 22.2935i 1.86864 1.07886i
\(428\) −9.30127 −0.449594
\(429\) 0 0
\(430\) −10.0151 −0.482969
\(431\) 10.3714 5.98792i 0.499572 0.288428i −0.228965 0.973435i \(-0.573534\pi\)
0.728537 + 0.685007i \(0.240201\pi\)
\(432\) −2.48039 4.29615i −0.119338 0.206699i
\(433\) −2.07726 + 3.59792i −0.0998268 + 0.172905i −0.911613 0.411050i \(-0.865162\pi\)
0.811786 + 0.583955i \(0.198496\pi\)
\(434\) 13.7802i 0.661469i
\(435\) 4.51004 + 2.60388i 0.216240 + 0.124846i
\(436\) −0.702889 0.405813i −0.0336623 0.0194349i
\(437\) 2.31767i 0.110869i
\(438\) −6.27628 + 10.8708i −0.299892 + 0.519429i
\(439\) −6.25667 10.8369i −0.298614 0.517215i 0.677205 0.735795i \(-0.263191\pi\)
−0.975819 + 0.218579i \(0.929858\pi\)
\(440\) −3.84952 + 2.22252i −0.183519 + 0.105955i
\(441\) −1.47889 −0.0704235
\(442\) 0 0
\(443\) −2.27950 −0.108302 −0.0541512 0.998533i \(-0.517245\pi\)
−0.0541512 + 0.998533i \(0.517245\pi\)
\(444\) −11.6756 + 6.74094i −0.554102 + 0.319911i
\(445\) −4.01089 6.94706i −0.190134 0.329322i
\(446\) −2.13706 + 3.70150i −0.101193 + 0.175271i
\(447\) 22.8310i 1.07987i
\(448\) −3.12105 1.80194i −0.147456 0.0851336i
\(449\) −17.7143 10.2274i −0.835990 0.482659i 0.0199090 0.999802i \(-0.493662\pi\)
−0.855899 + 0.517143i \(0.826996\pi\)
\(450\) 0.246980i 0.0116427i
\(451\) −4.53223 + 7.85005i −0.213414 + 0.369644i
\(452\) 3.50484 + 6.07057i 0.164854 + 0.285536i
\(453\) 7.59339 4.38404i 0.356768 0.205980i
\(454\) −9.95407 −0.467167
\(455\) 0 0
\(456\) −0.643104 −0.0301161
\(457\) −15.4526 + 8.92154i −0.722841 + 0.417332i −0.815797 0.578338i \(-0.803702\pi\)
0.0929568 + 0.995670i \(0.470368\pi\)
\(458\) −11.5157 19.9458i −0.538095 0.932007i
\(459\) −7.83513 + 13.5708i −0.365712 + 0.633432i
\(460\) 6.49396i 0.302782i
\(461\) 3.05310 + 1.76271i 0.142197 + 0.0820975i 0.569411 0.822053i \(-0.307171\pi\)
−0.427214 + 0.904151i \(0.640505\pi\)
\(462\) 24.9986 + 14.4330i 1.16304 + 0.671482i
\(463\) 3.72587i 0.173156i 0.996245 + 0.0865780i \(0.0275932\pi\)
−0.996245 + 0.0865780i \(0.972407\pi\)
\(464\) 1.44504 2.50289i 0.0670844 0.116194i
\(465\) −3.44504 5.96699i −0.159760 0.276712i
\(466\) −16.0821 + 9.28501i −0.744989 + 0.430120i
\(467\) 12.8576 0.594977 0.297488 0.954725i \(-0.403851\pi\)
0.297488 + 0.954725i \(0.403851\pi\)
\(468\) 0 0
\(469\) −50.4456 −2.32936
\(470\) 10.1340 5.85086i 0.467446 0.269880i
\(471\) −8.49396 14.7120i −0.391381 0.677892i
\(472\) 5.99880 10.3902i 0.276117 0.478249i
\(473\) 44.5174i 2.04691i
\(474\) −9.17276 5.29590i −0.421319 0.243249i
\(475\) 0.309081 + 0.178448i 0.0141816 + 0.00818775i
\(476\) 11.3840i 0.521787i
\(477\) 1.52781 2.64625i 0.0699537 0.121163i
\(478\) 9.47650 + 16.4138i 0.433445 + 0.750749i
\(479\) −29.4407 + 16.9976i −1.34518 + 0.776640i −0.987562 0.157227i \(-0.949744\pi\)
−0.357618 + 0.933868i \(0.616411\pi\)
\(480\) −1.80194 −0.0822468
\(481\) 0 0
\(482\) −22.7439 −1.03596
\(483\) 36.5216 21.0858i 1.66179 0.959435i
\(484\) −4.37920 7.58499i −0.199054 0.344772i
\(485\) 1.97554 3.42174i 0.0897047 0.155373i
\(486\) 2.56033i 0.116139i
\(487\) 22.0680 + 12.7409i 0.999994 + 0.577347i 0.908247 0.418435i \(-0.137421\pi\)
0.0917478 + 0.995782i \(0.470755\pi\)
\(488\) −10.7144 6.18598i −0.485020 0.280026i
\(489\) 9.86831i 0.446261i
\(490\) 2.99396 5.18569i 0.135253 0.234266i
\(491\) 12.8889 + 22.3242i 0.581667 + 1.00748i 0.995282 + 0.0970253i \(0.0309328\pi\)
−0.413615 + 0.910452i \(0.635734\pi\)
\(492\) −3.18226 + 1.83728i −0.143468 + 0.0828310i
\(493\) −9.12929 −0.411163
\(494\) 0 0
\(495\) 1.09783 0.0493440
\(496\) −3.31143 + 1.91185i −0.148688 + 0.0858448i
\(497\) 23.0858 + 39.9857i 1.03554 + 1.79360i
\(498\) 4.21164 7.29477i 0.188728 0.326886i
\(499\) 21.6286i 0.968230i 0.875004 + 0.484115i \(0.160858\pi\)
