Properties

Label 1690.2.e.r.191.3
Level $1690$
Weight $2$
Character 1690.191
Analytic conductor $13.495$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1690,2,Mod(191,1690)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1690, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1690.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1690 = 2 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1690.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,1,-3,6,-1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4947179416\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 191.3
Root \(0.900969 - 1.56052i\) of defining polynomial
Character \(\chi\) \(=\) 1690.191
Dual form 1690.2.e.r.991.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.900969 - 1.56052i) q^{3} +(-0.500000 - 0.866025i) q^{4} +1.00000 q^{5} +(-0.900969 - 1.56052i) q^{6} +(1.80194 + 3.12105i) q^{7} -1.00000 q^{8} +(-0.123490 - 0.213891i) q^{9} +(0.500000 - 0.866025i) q^{10} +(-2.22252 + 3.84952i) q^{11} -1.80194 q^{12} +3.60388 q^{14} +(0.900969 - 1.56052i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.57942 + 2.73563i) q^{17} -0.246980 q^{18} +(0.178448 + 0.309081i) q^{19} +(-0.500000 - 0.866025i) q^{20} +6.49396 q^{21} +(2.22252 + 3.84952i) q^{22} +(3.24698 - 5.62393i) q^{23} +(-0.900969 + 1.56052i) q^{24} +1.00000 q^{25} +4.96077 q^{27} +(1.80194 - 3.12105i) q^{28} +(1.44504 - 2.50289i) q^{29} +(-0.900969 - 1.56052i) q^{30} +3.82371 q^{31} +(0.500000 + 0.866025i) q^{32} +(4.00484 + 6.93659i) q^{33} +3.15883 q^{34} +(1.80194 + 3.12105i) q^{35} +(-0.123490 + 0.213891i) q^{36} +(3.74094 - 6.47950i) q^{37} +0.356896 q^{38} -1.00000 q^{40} +(-1.01961 + 1.76602i) q^{41} +(3.24698 - 5.62393i) q^{42} +(-5.00753 - 8.67330i) q^{43} +4.44504 q^{44} +(-0.123490 - 0.213891i) q^{45} +(-3.24698 - 5.62393i) q^{46} +11.7017 q^{47} +(0.900969 + 1.56052i) q^{48} +(-2.99396 + 5.18569i) q^{49} +(0.500000 - 0.866025i) q^{50} +5.69202 q^{51} -12.3720 q^{53} +(2.48039 - 4.29615i) q^{54} +(-2.22252 + 3.84952i) q^{55} +(-1.80194 - 3.12105i) q^{56} +0.643104 q^{57} +(-1.44504 - 2.50289i) q^{58} +(5.99880 + 10.3902i) q^{59} -1.80194 q^{60} +(6.18598 + 10.7144i) q^{61} +(1.91185 - 3.31143i) q^{62} +(0.445042 - 0.770835i) q^{63} +1.00000 q^{64} +8.00969 q^{66} +(-6.99880 + 12.1223i) q^{67} +(1.57942 - 2.73563i) q^{68} +(-5.85086 - 10.1340i) q^{69} +3.60388 q^{70} +(-6.40581 - 11.0952i) q^{71} +(0.123490 + 0.213891i) q^{72} +6.96615 q^{73} +(-3.74094 - 6.47950i) q^{74} +(0.900969 - 1.56052i) q^{75} +(0.178448 - 0.309081i) q^{76} -16.0194 q^{77} -5.87800 q^{79} +(-0.500000 + 0.866025i) q^{80} +(4.83997 - 8.38307i) q^{81} +(1.01961 + 1.76602i) q^{82} +4.67456 q^{83} +(-3.24698 - 5.62393i) q^{84} +(1.57942 + 2.73563i) q^{85} -10.0151 q^{86} +(-2.60388 - 4.51004i) q^{87} +(2.22252 - 3.84952i) q^{88} +(-4.01089 + 6.94706i) q^{89} -0.246980 q^{90} -6.49396 q^{92} +(3.44504 - 5.96699i) q^{93} +(5.85086 - 10.1340i) q^{94} +(0.178448 + 0.309081i) q^{95} +1.80194 q^{96} +(-1.97554 - 3.42174i) q^{97} +(2.99396 + 5.18569i) q^{98} +1.09783 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + q^{3} - 3 q^{4} + 6 q^{5} - q^{6} + 2 q^{7} - 6 q^{8} + 4 q^{9} + 3 q^{10} - 13 q^{11} - 2 q^{12} + 4 q^{14} + q^{15} - 3 q^{16} + q^{17} + 8 q^{18} - 3 q^{19} - 3 q^{20} + 20 q^{21}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1690\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0.900969 1.56052i 0.520175 0.900969i −0.479550 0.877514i \(-0.659200\pi\)
0.999725 0.0234545i \(-0.00746647\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.00000 0.447214
\(6\) −0.900969 1.56052i −0.367819 0.637081i
\(7\) 1.80194 + 3.12105i 0.681068 + 1.17965i 0.974655 + 0.223713i \(0.0718177\pi\)
−0.293587 + 0.955932i \(0.594849\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.123490 0.213891i −0.0411633 0.0712969i
\(10\) 0.500000 0.866025i 0.158114 0.273861i
\(11\) −2.22252 + 3.84952i −0.670115 + 1.16067i 0.307756 + 0.951465i \(0.400422\pi\)
−0.977871 + 0.209208i \(0.932911\pi\)
\(12\) −1.80194 −0.520175
\(13\) 0 0
\(14\) 3.60388 0.963176
\(15\) 0.900969 1.56052i 0.232629 0.402926i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.57942 + 2.73563i 0.383065 + 0.663488i 0.991499 0.130117i \(-0.0415352\pi\)