−0.875004 + 0.484115i \(0.839142\pi\)
\(500\) 0.866025 + 0.500000i 0.0387298 + 0.0223607i
\(501\) −4.19723 2.42327i −0.187518 0.108264i
\(502\) 14.5670i 0.650159i
\(503\) −13.3666 + 23.1516i −0.595987 + 1.03228i 0.397420 + 0.917637i \(0.369906\pi\)
−0.993407 + 0.114642i \(0.963428\pi\)
\(504\) 0.445042 + 0.770835i 0.0198237 + 0.0343357i
\(505\) 13.0269 7.52111i 0.579691 0.334685i
\(506\) −28.8659 −1.28325
\(507\) 0 0
\(508\) −11.6582 −0.517248
\(509\) −30.5546 + 17.6407i −1.35431 + 0.781911i −0.988850 0.148916i \(-0.952421\pi\)
−0.365459 + 0.930827i \(0.619088\pi\)
\(510\) 2.84601 + 4.92944i 0.126023 + 0.218279i
\(511\) −12.5526 + 21.7417i −0.555293 + 0.961795i
\(512\) 1.00000i 0.0441942i
\(513\) −1.53328 0.885239i −0.0676959 0.0390843i
\(514\) 1.73578 + 1.00216i 0.0765622 + 0.0442032i
\(515\) 7.82371i 0.344754i
\(516\) 9.02326 15.6287i 0.397227 0.688017i
\(517\) 26.0073 + 45.0460i 1.14380 + 1.98112i
\(518\) −23.3513 + 13.4819i −1.02600 + 0.592360i
\(519\) 19.6582 0.862898
\(520\) 0 0
\(521\) 12.5700 0.550703 0.275351 0.961344i \(-0.411206\pi\)
0.275351 + 0.961344i \(0.411206\pi\)
\(522\) −0.618162 + 0.356896i −0.0270562 + 0.0156209i
\(523\) −2.69471 4.66737i −0.117831 0.204090i 0.801077 0.598562i \(-0.204261\pi\)
−0.918908 + 0.394472i \(0.870928\pi\)
\(524\) −0.672407 + 1.16464i −0.0293742 + 0.0508777i
\(525\) 6.49396i 0.283420i
\(526\) −3.82394 2.20775i −0.166732 0.0962625i
\(527\) 10.4603 + 6.03923i 0.455656 + 0.263073i
\(528\) 8.00969i 0.348577i
\(529\) −9.58575 + 16.6030i −0.416772 + 0.721870i
\(530\) 6.18598 + 10.7144i 0.268702 + 0.465405i
\(531\) −2.56618 + 1.48158i −0.111363 + 0.0642952i
\(532\) −1.28621 −0.0557642
\(533\) 0 0
\(534\) 14.4547 0.625517
\(535\) −8.05514 + 4.65064i −0.348254 + 0.201065i
\(536\) 6.99880 + 12.1223i 0.302302 + 0.523603i
\(537\) −11.6969 + 20.2596i −0.504757 + 0.874265i
\(538\) 18.1521i 0.782594i
\(539\) 23.0506 + 13.3083i 0.992860 + 0.573228i
\(540\) −4.29615 2.48039i −0.184877 0.106739i
\(541\) 22.7332i 0.977375i 0.872459 + 0.488688i \(0.162524\pi\)
−0.872459 + 0.488688i \(0.837476\pi\)
\(542\) −9.73556 + 16.8625i −0.418178 + 0.724306i
\(543\) −20.4819 35.4757i −0.878961 1.52241i
\(544\) 2.73563 1.57942i 0.117289 0.0677169i
\(545\) −0.811626 −0.0347663
\(546\) 0 0
\(547\) 31.9734 1.36709 0.683543 0.729910i \(-0.260438\pi\)
0.683543 + 0.729910i \(0.260438\pi\)
\(548\) −6.75668 + 3.90097i −0.288631 + 0.166641i
\(549\) 1.52781 + 2.64625i 0.0652054 + 0.112939i
\(550\) −2.22252 + 3.84952i −0.0947686 + 0.164144i
\(551\) 1.03146i 0.0439416i
\(552\) −10.1340 5.85086i −0.431331 0.249029i
\(553\) −18.3455 10.5918i −0.780131 0.450409i
\(554\) 18.3961i 0.781576i
\(555\) −6.74094 + 11.6756i −0.286137 + 0.495604i
\(556\) 6.93631 + 12.0140i 0.294165 + 0.509509i
\(557\) 23.5701 13.6082i 0.998696 0.576597i 0.0908338 0.995866i \(-0.471047\pi\)
0.907862 + 0.419269i \(0.137713\pi\)
\(558\) 0.944378 0.0399787
\(559\) 0 0
\(560\) −3.60388 −0.152292
\(561\) −21.9115 + 12.6506i −0.925106 + 0.534110i
\(562\) −7.97315 13.8099i −0.336327 0.582535i
\(563\) −5.87800 + 10.1810i −0.247728 + 0.429078i −0.962895 0.269876i \(-0.913017\pi\)
0.715167 + 0.698954i \(0.246351\pi\)
\(564\) 21.0858i 0.887870i
\(565\) 6.07057 + 3.50484i 0.255391 + 0.147450i
\(566\) −24.2408 13.9955i −1.01892 0.588273i
\(567\) 34.8853i 1.46504i
\(568\) 6.40581 11.0952i 0.268782 0.465544i
\(569\) −9.63653 16.6910i −0.403984 0.699721i 0.590218 0.807244i \(-0.299042\pi\)
−0.994203 + 0.107522i \(0.965708\pi\)
\(570\) −0.556945 + 0.321552i −0.0233278 + 0.0134683i
\(571\) −32.6329 −1.36565 −0.682823 0.730584i \(-0.739248\pi\)
−0.682823 + 0.730584i \(0.739248\pi\)
\(572\) 0 0
\(573\) −32.8310 −1.37153
\(574\) −6.36453 + 3.67456i −0.265650 + 0.153373i
\(575\) 3.24698 + 5.62393i 0.135408 + 0.234534i
\(576\) 0.123490 0.213891i 0.00514541 0.00891211i
\(577\) 31.4534i 1.30942i 0.755879 + 0.654711i \(0.227210\pi\)
−0.755879 + 0.654711i \(0.772790\pi\)
\(578\) 6.08103 + 3.51089i 0.252938 + 0.146034i
\(579\) 29.2571 + 16.8916i 1.21588 + 0.701990i
\(580\) 2.89008i 0.120004i
\(581\) 8.42327 14.5895i 0.349456 0.605276i
\(582\) 3.55980 + 6.16576i 0.147559 + 0.255579i
\(583\) −47.6261 + 27.4969i −1.97247 + 1.13881i
\(584\) 6.96615 0.288261
\(585\) 0 0
\(586\) 13.5603 0.560172
\(587\) 17.9801 10.3808i 0.742119 0.428462i −0.0807205 0.996737i \(-0.525722\pi\)
0.822839 + 0.568274i \(0.192389\pi\)
\(588\) 5.39493 + 9.34429i 0.222483 + 0.385352i
\(589\) −0.682333 + 1.18184i −0.0281150 + 0.0486967i
\(590\) 11.9976i 0.493934i
\(591\) −34.9799 20.1957i −1.43888 0.830739i
\(592\) 6.47950 + 3.74094i 0.266306 + 0.153752i
\(593\) 31.9028i 1.31009i −0.755590 0.655045i \(-0.772650\pi\)
0.755590 0.655045i \(-0.227350\pi\)
\(594\) 11.0254 19.0966i 0.452378 0.783542i
\(595\) 5.69202 + 9.85887i 0.233350 + 0.404174i
\(596\) 10.9728 6.33513i 0.449462 0.259497i
\(597\) 30.7875 1.26005
\(598\) 0 0
\(599\) −8.07846 −0.330077 −0.165038 0.986287i \(-0.552775\pi\)
−0.165038 + 0.986287i \(0.552775\pi\)
\(600\) −1.56052 + 0.900969i −0.0637081 + 0.0367819i
\(601\) 9.74847 + 16.8848i 0.397648 + 0.688747i 0.993435 0.114395i \(-0.0364930\pi\)
−0.595787 + 0.803143i \(0.703160\pi\)
\(602\) 18.0465 31.2575i 0.735521 1.27396i
\(603\) 3.45712i 0.140785i
\(604\) −4.21401 2.43296i −0.171466 0.0989957i
\(605\) −7.58499 4.37920i −0.308374 0.178040i
\(606\) 27.1051i 1.10107i
\(607\) 17.9922 31.1635i 0.730282 1.26489i −0.226480 0.974016i \(-0.572722\pi\)
0.956763 0.290870i \(-0.0939447\pi\)
\(608\) 0.178448 + 0.309081i 0.00723702 + 0.0125349i
\(609\) −16.2536 + 9.38404i −0.658631 + 0.380261i
\(610\) −12.3720 −0.500926
\(611\) 0 0
\(612\) −0.780167 −0.0315364
\(613\) −15.7411 + 9.08815i −0.635778 + 0.367067i −0.782986 0.622039i \(-0.786305\pi\)
0.147208 + 0.989106i \(0.452971\pi\)
\(614\) −7.57942 13.1279i −0.305880 0.529800i
\(615\) −1.83728 + 3.18226i −0.0740863 + 0.128321i
\(616\) 16.0194i 0.645439i
\(617\) 37.2852 + 21.5266i 1.50105 + 0.866629i 0.999999 + 0.00120820i \(0.000384582\pi\)
0.501046 + 0.865421i \(0.332949\pi\)
\(618\) −12.2091 7.04892i −0.491121 0.283549i
\(619\) 39.5120i 1.58812i 0.607838 + 0.794061i \(0.292037\pi\)
−0.607838 + 0.794061i \(0.707963\pi\)
\(620\) −1.91185 + 3.31143i −0.0767819 + 0.132990i
\(621\) −16.1075 27.8990i −0.646373 1.11955i
\(622\) −4.66272 + 2.69202i −0.186958 + 0.107940i
\(623\) 28.9095 1.15823
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −14.3643 + 8.29321i −0.574111 + 0.331463i
\(627\) −1.42931 2.47564i −0.0570812 0.0988676i
\(628\) −4.71379 + 8.16453i −0.188101 + 0.325800i
\(629\) 23.6340i 0.942350i
\(630\) 0.770835 + 0.445042i 0.0307108 + 0.0177309i
\(631\) −19.9719 11.5308i −0.795070 0.459034i 0.0466746 0.998910i \(-0.485138\pi\)
−0.841744 + 0.539876i \(0.818471\pi\)
\(632\) 5.87800i 0.233814i
\(633\) −4.98307 + 8.63094i −0.198059 + 0.343049i
\(634\) −6.05429 10.4863i −0.240447 0.416466i
\(635\) −10.0963 + 5.82908i −0.400658 + 0.231320i
\(636\) −22.2935 −0.883995
\(637\) 0 0
\(638\) 12.8465 0.508600
\(639\) −2.74029 + 1.58211i −0.108404 + 0.0625871i
\(640\) 0.500000 + 0.866025i 0.0197642 + 0.0342327i
\(641\) 17.3523 30.0551i 0.685377 1.18711i −0.287942 0.957648i \(-0.592971\pi\)
0.973318 0.229459i \(-0.0736957\pi\)
\(642\) 16.7603i 0.661477i
\(643\) 29.6274 + 17.1054i 1.16839 + 0.674570i 0.953300 0.302025i \(-0.0976625\pi\)
0.215089 + 0.976594i \(0.430996\pi\)
\(644\) −20.2680 11.7017i −0.798669 0.461112i
\(645\) 18.0465i 0.710581i