−0.608434 + 0.793605i \(0.708202\pi\)
\(18\) −0.246980 −0.0582137
\(19\) 0.178448 + 0.309081i 0.0409388 + 0.0709080i 0.885769 0.464127i \(-0.153632\pi\)
−0.844830 + 0.535035i \(0.820298\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) 6.49396 1.41710
\(22\) 2.22252 + 3.84952i 0.473843 + 0.820720i
\(23\) 3.24698 5.62393i 0.677042 1.17267i −0.298825 0.954308i \(-0.596595\pi\)
0.975868 0.218363i \(-0.0700718\pi\)
\(24\) −0.900969 + 1.56052i −0.183910 + 0.318541i
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 4.96077 0.954701
\(28\) 1.80194 3.12105i 0.340534 0.589823i
\(29\) 1.44504 2.50289i 0.268338 0.464774i −0.700095 0.714050i \(-0.746859\pi\)
0.968433 + 0.249275i \(0.0801924\pi\)
\(30\) −0.900969 1.56052i −0.164494 0.284911i
\(31\) 3.82371 0.686758 0.343379 0.939197i \(-0.388428\pi\)
0.343379 + 0.939197i \(0.388428\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 4.00484 + 6.93659i 0.697154 + 1.20751i
\(34\) 3.15883 0.541735
\(35\) 1.80194 + 3.12105i 0.304583 + 0.527553i
\(36\) −0.123490 + 0.213891i −0.0205816 + 0.0356484i
\(37\) 3.74094 6.47950i 0.615007 1.06522i −0.375377 0.926872i \(-0.622487\pi\)
0.990383 0.138350i \(-0.0441800\pi\)
\(38\) 0.356896 0.0578962
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) −1.01961 + 1.76602i −0.159237 + 0.275807i −0.934594 0.355717i \(-0.884237\pi\)
0.775357 + 0.631523i \(0.217570\pi\)
\(42\) 3.24698 5.62393i 0.501020 0.867792i
\(43\) −5.00753 8.67330i −0.763642 1.32267i −0.940962 0.338513i \(-0.890076\pi\)
0.177320 0.984153i \(-0.443257\pi\)
\(44\) 4.44504 0.670115
\(45\) −0.123490 0.213891i −0.0184088 0.0318849i
\(46\) −3.24698 5.62393i −0.478741 0.829204i
\(47\) 11.7017 1.70687 0.853435 0.521199i \(-0.174515\pi\)
0.853435 + 0.521199i \(0.174515\pi\)
\(48\) 0.900969 + 1.56052i 0.130044 + 0.225242i
\(49\) −2.99396 + 5.18569i −0.427708 + 0.740813i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) 5.69202 0.797042
\(52\) 0 0
\(53\) −12.3720 −1.69942 −0.849710 0.527251i \(-0.823223\pi\)
−0.849710 + 0.527251i \(0.823223\pi\)
\(54\) 2.48039 4.29615i 0.337538 0.584633i
\(55\) −2.22252 + 3.84952i −0.299685 + 0.519069i
\(56\) −1.80194 3.12105i −0.240794 0.417068i
\(57\) 0.643104 0.0851812
\(58\) −1.44504 2.50289i −0.189743 0.328645i
\(59\) 5.99880 + 10.3902i 0.780978 + 1.35269i 0.931373 + 0.364067i \(0.118612\pi\)
−0.150395 + 0.988626i \(0.548055\pi\)
\(60\) −1.80194 −0.232629
\(61\) 6.18598 + 10.7144i 0.792034 + 1.37184i 0.924706 + 0.380683i \(0.124311\pi\)
−0.132672 + 0.991160i \(0.542356\pi\)
\(62\) 1.91185 3.31143i 0.242806 0.420552i
\(63\) 0.445042 0.770835i 0.0560700 0.0971161i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 8.00969 0.985925
\(67\) −6.99880 + 12.1223i −0.855040 + 1.48097i 0.0215680 + 0.999767i \(0.493134\pi\)
−0.876608 + 0.481205i \(0.840199\pi\)
\(68\) 1.57942 2.73563i 0.191532 0.331744i
\(69\) −5.85086 10.1340i −0.704360 1.21999i
\(70\) 3.60388 0.430746
\(71\) −6.40581 11.0952i −0.760230 1.31676i −0.942732 0.333552i \(-0.891753\pi\)
0.182502 0.983206i \(-0.441581\pi\)
\(72\) 0.123490 + 0.213891i 0.0145534 + 0.0252073i
\(73\) 6.96615 0.815326 0.407663 0.913132i \(-0.366344\pi\)
0.407663 + 0.913132i \(0.366344\pi\)
\(74\) −3.74094 6.47950i −0.434875 0.753226i
\(75\) 0.900969 1.56052i 0.104035 0.180194i
\(76\) 0.178448 0.309081i 0.0204694 0.0354540i
\(77\) −16.0194 −1.82558
\(78\) 0 0
\(79\) −5.87800 −0.661327 −0.330663 0.943749i \(-0.607272\pi\)
−0.330663 + 0.943749i \(0.607272\pi\)
\(80\) −0.500000 + 0.866025i −0.0559017 + 0.0968246i
\(81\) 4.83997 8.38307i 0.537774 0.931453i
\(82\) 1.01961 + 1.76602i 0.112598 + 0.195025i
\(83\) 4.67456 0.513100 0.256550 0.966531i \(-0.417414\pi\)
0.256550 + 0.966531i \(0.417414\pi\)
\(84\) −3.24698 5.62393i −0.354275 0.613621i
\(85\) 1.57942 + 2.73563i 0.171312 + 0.296721i
\(86\) −10.0151 −1.07995
\(87\) −2.60388 4.51004i −0.279165 0.483528i
\(88\) 2.22252 3.84952i 0.236922 0.410360i
\(89\) −4.01089 + 6.94706i −0.425153 + 0.736387i −0.996435 0.0843675i \(-0.973113\pi\)
0.571282 + 0.820754i \(0.306446\pi\)
\(90\) −0.246980 −0.0260339
\(91\) 0 0
\(92\) −6.49396 −0.677042
\(93\) 3.44504 5.96699i 0.357234 0.618748i