\(646\) 0.563687 0.976335i 0.0221780 0.0384134i
\(647\) 2.22952 + 3.86164i 0.0876515 + 0.151817i 0.906518 0.422167i \(-0.138730\pi\)
−0.818866 + 0.573984i \(0.805397\pi\)
\(648\) 8.38307 4.83997i 0.329318 0.190132i
\(649\) 53.3299 2.09338
\(650\) 0 0
\(651\) 24.8310 0.973204
\(652\) −4.74279 + 2.73825i −0.185742 + 0.107238i
\(653\) −4.72348 8.18131i −0.184844 0.320159i 0.758680 0.651464i \(-0.225845\pi\)
−0.943524 + 0.331304i \(0.892511\pi\)
\(654\) 0.731250 1.26656i 0.0285941 0.0495265i
\(655\) 1.34481i 0.0525462i
\(656\) 1.76602 + 1.01961i 0.0689516 + 0.0398093i
\(657\) −1.48999 0.860248i −0.0581302 0.0335615i
\(658\) 42.1715i 1.64402i
\(659\) 8.88889 15.3960i 0.346262 0.599743i −0.639320 0.768941i \(-0.720784\pi\)
0.985582 + 0.169197i \(0.0541175\pi\)
\(660\) −4.00484 6.93659i −0.155888 0.270007i
\(661\) 27.0905 15.6407i 1.05370 0.608353i 0.130016 0.991512i \(-0.458497\pi\)
0.923683 + 0.383159i \(0.125164\pi\)
\(662\) 14.6112 0.567879
\(663\) 0 0
\(664\) −4.67456 −0.181408
\(665\) −1.11389 + 0.643104i −0.0431948 + 0.0249385i
\(666\) −0.923936 1.60030i −0.0358018 0.0620105i
\(667\) 9.38404 16.2536i 0.363352 0.629343i
\(668\) 2.68963i 0.104065i
\(669\) −6.66988 3.85086i −0.257872 0.148883i
\(670\) 12.1223 + 6.99880i 0.468325 + 0.270387i
\(671\) 54.9939i 2.12302i
\(672\) 3.24698 5.62393i 0.125255 0.216948i
\(673\) −7.23072 12.5240i −0.278724 0.482764i 0.692344 0.721567i \(-0.256578\pi\)
−0.971068 + 0.238804i \(0.923245\pi\)
\(674\) 3.86205 2.22976i 0.148761 0.0858871i
\(675\) −4.96077 −0.190940
\(676\) 0 0
\(677\) 19.8974 0.764718 0.382359 0.924014i \(-0.375112\pi\)
0.382359 + 0.924014i \(0.375112\pi\)
\(678\) −10.9388 + 6.31551i −0.420102 + 0.242546i
\(679\) 7.11960 + 12.3315i 0.273225 + 0.473240i
\(680\) 1.57942 2.73563i 0.0605679 0.104907i
\(681\) 17.9366i 0.687332i
\(682\) −14.7194 8.49827i −0.563636 0.325416i
\(683\) 34.9041 + 20.1519i 1.33557 + 0.771091i 0.986147 0.165875i \(-0.0530448\pi\)
0.349421 + 0.936966i \(0.386378\pi\)
\(684\) 0.0881460i 0.00337035i
\(685\) −3.90097 + 6.75668i −0.149048 + 0.258159i
\(686\) −1.82371 3.15875i −0.0696295 0.120602i
\(687\) 35.9411 20.7506i 1.37124 0.791686i
\(688\) −10.0151 −0.381821
\(689\) 0 0
\(690\) −11.7017 −0.445476
\(691\) −0.647990 + 0.374117i −0.0246507 + 0.0142321i −0.512275 0.858822i \(-0.671197\pi\)
0.487624 + 0.873054i \(0.337864\pi\)
\(692\) −5.45473 9.44787i −0.207358 0.359154i
\(693\) −1.97823 + 3.42639i −0.0751467 + 0.130158i
\(694\) 28.5870i 1.08515i
\(695\) 12.0140 + 6.93631i 0.455719 + 0.263109i
\(696\) 4.51004 + 2.60388i 0.170953 + 0.0986996i
\(697\) 6.44158i 0.243992i
\(698\) −2.43967 + 4.22562i −0.0923427 + 0.159942i
\(699\) −16.7310 28.9790i −0.632825 1.09609i
\(700\) −3.12105 + 1.80194i −0.117965 + 0.0681068i
\(701\) 27.5555 1.04076 0.520379 0.853935i \(-0.325791\pi\)
0.520379 + 0.853935i \(0.325791\pi\)
\(702\) 0 0
\(703\) 2.67025 0.100710
\(704\) −3.84952 + 2.22252i −0.145084 + 0.0837644i
\(705\) 10.5429 + 18.2608i 0.397068 + 0.687741i
\(706\) 2.02984 3.51578i 0.0763939 0.132318i
\(707\) 54.2103i 2.03879i
\(708\) 18.7226 + 10.8095i 0.703637 + 0.406245i
\(709\) −6.14059 3.54527i −0.230615 0.133145i 0.380241 0.924887i \(-0.375841\pi\)
−0.610856 + 0.791742i \(0.709174\pi\)
\(710\) 12.8116i 0.480812i
\(711\) 0.725873 1.25725i 0.0272224 0.0471505i
\(712\) −4.01089 6.94706i −0.150314 0.260352i
\(713\) −21.5043 + 12.4155i −0.805342 + 0.464964i
\(714\) −20.5133 −0.767692
\(715\) 0 0
\(716\) 12.9825 0.485180
\(717\) −29.5766 + 17.0761i −1.10456 + 0.637717i
\(718\) −2.56033 4.43463i −0.0955509 0.165499i
\(719\) −5.35690 + 9.27842i −0.199779 + 0.346027i −0.948457 0.316907i \(-0.897356\pi\)
0.748678 + 0.662934i \(0.230689\pi\)
\(720\) 0.246980i 0.00920439i