\(94\) 5.85086 10.1340i 0.603470 1.04524i
\(95\) 0.178448 + 0.309081i 0.0183084 + 0.0317110i
\(96\) 1.80194 0.183910
\(97\) −1.97554 3.42174i −0.200586 0.347425i 0.748132 0.663550i \(-0.230951\pi\)
−0.948717 + 0.316126i \(0.897618\pi\)
\(98\) 2.99396 + 5.18569i 0.302436 + 0.523834i
\(99\) 1.09783 0.110337
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) −7.52111 + 13.0269i −0.748378 + 1.29623i 0.200222 + 0.979751i \(0.435834\pi\)
−0.948600 + 0.316478i \(0.897500\pi\)
\(102\) 2.84601 4.92944i 0.281797 0.488087i
\(103\) 7.82371 0.770893 0.385446 0.922730i \(-0.374047\pi\)
0.385446 + 0.922730i \(0.374047\pi\)
\(104\) 0 0
\(105\) 6.49396 0.633746
\(106\) −6.18598 + 10.7144i −0.600836 + 1.04068i
\(107\) −4.65064 + 8.05514i −0.449594 + 0.778720i −0.998359 0.0572566i \(-0.981765\pi\)
0.548765 + 0.835976i \(0.315098\pi\)
\(108\) −2.48039 4.29615i −0.238675 0.413398i
\(109\) 0.811626 0.0777397 0.0388699 0.999244i \(-0.487624\pi\)
0.0388699 + 0.999244i \(0.487624\pi\)
\(110\) 2.22252 + 3.84952i 0.211909 + 0.367037i
\(111\) −6.74094 11.6756i −0.639822 1.10820i
\(112\) −3.60388 −0.340534
\(113\) −3.50484 6.07057i −0.329708 0.571071i 0.652746 0.757577i \(-0.273617\pi\)
−0.982454 + 0.186506i \(0.940284\pi\)
\(114\) 0.321552 0.556945i 0.0301161 0.0521626i
\(115\) 3.24698 5.62393i 0.302782 0.524435i
\(116\) −2.89008 −0.268338
\(117\) 0 0
\(118\) 11.9976 1.10447
\(119\) −5.69202 + 9.85887i −0.521787 + 0.903761i
\(120\) −0.900969 + 1.56052i −0.0822468 + 0.142456i
\(121\) −4.37920 7.58499i −0.398109 0.689545i
\(122\) 12.3720 1.12010
\(123\) 1.83728 + 3.18226i 0.165662 + 0.286935i
\(124\) −1.91185 3.31143i −0.171690 0.297375i
\(125\) 1.00000 0.0894427
\(126\) −0.445042 0.770835i −0.0396475 0.0686715i
\(127\) 5.82908 10.0963i 0.517248 0.895899i −0.482552 0.875867i \(-0.660290\pi\)
0.999799 0.0200317i \(-0.00637672\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −18.0465 −1.58891
\(130\) 0 0
\(131\) −1.34481 −0.117497 −0.0587485 0.998273i \(-0.518711\pi\)
−0.0587485 + 0.998273i \(0.518711\pi\)
\(132\) 4.00484 6.93659i 0.348577 0.603753i
\(133\) −0.643104 + 1.11389i −0.0557642 + 0.0965864i
\(134\) 6.99880 + 12.1223i 0.604605 + 1.04721i
\(135\) 4.96077 0.426955
\(136\) −1.57942 2.73563i −0.135434 0.234578i
\(137\) −3.90097 6.75668i −0.333282 0.577262i 0.649871 0.760044i \(-0.274823\pi\)
−0.983153 + 0.182783i \(0.941490\pi\)
\(138\) −11.7017 −0.996116
\(139\) −6.93631 12.0140i −0.588330 1.01902i −0.994451 0.105199i \(-0.966452\pi\)
0.406121 0.913819i \(-0.366881\pi\)
\(140\) 1.80194 3.12105i 0.152292 0.263777i
\(141\) 10.5429 18.2608i 0.887870 1.53784i
\(142\) −12.8116 −1.07513
\(143\) 0 0
\(144\) 0.246980 0.0205816
\(145\) 1.44504 2.50289i 0.120004 0.207853i
\(146\) 3.48307 6.03286i 0.288261 0.499283i
\(147\) 5.39493 + 9.34429i 0.444966 + 0.770704i
\(148\) −7.48188 −0.615007
\(149\) −6.33513 10.9728i −0.518994 0.898923i −0.999756 0.0220727i \(-0.992973\pi\)
0.480763 0.876851i \(-0.340360\pi\)
\(150\) −0.900969 1.56052i −0.0735638 0.127416i
\(151\) −4.86592 −0.395983 −0.197991 0.980204i \(-0.563442\pi\)
−0.197991 + 0.980204i \(0.563442\pi\)
\(152\) −0.178448 0.309081i −0.0144740 0.0250698i
\(153\) 0.390084 0.675645i 0.0315364 0.0546226i
\(154\) −8.00969 + 13.8732i −0.645439 + 1.11793i
\(155\) 3.82371 0.307128
\(156\) 0 0
\(157\) −9.42758 −0.752403 −0.376202 0.926538i \(-0.622770\pi\)
−0.376202 + 0.926538i \(0.622770\pi\)
\(158\) −2.93900 + 5.09050i −0.233814 + 0.404978i
\(159\) −11.1468 + 19.3067i −0.883995 + 1.53112i
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) 23.4034 1.84445
\(162\) −4.83997 8.38307i −0.380264 0.658636i
\(163\) −2.73825 4.74279i −0.214476 0.371484i 0.738634 0.674107i \(-0.235471\pi\)
−0.953110 + 0.302623i \(0.902138\pi\)
\(164\) 2.03923 0.159237
\(165\) 4.00484 + 6.93659i 0.311777 + 0.540013i
\(166\) 2.33728 4.04829i 0.181408 0.314208i
\(167\) 1.34481 2.32929i 0.104065 0.180246i −0.809291 0.587408i \(-0.800148\pi\)
0.913356 + 0.407162i \(0.133482\pi\)
\(168\) −6.49396 −0.501020
\(169\) 0 0
\(170\) 3.15883 0.242271
\(171\) 0.0440730 0.0763367i 0.00337035 0.00583761i
\(172\) −5.00753 + 8.67330i −0.381821 + 0.661333i
\(173\) −5.45473 9.44787i −0.414715 0.718308i 0.580683 0.814130i \(-0.302786\pi\)
−0.995399 + 0.0958214i \(0.969452\pi\)
\(174\) −5.20775 −0.394799
\(175\) 1.80194 + 3.12105i 0.136214 + 0.235929i
\(176\) −2.22252 3.84952i −0.167529 0.290168i
\(177\) 21.6189 1.62498
\(178\) 4.01089 + 6.94706i 0.300629 + 0.520704i
\(179\) −6.49127 + 11.2432i −0.485180 + 0.840357i −0.999855 0.0170285i \(-0.994579\pi\)
0.514675 + 0.857386i \(0.327913\pi\)
\(180\) −0.123490 + 0.213891i −0.00920439 + 0.0159425i
\(181\) 22.7332 1.68974 0.844872 0.534969i \(-0.179677\pi\)
0.844872 + 0.534969i \(0.179677\pi\)
\(182\) 0 0
\(183\) 22.2935 1.64798
\(184\) −3.24698 + 5.62393i −0.239371 + 0.414602i
\(185\) 3.74094 6.47950i 0.275039 0.476382i
\(186\) −3.44504 5.96699i −0.252603 0.437521i
\(187\) −14.0411 −1.02679
\(188\) −5.85086 10.1340i −0.426717 0.739096i
\(189\) 8.93900 + 15.4828i 0.650217 + 1.12621i
\(190\) 0.356896 0.0258919
\(191\) −9.10992 15.7788i −0.659170 1.14172i −0.980831 0.194862i \(-0.937574\pi\)
0.321660 0.946855i \(-0.395759\pi\)
\(192\) 0.900969 1.56052i 0.0650218 0.112621i
\(193\) −9.37412 + 16.2364i −0.674764 + 1.16873i 0.301774 + 0.953379i \(0.402421\pi\)
−0.976538 + 0.215346i \(0.930912\pi\)
\(194\) −3.95108 −0.283671
\(195\) 0 0
\(196\) 5.98792 0.427708
\(197\) −11.2078 + 19.4124i −0.798519 + 1.38308i 0.122061 + 0.992523i \(0.461050\pi\)
−0.920580 + 0.390553i \(0.872284\pi\)
\(198\) 0.548917 0.950753i 0.0390099 0.0675671i
\(199\) −8.54288 14.7967i −0.605588 1.04891i −0.991958 0.126566i \(-0.959604\pi\)
0.386370 0.922344i \(-0.373729\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 12.6114 + 21.8436i 0.889540 + 1.54073i
\(202\) 7.52111 + 13.0269i 0.529183 + 0.916572i
\(203\) 10.4155 0.731025
\(204\) −2.84601 4.92944i −0.199261 0.345129i
\(205\) −1.01961 + 1.76602i −0.0712130 + 0.123344i
\(206\) 3.91185 6.77553i 0.272552 0.472074i
\(207\) −1.60388 −0.111477
\(208\) 0 0
\(209\) −1.58642 −0.109735
\(210\) 3.24698 5.62393i 0.224063 0.388088i
\(211\) 2.76540 4.78981i 0.190378 0.329744i −0.754998 0.655727i \(-0.772362\pi\)
0.945375 + 0.325983i \(0.105695\pi\)
\(212\) 6.18598 + 10.7144i 0.424855 + 0.735870i
\(213\) −23.0858 −1.58181
\(214\) 4.65064 + 8.05514i 0.317911 + 0.550638i
\(215\) −5.00753 8.67330i −0.341511 0.591514i
\(216\) −4.96077 −0.337538
\(217\) 6.89008 + 11.9340i 0.467729 + 0.810131i
\(218\) 0.405813 0.702889i 0.0274851 0.0476057i
\(219\) 6.27628 10.8708i 0.424112 0.734583i
\(220\) 4.44504 0.299685
\(221\) 0 0
\(222\) −13.4819 −0.904844
\(223\) −2.13706 + 3.70150i −0.143108 + 0.247871i −0.928666 0.370918i \(-0.879043\pi\)
0.785557 + 0.618789i \(0.212376\pi\)
\(224\) −1.80194 + 3.12105i −0.120397 + 0.208534i
\(225\) −0.123490 0.213891i −0.00823265 0.0142594i
\(226\) −7.00969 −0.466278
\(227\) 4.97703 + 8.62047i 0.330337 + 0.572161i 0.982578 0.185851i \(-0.0595042\pi\)
−0.652241 + 0.758012i \(0.726171\pi\)
\(228\) −0.321552 0.556945i −0.0212953 0.0368846i
\(229\) −23.0315 −1.52196 −0.760981 0.648774i \(-0.775282\pi\)
−0.760981 + 0.648774i \(0.775282\pi\)
\(230\) −3.24698 5.62393i −0.214099 0.370831i
\(231\) −14.4330 + 24.9986i −0.949619 + 1.64479i
\(232\) −1.44504 + 2.50289i −0.0948716 + 0.164323i
\(233\) 18.5700 1.21656 0.608281 0.793721i \(-0.291859\pi\)
0.608281 + 0.793721i \(0.291859\pi\)
\(234\) 0 0
\(235\) 11.7017 0.763335
\(236\) 5.99880 10.3902i 0.390489 0.676347i
\(237\) −5.29590 + 9.17276i −0.344005 + 0.595835i
\(238\) 5.69202 + 9.85887i 0.368959 + 0.639056i
\(239\) −18.9530 −1.22597 −0.612984 0.790095i \(-0.710031\pi\)
−0.612984 + 0.790095i \(0.710031\pi\)
\(240\) 0.900969 + 1.56052i 0.0581573 + 0.100731i
\(241\) −11.3720 19.6968i −0.732532 1.26878i −0.955798 0.294026i \(-0.905005\pi\)
0.223265 0.974758i \(-0.428328\pi\)
\(242\) −8.75840 −0.563011
\(243\) −1.28017 2.21732i −0.0821228 0.142241i
\(244\) 6.18598 10.7144i 0.396017 0.685921i
\(245\) −2.99396 + 5.18569i −0.191277 + 0.331302i
\(246\) 3.67456 0.234282
\(247\) 0 0
\(248\) −3.82371 −0.242806
\(249\) 4.21164 7.29477i 0.266902 0.462287i
\(250\) 0.500000 0.866025i 0.0316228 0.0547723i
\(251\) −7.28352 12.6154i −0.459732 0.796279i 0.539215 0.842168i \(-0.318721\pi\)
−0.998947 + 0.0458896i \(0.985388\pi\)
\(252\) −0.890084 −0.0560700