\(721\) −24.4182 14.0978i −0.909380 0.525031i
\(722\) −16.3442 9.43631i −0.608267 0.351183i
\(723\) 40.9831i 1.52418i
\(724\) −11.3666 + 19.6875i −0.422436 + 0.731680i
\(725\) −1.44504 2.50289i −0.0536675 0.0929548i
\(726\) 13.6677 7.89104i 0.507255 0.292864i
\(727\) −1.37329 −0.0509325 −0.0254662 0.999676i \(-0.508107\pi\)
−0.0254662 + 0.999676i \(0.508107\pi\)
\(728\) 0 0
\(729\) 24.4263 0.904676
\(730\) 6.03286 3.48307i 0.223286 0.128914i
\(731\) 15.8180 + 27.3975i 0.585048 + 1.01333i
\(732\) 11.1468 19.3067i 0.411996 0.713598i
\(733\) 12.6160i 0.465981i 0.972479 + 0.232991i \(0.0748511\pi\)
−0.972479 + 0.232991i \(0.925149\pi\)
\(734\) 8.04209 + 4.64310i 0.296839 + 0.171380i
\(735\) 9.34429 + 5.39493i 0.344669 + 0.198995i
\(736\) 6.49396i 0.239371i
\(737\) −31.1100 + 53.8841i −1.14595 + 1.98484i
\(738\) −0.251824 0.436172i −0.00926977 0.0160557i
\(739\) 32.1622 18.5688i 1.18310 0.683065i 0.226373 0.974041i \(-0.427313\pi\)
0.956731 + 0.290975i \(0.0939797\pi\)
\(740\) 7.48188 0.275039
\(741\) 0 0
\(742\) −44.5870 −1.63684
\(743\) −13.0363 + 7.52648i −0.478254 + 0.276120i −0.719688 0.694297i \(-0.755715\pi\)
0.241435 + 0.970417i \(0.422382\pi\)
\(744\) −3.44504 5.96699i −0.126301 0.218760i
\(745\) 6.33513 10.9728i 0.232101 0.402011i
\(746\) 7.30559i 0.267476i
\(747\) 0.999845 + 0.577261i 0.0365824 + 0.0211209i
\(748\) 12.1600 + 7.02057i 0.444613 + 0.256698i
\(749\) 33.5206i 1.22482i
\(750\) −0.900969 + 1.56052i −0.0328987 + 0.0569823i
\(751\) −11.1957 19.3915i −0.408536 0.707605i 0.586190 0.810174i \(-0.300627\pi\)
−0.994726 + 0.102569i \(0.967294\pi\)
\(752\) 10.1340 5.85086i 0.369548 0.213359i
\(753\) 26.2489 0.956563
\(754\) 0 0
\(755\) −4.86592 −0.177089
\(756\) 15.4828 8.93900i 0.563104 0.325108i
\(757\) 7.93661 + 13.7466i 0.288461 + 0.499629i 0.973443 0.228931i \(-0.0735231\pi\)
−0.684982 + 0.728560i \(0.740190\pi\)
\(758\) 15.2850 26.4744i 0.555177 0.961594i
\(759\) 52.0146i 1.88801i
\(760\) 0.309081 + 0.178448i 0.0112115 + 0.00647299i
\(761\) 33.4011 + 19.2841i 1.21079 + 0.699048i 0.962931 0.269748i \(-0.0869405\pi\)
0.247857 + 0.968797i \(0.420274\pi\)
\(762\) 21.0073i 0.761014i
\(763\) 1.46250 2.53312i 0.0529461 0.0917053i
\(764\) 9.10992 + 15.7788i 0.329585 + 0.570858i
\(765\) −0.675645 + 0.390084i −0.0244280 + 0.0141035i
\(766\) 7.93230 0.286606
\(767\) 0 0
\(768\) −1.80194 −0.0650218
\(769\) 42.4630 24.5160i 1.53125 0.884070i 0.531951 0.846775i \(-0.321459\pi\)
0.999304 0.0372951i \(-0.0118742\pi\)
\(770\) −8.00969 13.8732i −0.288649 0.499955i
\(771\) −1.80582 + 3.12778i −0.0650351 + 0.112644i
\(772\) 18.7482i 0.674764i
\(773\) −10.2960 5.94438i −0.370320 0.213804i 0.303278 0.952902i \(-0.401919\pi\)
−0.673598 + 0.739098i \(0.735252\pi\)
\(774\) 2.14213 + 1.23676i 0.0769972 + 0.0444544i
\(775\) 3.82371i 0.137352i
\(776\) 1.97554 3.42174i 0.0709178 0.122833i
\(777\) −24.2935 42.0776i −0.871525 1.50952i
\(778\) −1.17769 + 0.679940i −0.0422222 + 0.0243770i
\(779\) 0.727792 0.0260759
\(780\) 0 0
\(781\) 56.9482 2.03777
\(782\) 17.7651 10.2567i 0.635278 0.366778i
\(783\) 7.16852 + 12.4162i 0.256182 + 0.443720i
\(784\) 2.99396 5.18569i 0.106927 0.185203i
\(785\) 9.42758i 0.336485i
\(786\) −2.09861 1.21164i −0.0748551 0.0432176i
\(787\) 2.82036 + 1.62833i 0.100535 + 0.0580438i 0.549424 0.835543i \(-0.314847\pi\)
−0.448890 + 0.893587i \(0.648180\pi\)
\(788\) 22.4155i 0.798519i
\(789\) 3.97823 6.89050i 0.141629 0.245308i
\(790\) 2.93900 + 5.09050i 0.104565 + 0.181112i
\(791\) −21.8776 + 12.6310i −0.777877 + 0.449107i
\(792\) 1.09783 0.0390099
\(793\) 0 0
\(794\) 24.6112 0.873418
\(795\) −19.3067 + 11.1468i −0.684740 + 0.395335i
\(796\) −8.54288 14.7967i −0.302794 0.524455i