\(253\) 14.4330 + 24.9986i 0.907392 + 1.57165i
\(254\) −5.82908 10.0963i −0.365749 0.633496i
\(255\) 5.69202 0.356448
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −1.00216 + 1.73578i −0.0625128 + 0.108275i −0.895588 0.444884i \(-0.853245\pi\)
0.833075 + 0.553160i \(0.186578\pi\)
\(258\) −9.02326 + 15.6287i −0.561764 + 0.973003i
\(259\) 26.9638 1.67545
\(260\) 0 0
\(261\) −0.713792 −0.0441826
\(262\) −0.672407 + 1.16464i −0.0415415 + 0.0719519i
\(263\) −2.20775 + 3.82394i −0.136136 + 0.235794i −0.926031 0.377448i \(-0.876802\pi\)
0.789895 + 0.613242i \(0.210135\pi\)
\(264\) −4.00484 6.93659i −0.246481 0.426918i
\(265\) −12.3720 −0.760004
\(266\) 0.643104 + 1.11389i 0.0394312 + 0.0682969i
\(267\) 7.22737 + 12.5182i 0.442308 + 0.766099i
\(268\) 13.9976 0.855040
\(269\) 9.07606 + 15.7202i 0.553377 + 0.958478i 0.998028 + 0.0627736i \(0.0199946\pi\)
−0.444650 + 0.895704i \(0.646672\pi\)
\(270\) 2.48039 4.29615i 0.150951 0.261456i
\(271\) 9.73556 16.8625i 0.591393 1.02432i −0.402652 0.915353i \(-0.631911\pi\)
0.994045 0.108970i \(-0.0347552\pi\)
\(272\) −3.15883 −0.191532
\(273\) 0 0
\(274\) −7.80194 −0.471332
\(275\) −2.22252 + 3.84952i −0.134023 + 0.232135i
\(276\) −5.85086 + 10.1340i −0.352180 + 0.609994i
\(277\) 9.19806 + 15.9315i 0.552658 + 0.957232i 0.998082 + 0.0619118i \(0.0197197\pi\)
−0.445424 + 0.895320i \(0.646947\pi\)
\(278\) −13.8726 −0.832025
\(279\) −0.472189 0.817855i −0.0282692 0.0489637i
\(280\) −1.80194 3.12105i −0.107686 0.186518i
\(281\) −15.9463 −0.951276 −0.475638 0.879641i \(-0.657783\pi\)
−0.475638 + 0.879641i \(0.657783\pi\)
\(282\) −10.5429 18.2608i −0.627819 1.08741i
\(283\) 13.9955 24.2408i 0.831943 1.44097i −0.0645519 0.997914i \(-0.520562\pi\)
0.896495 0.443054i \(-0.146105\pi\)
\(284\) −6.40581 + 11.0952i −0.380115 + 0.658379i
\(285\) 0.643104 0.0380942
\(286\) 0 0
\(287\) −7.34913 −0.433805
\(288\) 0.123490 0.213891i 0.00727671 0.0126036i
\(289\) 3.51089 6.08103i 0.206523 0.357708i
\(290\) −1.44504 2.50289i −0.0848558 0.146975i
\(291\) −7.11960 −0.417359
\(292\) −3.48307 6.03286i −0.203831 0.353047i
\(293\) 6.78017 + 11.7436i 0.396102 + 0.686068i 0.993241 0.116069i \(-0.0370295\pi\)
−0.597140 + 0.802137i \(0.703696\pi\)
\(294\) 10.7899 0.629277
\(295\) 5.99880 + 10.3902i 0.349264 + 0.604943i
\(296\) −3.74094 + 6.47950i −0.217438 + 0.376613i
\(297\) −11.0254 + 19.0966i −0.639760 + 1.10810i
\(298\) −12.6703 −0.733968
\(299\) 0 0
\(300\) −1.80194 −0.104035
\(301\) 18.0465 31.2575i 1.04018 1.80165i
\(302\) −2.43296 + 4.21401i −0.140001 + 0.242489i
\(303\) 13.5526 + 23.4737i 0.778575 + 1.34853i
\(304\) −0.356896 −0.0204694
\(305\) 6.18598 + 10.7144i 0.354208 + 0.613507i
\(306\) −0.390084 0.675645i −0.0222996 0.0386240i
\(307\) −15.1588 −0.865160 −0.432580 0.901595i \(-0.642397\pi\)
−0.432580 + 0.901595i \(0.642397\pi\)
\(308\) 8.00969 + 13.8732i 0.456394 + 0.790498i
\(309\) 7.04892 12.2091i 0.400999 0.694550i
\(310\) 1.91185 3.31143i 0.108586 0.188076i
\(311\) 5.38404 0.305301 0.152651 0.988280i \(-0.451219\pi\)
0.152651 + 0.988280i \(0.451219\pi\)
\(312\) 0 0
\(313\) −16.5864 −0.937520 −0.468760 0.883326i \(-0.655299\pi\)
−0.468760 + 0.883326i \(0.655299\pi\)
\(314\) −4.71379 + 8.16453i −0.266015 + 0.460751i
\(315\) 0.445042 0.770835i 0.0250753 0.0434316i
\(316\) 2.93900 + 5.09050i 0.165332 + 0.286363i
\(317\) 12.1086 0.680086 0.340043 0.940410i \(-0.389558\pi\)
0.340043 + 0.940410i \(0.389558\pi\)
\(318\) 11.1468 + 19.3067i 0.625079 + 1.08267i
\(319\) 6.42327 + 11.1254i 0.359634 + 0.622905i
\(320\) 1.00000 0.0559017
\(321\) 8.38016 + 14.5149i 0.467735 + 0.810140i
\(322\) 11.7017 20.2680i 0.652111 1.12949i
\(323\) −0.563687 + 0.976335i −0.0313644 + 0.0543247i
\(324\) −9.67994 −0.537774
\(325\) 0 0
\(326\) −5.47650 −0.303315
\(327\) 0.731250 1.26656i 0.0404382 0.0700411i
\(328\) 1.01961 1.76602i 0.0562988 0.0975124i
\(329\) 21.0858 + 36.5216i 1.16250 + 2.01350i
\(330\) 8.00969 0.440919
\(331\) −7.30559 12.6536i −0.401551 0.695507i 0.592362 0.805672i \(-0.298196\pi\)
−0.993913 + 0.110165i \(0.964862\pi\)
\(332\) −2.33728 4.04829i −0.128275 0.222179i
\(333\) −1.84787 −0.101263
\(334\) −1.34481 2.32929i −0.0735850 0.127453i
\(335\) −6.99880 + 12.1223i −0.382385 + 0.662311i
\(336\) −3.24698 + 5.62393i −0.177137 + 0.306811i
\(337\) −4.45952 −0.242925 −0.121463 0.992596i \(-0.538758\pi\)
−0.121463 + 0.992596i \(0.538758\pi\)
\(338\) 0 0
\(339\) −12.6310 −0.686023
\(340\) 1.57942 2.73563i 0.0856559 0.148360i
\(341\) −8.49827 + 14.7194i −0.460207 + 0.797102i
\(342\) −0.0440730 0.0763367i −0.00238319 0.00412781i
\(343\) 3.64742 0.196942
\(344\) 5.00753 + 8.67330i 0.269988 + 0.467633i
\(345\) −5.85086 10.1340i −0.314999 0.545595i
\(346\) −10.9095 −0.586496
\(347\) −14.2935 24.7571i −0.767316 1.32903i −0.939014 0.343880i \(-0.888259\pi\)
0.171698 0.985150i \(-0.445075\pi\)
\(348\) −2.60388 + 4.51004i −0.139582 + 0.241764i
\(349\) 2.43967 4.22562i 0.130592 0.226192i −0.793313 0.608814i \(-0.791645\pi\)
0.923905 + 0.382622i \(0.124979\pi\)
\(350\) 3.60388 0.192635
\(351\) 0 0
\(352\) −4.44504 −0.236922
\(353\) 2.02984 3.51578i 0.108037 0.187126i −0.806938 0.590636i \(-0.798877\pi\)
0.914975 + 0.403510i \(0.132210\pi\)
\(354\) 10.8095 18.7226i 0.574517 0.995092i
\(355\) −6.40581 11.0952i −0.339985 0.588872i
\(356\) 8.02177 0.425153
\(357\) 10.2567 + 17.7651i 0.542840 + 0.940227i
\(358\) 6.49127 + 11.2432i 0.343074 + 0.594222i
\(359\) −5.12067 −0.270259 −0.135129 0.990828i \(-0.543145\pi\)
−0.135129 + 0.990828i \(0.543145\pi\)
\(360\) 0.123490 + 0.213891i 0.00650848 + 0.0112730i
\(361\) 9.43631 16.3442i 0.496648 0.860220i
\(362\) 11.3666 19.6875i 0.597414 1.03475i
\(363\) −15.7821 −0.828345
\(364\) 0 0
\(365\) 6.96615 0.364625
\(366\) 11.1468 19.3067i 0.582650 1.00918i
\(367\) 4.64310 8.04209i 0.242368 0.419794i −0.719020 0.694989i \(-0.755409\pi\)
0.961388 + 0.275195i \(0.0887425\pi\)
\(368\) 3.24698 + 5.62393i 0.169261 + 0.293168i
\(369\) 0.503648 0.0262189
\(370\) −3.74094 6.47950i −0.194482 0.336853i
\(371\) −22.2935 38.6135i −1.15742 2.00471i
\(372\) −6.89008 −0.357234
\(373\) 3.65279 + 6.32682i 0.189134 + 0.327590i 0.944962 0.327180i \(-0.106098\pi\)
−0.755827 + 0.654771i \(0.772765\pi\)
\(374\) −7.02057 + 12.1600i −0.363025 + 0.628778i
\(375\) 0.900969 1.56052i 0.0465258 0.0805851i
\(376\) −11.7017 −0.603470
\(377\) 0 0
\(378\) 17.8780 0.919545
\(379\) 15.2850 26.4744i 0.785138 1.35990i −0.143778 0.989610i \(-0.545925\pi\)
0.928916 0.370290i \(-0.120742\pi\)
\(380\) 0.178448 0.309081i 0.00915419 0.0158555i
\(381\) −10.5036 18.1929i −0.538118 0.932048i
\(382\) −18.2198 −0.932208
\(383\) −3.96615 6.86957i −0.202661 0.351019i 0.746724 0.665134i \(-0.231626\pi\)
−0.949385 + 0.314115i \(0.898292\pi\)
\(384\) −0.900969 1.56052i −0.0459774 0.0796351i
\(385\) −16.0194 −0.816423
\(386\) 9.37412 + 16.2364i 0.477130 + 0.826413i
\(387\) −1.23676 + 2.14213i −0.0628680 + 0.108891i
\(388\) −1.97554 + 3.42174i −0.100293 + 0.173712i
\(389\) 1.35988 0.0689486 0.0344743 0.999406i \(-0.489024\pi\)
0.0344743 + 0.999406i \(0.489024\pi\)
\(390\) 0 0
\(391\) 20.5133 1.03740
\(392\) 2.99396 5.18569i 0.151218 0.261917i
\(393\) −1.21164 + 2.09861i −0.0611189 + 0.105861i
\(394\) 11.2078 + 19.4124i 0.564638 + 0.977982i
\(395\) −5.87800 −0.295754
\(396\) −0.548917 0.950753i −0.0275841 0.0477771i
\(397\) 12.3056 + 21.3139i 0.617600 + 1.06971i 0.989922 + 0.141611i \(0.0452281\pi\)
−0.372323 + 0.928103i \(0.621439\pi\)
\(398\) −17.0858 −0.856431
\(399\) 1.15883 + 2.00716i 0.0580142 + 0.100484i
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) −2.44773 + 4.23959i −0.122234 + 0.211715i −0.920648 0.390393i \(-0.872339\pi\)
0.798414 + 0.602108i \(0.205672\pi\)
\(402\) 25.2228 1.25800
\(403\) 0 0
\(404\) 15.0422 0.748378
\(405\) 4.83997 8.38307i 0.240500 0.416558i
\(406\) 5.20775 9.02009i 0.258456 0.447660i
\(407\) 16.6286 + 28.8016i 0.824251 + 1.42764i
\(408\) −5.69202 −0.281797
\(409\) 2.18718 + 3.78830i 0.108149 + 0.187319i 0.915020 0.403408i \(-0.132174\pi\)
−0.806871 + 0.590727i \(0.798841\pi\)
\(410\) 1.01961 + 1.76602i 0.0503552 + 0.0872177i
\(411\) −14.0586 −0.693460
\(412\) −3.91185 6.77553i −0.192723 0.333806i
\(413\) −21.6189 + 37.4451i −1.06380 + 1.84255i
\(414\) −0.801938 + 1.38900i −0.0394131 + 0.0682655i
\(415\) 4.67456 0.229465
\(416\) 0 0
\(417\) −24.9976 −1.22414
\(418\) −0.793209 + 1.37388i −0.0387971 + 0.0671985i
\(419\) −8.37196 + 14.5007i −0.408997 + 0.708404i −0.994778 0.102066i \(-0.967455\pi\)