\(797\) 18.4765 32.0022i 0.654471 1.13358i −0.327555 0.944832i \(-0.606225\pi\)
0.982026 0.188745i \(-0.0604420\pi\)
\(798\) 2.31767i 0.0820445i
\(799\) −32.0116 18.4819i −1.13249 0.653842i
\(800\) 0.866025 + 0.500000i 0.0306186 + 0.0176777i
\(801\) 1.98121i 0.0700027i
\(802\) 2.44773 4.23959i 0.0864324 0.149705i
\(803\) 15.4824 + 26.8163i 0.546362 + 0.946327i
\(804\) −21.8436 + 12.6114i −0.770364 + 0.444770i
\(805\) −23.4034 −0.824862
\(806\) 0 0
\(807\) 32.7090 1.15141
\(808\) 13.0269 7.52111i 0.458286 0.264592i
\(809\) 2.08599 + 3.61304i 0.0733395 + 0.127028i 0.900363 0.435140i \(-0.143301\pi\)
−0.827023 + 0.562167i \(0.809968\pi\)
\(810\) 4.83997 8.38307i 0.170059 0.294551i
\(811\) 17.0696i 0.599396i −0.954034 0.299698i \(-0.903114\pi\)
0.954034 0.299698i \(-0.0968858\pi\)
\(812\) 9.02009 + 5.20775i 0.316543 + 0.182756i
\(813\) −30.3852 17.5429i −1.06565 0.615256i
\(814\) 33.2573i 1.16567i
\(815\) −2.73825 + 4.74279i −0.0959167 + 0.166133i
\(816\) 2.84601 + 4.92944i 0.0996303 + 0.172565i
\(817\) −3.09547 + 1.78717i −0.108297 + 0.0625251i
\(818\) −4.37435 −0.152946
\(819\) 0 0
\(820\) 2.03923 0.0712130
\(821\) −32.7615 + 18.9148i −1.14338 + 0.660132i −0.947266 0.320448i \(-0.896167\pi\)
−0.196117 + 0.980581i \(0.562833\pi\)
\(822\) −7.02930 12.1751i −0.245175 0.424656i
\(823\) 20.5362 35.5697i 0.715846 1.23988i −0.246786 0.969070i \(-0.579375\pi\)
0.962632 0.270812i \(-0.0872921\pi\)
\(824\) 7.82371i 0.272552i
\(825\) −6.93659 4.00484i −0.241501 0.139431i
\(826\) 37.4451 + 21.6189i 1.30288 + 0.752219i
\(827\) 26.9855i 0.938379i 0.883098 + 0.469189i \(0.155454\pi\)
−0.883098 + 0.469189i \(0.844546\pi\)
\(828\) 0.801938 1.38900i 0.0278693 0.0482710i
\(829\) −6.08277 10.5357i −0.211263 0.365919i 0.740847 0.671674i \(-0.234424\pi\)
−0.952110 + 0.305755i \(0.901091\pi\)
\(830\) −4.04829 + 2.33728i −0.140518 + 0.0811282i
\(831\) −33.1487 −1.14991
\(832\) 0 0
\(833\) −18.9148 −0.655360
\(834\) −21.6486 + 12.4988i −0.749628 + 0.432798i
\(835\) 1.34481 + 2.32929i 0.0465392 + 0.0806083i
\(836\) −0.793209 + 1.37388i −0.0274337 + 0.0475165i
\(837\) 18.9685i 0.655649i
\(838\) −14.5007 8.37196i −0.500917 0.289205i
\(839\) −1.61708 0.933624i −0.0558280 0.0322323i 0.471826 0.881692i \(-0.343595\pi\)
−0.527654 + 0.849459i \(0.676928\pi\)
\(840\) 6.49396i 0.224063i
\(841\) 10.3237 17.8812i 0.355990 0.616593i
\(842\) −0.241603 0.418468i −0.00832618 0.0144214i
\(843\) 24.8846 14.3671i 0.857070 0.494830i
\(844\) 5.53079 0.190378
\(845\) 0 0
\(846\) −2.89008 −0.0993631
\(847\) 27.3354 15.7821i 0.939255 0.542279i
\(848\) 6.18598 + 10.7144i 0.212427 + 0.367935i
\(849\) 25.2189 43.6805i 0.865511 1.49911i
\(850\) 3.15883i 0.108347i
\(851\) 42.0776 + 24.2935i 1.44240 + 0.832771i
\(852\) 19.9928 + 11.5429i 0.684944 + 0.395452i
\(853\) 27.7453i 0.949979i 0.879991 + 0.474990i \(0.157548\pi\)
−0.879991 + 0.474990i \(0.842452\pi\)
\(854\) 22.2935 38.6135i 0.762868 1.32133i
\(855\) −0.0440730 0.0763367i −0.00150726 0.00261066i
\(856\) −8.05514 + 4.65064i −0.275319 + 0.158955i
\(857\) 24.2553 0.828547 0.414273 0.910153i \(-0.364036\pi\)
0.414273 + 0.910153i \(0.364036\pi\)
\(858\) 0 0
\(859\) 26.1089 0.890823 0.445411 0.895326i \(-0.353057\pi\)
0.445411 + 0.895326i \(0.353057\pi\)
\(860\) −8.67330 + 5.00753i −0.295757 + 0.170755i
\(861\) −6.62133 11.4685i −0.225654 0.390845i
\(862\) 5.98792 10.3714i 0.203949 0.353251i
\(863\) 39.5905i 1.34768i −0.738880 0.673838i \(-0.764645\pi\)
0.738880 0.673838i \(-0.235355\pi\)
\(864\) −4.29615 2.48039i −0.146158 0.0843844i
\(865\) −9.44787 5.45473i −0.321237 0.185466i
\(866\) 4.15452i 0.141176i
\(867\) −6.32640 + 10.9576i −0.214856 + 0.372141i
\(868\) −6.89008 11.9340i −0.233865 0.405066i
\(869\) −22.6275 + 13.0640i −0.767585 + 0.443165i
\(870\) 5.20775 0.176559
\(871\) 0 0
\(872\) −0.811626 −0.0274851
\(873\) −0.845099 + 0.487918i −0.0286023 + 0.0165135i
\(874\) 1.15883 + 2.00716i 0.0391981 + 0.0678932i
\(875\) −1.80194 + 3.12105i −0.0609166 + 0.105511i
\(876\) 12.5526i 0.424112i
\(877\) −35.0814 20.2543i −1.18462 0.683938i −0.227538 0.973769i \(-0.573068\pi\)
−0.957078 + 0.289831i \(0.906401\pi\)
\(878\) −10.8369 6.25667i −0.365727 0.211152i
\(879\) 24.4349i 0.824168i
\(880\) −2.22252 + 3.84952i −0.0749212 + 0.129767i
\(881\) −18.1876 31.5019i −0.612756 1.06132i −0.990774 0.135526i \(-0.956728\pi\)
0.378018 0.925798i \(-0.376606\pi\)
\(882\) −1.28076 + 0.739447i −0.0431254 + 0.0248985i
\(883\) −6.51275 −0.219171 −0.109586 0.993977i \(-0.534952\pi\)
−0.109586 + 0.993977i \(0.534952\pi\)
\(884\) 0 0
\(885\) 21.6189 0.726713
\(886\) −1.97411 + 1.13975i −0.0663215 + 0.0382907i
\(887\) −1.65817 2.87203i −0.0556759 0.0964335i 0.836844 0.547441i \(-0.184398\pi\)
−0.892520 + 0.451008i \(0.851065\pi\)
\(888\) −6.74094 + 11.6756i −0.226211 + 0.391809i
\(889\) 42.0146i 1.40912i
\(890\) −6.94706 4.01089i −0.232866 0.134445i
\(891\) 37.2631 + 21.5139i 1.24836 + 0.720742i
\(892\) 4.27413i 0.143108i
\(893\) 2.08815 3.61677i 0.0698771 0.121031i
\(894\) 11.4155 + 19.7722i 0.381791 + 0.661282i
\(895\) 11.2432 6.49127i 0.375819 0.216979i
\(896\) −3.60388 −0.120397
\(897\) 0 0
\(898\) −20.4547 −0.682583
\(899\) 9.57030 5.52542i 0.319188 0.184283i
\(900\) −0.123490 0.213891i −0.00411633 0.00712969i
\(901\) 19.5405 33.8451i 0.650988 1.12754i
\(902\) 9.06446i 0.301813i
\(903\) 56.3241 + 32.5187i 1.87435 + 1.08216i
\(904\) 6.07057 + 3.50484i 0.201904 + 0.116569i
\(905\) 22.7332i 0.755676i
\(906\) 4.38404 7.59339i 0.145650 0.252273i
\(907\) −24.1824 41.8851i −0.802963 1.39077i −0.917658 0.397372i \(-0.869922\pi\)
0.114694 0.993401i \(-0.463411\pi\)
\(908\) −8.62047 + 4.97703i −0.286080 + 0.165169i
\(909\) −3.71512 −0.123223
\(910\) 0 0
\(911\) −18.2634 −0.605093 −0.302546 0.953135i \(-0.597837\pi\)
−0.302546 + 0.953135i \(0.597837\pi\)
\(912\) −0.556945 + 0.321552i −0.0184423 + 0.0106477i
\(913\) −10.3893 17.9948i −0.343836 0.595542i
\(914\) −8.92154 + 15.4526i −0.295098 + 0.511125i
\(915\) 22.2935i 0.737001i
\(916\) −19.9458 11.5157i −0.659029 0.380490i
\(917\) −4.19723 2.42327i −0.138605 0.0800235i
\(918\) 15.6703i 0.517195i
\(919\) −11.0804 + 19.1918i −0.365508 + 0.633078i −0.988858 0.148865i \(-0.952438\pi\)
0.623350 + 0.781943i \(0.285771\pi\)
\(920\) 3.24698 + 5.62393i 0.107050 + 0.185416i
\(921\) 23.6557 13.6576i 0.779483 0.450034i
\(922\) 3.52542 0.116103
\(923\) 0 0
\(924\) 28.8659 0.949619
\(925\) 6.47950 3.74094i 0.213045 0.123001i
\(926\) 1.86294 + 3.22670i 0.0612199 + 0.106036i
\(927\) 0.966148 1.67342i 0.0317325 0.0549622i
\(928\) 2.89008i 0.0948716i
\(929\) 6.86584 + 3.96399i 0.225261 + 0.130054i 0.608384 0.793643i \(-0.291818\pi\)
−0.383123 + 0.923697i \(0.625151\pi\)
\(930\) −5.96699 3.44504i −0.195665 0.112967i
\(931\) 2.13706i 0.0700394i
\(932\) −9.28501 + 16.0821i −0.304141 + 0.526787i
\(933\) −4.85086 8.40193i −0.158810 0.275067i
\(934\) 11.1350 6.42878i 0.364347 0.210356i
\(935\) 14.0411 0.459195
\(936\) 0 0
\(937\) 28.1758 0.920464 0.460232 0.887799i \(-0.347766\pi\)
0.460232 + 0.887799i \(0.347766\pi\)
\(938\) −43.6872 + 25.2228i −1.42644 + 0.823554i
\(939\) −14.9438 25.8835i −0.487674 0.844676i
\(940\) 5.85086 10.1340i 0.190834 0.330534i
\(941\) 31.4228i 1.02435i 0.858880 + 0.512177i \(0.171161\pi\)
−0.858880 + 0.512177i \(0.828839\pi\)
\(942\) −14.7120 8.49396i −0.479342 0.276748i
\(943\) 11.4685 + 6.62133i 0.373465 + 0.215620i
\(944\) 11.9976i 0.390489i
\(945\) 8.93900 15.4828i 0.290786 0.503656i