0.585781 + 0.810470i \(0.300788\pi\)
\(420\) −3.24698 5.62393i −0.158436 0.274420i
\(421\) 0.483206 0.0235500 0.0117750 0.999931i \(-0.496252\pi\)
0.0117750 + 0.999931i \(0.496252\pi\)
\(422\) −2.76540 4.78981i −0.134617 0.233164i
\(423\) −1.44504 2.50289i −0.0702603 0.121694i
\(424\) 12.3720 0.600836
\(425\) 1.57942 + 2.73563i 0.0766130 + 0.132698i
\(426\) −11.5429 + 19.9928i −0.559254 + 0.968657i
\(427\) −22.2935 + 38.6135i −1.07886 + 1.86864i
\(428\) 9.30127 0.449594
\(429\) 0 0
\(430\) −10.0151 −0.482969
\(431\) 5.98792 10.3714i 0.288428 0.499572i −0.685007 0.728537i \(-0.740201\pi\)
0.973435 + 0.228965i \(0.0735341\pi\)
\(432\) −2.48039 + 4.29615i −0.119338 + 0.206699i
\(433\) 2.07726 + 3.59792i 0.0998268 + 0.172905i 0.911613 0.411050i \(-0.134838\pi\)
−0.811786 + 0.583955i \(0.801504\pi\)
\(434\) 13.7802 0.661469
\(435\) −2.60388 4.51004i −0.124846 0.216240i
\(436\) −0.405813 0.702889i −0.0194349 0.0336623i
\(437\) 2.31767 0.110869
\(438\) −6.27628 10.8708i −0.299892 0.519429i
\(439\) 6.25667 10.8369i 0.298614 0.517215i −0.677205 0.735795i \(-0.736809\pi\)
0.975819 + 0.218579i \(0.0701422\pi\)
\(440\) 2.22252 3.84952i 0.105955 0.183519i
\(441\) 1.47889 0.0704235
\(442\) 0 0
\(443\) −2.27950 −0.108302 −0.0541512 0.998533i \(-0.517245\pi\)
−0.0541512 + 0.998533i \(0.517245\pi\)
\(444\) −6.74094 + 11.6756i −0.319911 + 0.554102i
\(445\) −4.01089 + 6.94706i −0.190134 + 0.329322i
\(446\) 2.13706 + 3.70150i 0.101193 + 0.175271i
\(447\) −22.8310 −1.07987
\(448\) 1.80194 + 3.12105i 0.0851336 + 0.147456i
\(449\) −10.2274 17.7143i −0.482659 0.835990i 0.517143 0.855899i \(-0.326996\pi\)
−0.999802 + 0.0199090i \(0.993662\pi\)
\(450\) −0.246980 −0.0116427
\(451\) −4.53223 7.85005i −0.213414 0.369644i
\(452\) −3.50484 + 6.07057i −0.164854 + 0.285536i
\(453\) −4.38404 + 7.59339i −0.205980 + 0.356768i
\(454\) 9.95407 0.467167
\(455\) 0 0
\(456\) −0.643104 −0.0301161
\(457\) −8.92154 + 15.4526i −0.417332 + 0.722841i −0.995670 0.0929568i \(-0.970368\pi\)
0.578338 + 0.815797i \(0.303702\pi\)
\(458\) −11.5157 + 19.9458i −0.538095 + 0.932007i
\(459\) 7.83513 + 13.5708i 0.365712 + 0.633432i
\(460\) −6.49396 −0.302782
\(461\) −1.76271 3.05310i −0.0820975 0.142197i 0.822053 0.569411i \(-0.192829\pi\)
−0.904151 + 0.427214i \(0.859495\pi\)
\(462\) 14.4330 + 24.9986i 0.671482 + 1.16304i
\(463\) 3.72587 0.173156 0.0865780 0.996245i \(-0.472407\pi\)
0.0865780 + 0.996245i \(0.472407\pi\)
\(464\) 1.44504 + 2.50289i 0.0670844 + 0.116194i
\(465\) 3.44504 5.96699i 0.159760 0.276712i
\(466\) 9.28501 16.0821i 0.430120 0.744989i
\(467\) −12.8576 −0.594977 −0.297488 0.954725i \(-0.596149\pi\)
−0.297488 + 0.954725i \(0.596149\pi\)
\(468\) 0 0
\(469\) −50.4456 −2.32936
\(470\) 5.85086 10.1340i 0.269880 0.467446i
\(471\) −8.49396 + 14.7120i −0.391381 + 0.677892i
\(472\) −5.99880 10.3902i −0.276117 0.478249i
\(473\) 44.5174 2.04691
\(474\) 5.29590 + 9.17276i 0.243249 + 0.421319i
\(475\) 0.178448 + 0.309081i 0.00818775 + 0.0141816i
\(476\) 11.3840 0.521787
\(477\) 1.52781 + 2.64625i 0.0699537 + 0.121163i
\(478\) −9.47650 + 16.4138i −0.433445 + 0.750749i
\(479\) 16.9976 29.4407i 0.776640 1.34518i −0.157227 0.987562i \(-0.550256\pi\)
0.933868 0.357618i \(-0.116411\pi\)
\(480\) 1.80194 0.0822468
\(481\) 0 0
\(482\) −22.7439 −1.03596
\(483\) 21.0858 36.5216i 0.959435 1.66179i
\(484\) −4.37920 + 7.58499i −0.199054 + 0.344772i
\(485\) −1.97554 3.42174i −0.0897047 0.155373i
\(486\) −2.56033 −0.116139
\(487\) −12.7409 22.0680i −0.577347 0.999994i −0.995782 0.0917478i \(-0.970755\pi\)
0.418435 0.908247i \(-0.362579\pi\)
\(488\) −6.18598 10.7144i −0.280026 0.485020i
\(489\) −9.86831 −0.446261
\(490\) 2.99396 + 5.18569i 0.135253 + 0.234266i
\(491\) −12.8889 + 22.3242i −0.581667 + 1.00748i 0.413615 + 0.910452i \(0.364266\pi\)
−0.995282 + 0.0970253i \(0.969067\pi\)
\(492\) 1.83728 3.18226i 0.0828310 0.143468i
\(493\) 9.12929 0.411163
\(494\) 0 0
\(495\) 1.09783 0.0493440
\(496\) −1.91185 + 3.31143i −0.0858448 + 0.148688i
\(497\) 23.0858 39.9857i 1.03554 1.79360i
\(498\) −4.21164 7.29477i −0.188728 0.326886i
\(499\) −21.6286 −0.968230 −0.484115 0.875004i \(-0.660858\pi\)
−0.484115 + 0.875004i \(0.660858\pi\)