\(946\) −22.2587 38.5532i −0.723693 1.25347i
\(947\) −6.89423 + 3.98039i −0.224032 + 0.129345i −0.607816 0.794078i \(-0.707954\pi\)
0.383784 + 0.923423i \(0.374621\pi\)
\(948\) −10.5918 −0.344005
\(949\) 0 0
\(950\) 0.356896 0.0115792
\(951\) 18.8957 10.9095i 0.612736 0.353764i
\(952\) 5.69202 + 9.85887i 0.184479 + 0.319528i
\(953\) −3.45257 + 5.98003i −0.111840 + 0.193712i −0.916512 0.400007i \(-0.869008\pi\)
0.804672 + 0.593719i \(0.202341\pi\)
\(954\) 3.05562i 0.0989294i
\(955\) 15.7788 + 9.10992i 0.510591 + 0.294790i
\(956\) 16.4138 + 9.47650i 0.530860 + 0.306492i
\(957\) 23.1487i 0.748290i
\(958\) −16.9976 + 29.4407i −0.549168 + 0.951186i
\(959\) −14.0586 24.3502i −0.453976 0.786310i
\(960\) −1.56052 + 0.900969i −0.0503657 + 0.0290786i
\(961\) 16.3793 0.528363
\(962\) 0 0
\(963\) 2.29722 0.0740270
\(964\) −19.6968 + 11.3720i −0.634392 + 0.366266i
\(965\) −9.37412 16.2364i −0.301764 0.522670i
\(966\) 21.0858 36.5216i 0.678423 1.17506i
\(967\) 31.3297i 1.00750i −0.863850 0.503748i \(-0.831954\pi\)
0.863850 0.503748i \(-0.168046\pi\)
\(968\) −7.58499 4.37920i −0.243791 0.140753i
\(969\) 1.75930 + 1.01573i 0.0565167 + 0.0326299i
\(970\) 3.95108i 0.126862i
\(971\) 2.45257 4.24798i 0.0787069 0.136324i −0.823985 0.566611i \(-0.808254\pi\)
0.902692 + 0.430287i \(0.141588\pi\)
\(972\) 1.28017 + 2.21732i 0.0410614 + 0.0711204i
\(973\) −43.2971 + 24.9976i −1.38804 + 0.801386i
\(974\) 25.4819 0.816492
\(975\) 0 0
\(976\) −12.3720 −0.396017
\(977\) −11.7055 + 6.75816i −0.374491 + 0.216213i −0.675419 0.737434i \(-0.736037\pi\)
0.300927 + 0.953647i \(0.402704\pi\)
\(978\) −4.93416 8.54621i −0.157777 0.273278i
\(979\) 17.8286 30.8800i 0.569803 0.986928i
\(980\) 5.98792i 0.191277i
\(981\) 0.173599 + 0.100228i 0.00554260 + 0.00320002i
\(982\) 22.3242 + 12.8889i 0.712394 + 0.411301i
\(983\) 31.7453i 1.01252i 0.862382 + 0.506258i \(0.168972\pi\)
−0.862382 + 0.506258i \(0.831028\pi\)
\(984\) −1.83728 + 3.18226i −0.0585704 + 0.101447i
\(985\) 11.2078 + 19.4124i 0.357109 + 0.618530i
\(986\) −7.90620 + 4.56465i −0.251785 + 0.145368i
\(987\) −75.9904 −2.41880
\(988\) 0 0
\(989\) −65.0374 −2.06807
\(990\) 0.950753 0.548917i 0.0302169 0.0174457i
\(991\) −6.80492 11.7865i −0.216165 0.374410i 0.737467 0.675383i \(-0.236022\pi\)
−0.953632 + 0.300974i \(0.902688\pi\)
\(992\) −1.91185 + 3.31143i −0.0607014 + 0.105138i
\(993\) 26.3284i 0.835507i
\(994\) 39.9857 + 23.0858i 1.26827 + 0.732236i
\(995\) −14.7967 8.54288i −0.469087 0.270827i
\(996\) 8.42327i 0.266902i
\(997\) 19.7060 34.1318i 0.624096 1.08097i −0.364619 0.931157i \(-0.618801\pi\)
0.988715 0.149809i \(-0.0478659\pi\)
\(998\) 10.8143 + 18.7309i 0.342321 + 0.592918i
\(999\) −32.1433 + 18.5579i −1.01697 + 0.587147i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.l.m.361.6 12
13.2 odd 12 1690.2.a.r.1.1 yes 3
13.3 even 3 1690.2.d.i.1351.4 6
13.4 even 6 inner 1690.2.l.m.1161.6 12
13.5 odd 4 1690.2.e.p.991.3 6
13.6 odd 12 1690.2.e.p.191.3 6
13.7 odd 12 1690.2.e.r.191.3 6
13.8 odd 4 1690.2.e.r.991.3 6
13.9 even 3 inner 1690.2.l.m.1161.3 12
13.10 even 6 1690.2.d.i.1351.1 6
13.11 odd 12 1690.2.a.p.1.1 3
13.12 even 2 inner 1690.2.l.m.361.3 12
65.24 odd 12 8450.2.a.cg.1.3 3
65.54 odd 12 8450.2.a.bv.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.a.p.1.1 3 13.11 odd 12
1690.2.a.r.1.1 yes 3 13.2 odd 12
1690.2.d.i.1351.1 6 13.10 even 6
1690.2.d.i.1351.4 6 13.3 even 3
1690.2.e.p.191.3 6 13.6 odd 12
1690.2.e.p.991.3 6 13.5 odd 4
1690.2.e.r.191.3 6 13.7 odd 12
1690.2.e.r.991.3 6 13.8 odd 4
1690.2.l.m.361.3 12 13.12 even 2 inner
1690.2.l.m.361.6 12 1.1 even 1 trivial
1690.2.l.m.1161.3 12 13.9 even 3 inner
1690.2.l.m.1161.6 12 13.4 even 6 inner
8450.2.a.bv.1.3 3 65.54 odd 12
8450.2.a.cg.1.3 3 65.24 odd 12