\(500\) −0.500000 0.866025i −0.0223607 0.0387298i
\(501\) −2.42327 4.19723i −0.108264 0.187518i
\(502\) −14.5670 −0.650159
\(503\) −13.3666 23.1516i −0.595987 1.03228i −0.993407 0.114642i \(-0.963428\pi\)
0.397420 0.917637i \(-0.369906\pi\)
\(504\) −0.445042 + 0.770835i −0.0198237 + 0.0343357i
\(505\) −7.52111 + 13.0269i −0.334685 + 0.579691i
\(506\) 28.8659 1.28325
\(507\) 0 0
\(508\) −11.6582 −0.517248
\(509\) −17.6407 + 30.5546i −0.781911 + 1.35431i 0.148916 + 0.988850i \(0.452421\pi\)
−0.930827 + 0.365459i \(0.880912\pi\)
\(510\) 2.84601 4.92944i 0.126023 0.218279i
\(511\) 12.5526 + 21.7417i 0.555293 + 0.961795i
\(512\) −1.00000 −0.0441942
\(513\) 0.885239 + 1.53328i 0.0390843 + 0.0676959i
\(514\) 1.00216 + 1.73578i 0.0442032 + 0.0765622i
\(515\) 7.82371 0.344754
\(516\) 9.02326 + 15.6287i 0.397227 + 0.688017i
\(517\) −26.0073 + 45.0460i −1.14380 + 1.98112i
\(518\) 13.4819 23.3513i 0.592360 1.02600i
\(519\) −19.6582 −0.862898
\(520\) 0 0
\(521\) 12.5700 0.550703 0.275351 0.961344i \(-0.411206\pi\)
0.275351 + 0.961344i \(0.411206\pi\)
\(522\) −0.356896 + 0.618162i −0.0156209 + 0.0270562i
\(523\) −2.69471 + 4.66737i −0.117831 + 0.204090i −0.918908 0.394472i \(-0.870928\pi\)
0.801077 + 0.598562i \(0.204261\pi\)
\(524\) 0.672407 + 1.16464i 0.0293742 + 0.0508777i
\(525\) 6.49396 0.283420
\(526\) 2.20775 + 3.82394i 0.0962625 + 0.166732i
\(527\) 6.03923 + 10.4603i 0.263073 + 0.455656i
\(528\) −8.00969 −0.348577
\(529\) −9.58575 16.6030i −0.416772 0.721870i
\(530\) −6.18598 + 10.7144i −0.268702 + 0.465405i
\(531\) 1.48158 2.56618i 0.0642952 0.111363i
\(532\) 1.28621 0.0557642
\(533\) 0 0
\(534\) 14.4547 0.625517
\(535\) −4.65064 + 8.05514i −0.201065 + 0.348254i
\(536\) 6.99880 12.1223i 0.302302 0.523603i
\(537\) 11.6969 + 20.2596i 0.504757 + 0.874265i
\(538\) 18.1521 0.782594
\(539\) −13.3083 23.0506i −0.573228 0.992860i
\(540\) −2.48039 4.29615i −0.106739 0.184877i
\(541\) 22.7332 0.977375 0.488688 0.872459i \(-0.337476\pi\)
0.488688 + 0.872459i \(0.337476\pi\)
\(542\) −9.73556 16.8625i −0.418178 0.724306i
\(543\) 20.4819 35.4757i 0.878961 1.52241i
\(544\) −1.57942 + 2.73563i −0.0677169 + 0.117289i
\(545\) 0.811626 0.0347663
\(546\) 0 0
\(547\) 31.9734 1.36709 0.683543 0.729910i \(-0.260438\pi\)
0.683543 + 0.729910i \(0.260438\pi\)
\(548\) −3.90097 + 6.75668i −0.166641 + 0.288631i
\(549\) 1.52781 2.64625i 0.0652054 0.112939i
\(550\) 2.22252 + 3.84952i 0.0947686 + 0.164144i
\(551\) 1.03146 0.0439416
\(552\) 5.85086 + 10.1340i 0.249029 + 0.431331i
\(553\) −10.5918 18.3455i −0.450409 0.780131i
\(554\) 18.3961 0.781576
\(555\) −6.74094 11.6756i −0.286137 0.495604i
\(556\) −6.93631 + 12.0140i −0.294165 + 0.509509i
\(557\) −13.6082 + 23.5701i −0.576597 + 0.998696i 0.419269 + 0.907862i \(0.362287\pi\)
−0.995866 + 0.0908338i \(0.971047\pi\)
\(558\) −0.944378 −0.0399787
\(559\) 0 0
\(560\) −3.60388 −0.152292
\(561\) −12.6506 + 21.9115i −0.534110 + 0.925106i
\(562\) −7.97315 + 13.8099i −0.336327 + 0.582535i
\(563\) 5.87800 + 10.1810i 0.247728 + 0.429078i 0.962895 0.269876i \(-0.0869827\pi\)
−0.715167 + 0.698954i \(0.753649\pi\)
\(564\) −21.0858 −0.887870
\(565\) −3.50484 6.07057i −0.147450 0.255391i
\(566\) −13.9955 24.2408i −0.588273 1.01892i
\(567\) 34.8853 1.46504
\(568\) 6.40581 + 11.0952i 0.268782 + 0.465544i
\(569\) 9.63653 16.6910i 0.403984 0.699721i −0.590218 0.807244i \(-0.700958\pi\)
0.994203 + 0.107522i \(0.0342917\pi\)
\(570\) 0.321552 0.556945i 0.0134683 0.0233278i
\(571\) 32.6329 1.36565 0.682823 0.730584i \(-0.260752\pi\)
0.682823 + 0.730584i \(0.260752\pi\)
\(572\) 0 0
\(573\) −32.8310 −1.37153
\(574\) −3.67456 + 6.36453i −0.153373 + 0.265650i
\(575\) 3.24698 5.62393i 0.135408 0.234534i
\(576\) −0.123490 0.213891i −0.00514541 0.00891211i
\(577\) −31.4534 −1.30942 −0.654711 0.755879i \(-0.727210\pi\)
−0.654711 + 0.755879i \(0.727210\pi\)
\(578\) −3.51089 6.08103i −0.146034 0.252938i
\(579\) 16.8916 + 29.2571i 0.701990 + 1.21588i
\(580\) −2.89008 −0.120004
\(581\) 8.42327 + 14.5895i 0.349456 + 0.605276i
\(582\) −3.55980 + 6.16576i −0.147559 + 0.255579i
\(583\) 27.4969 47.6261i 1.13881 1.97247i
\(584\) −6.96615 −0.288261
\(585\) 0 0
\(586\) 13.5603 0.560172
\(587\) 10.3808 17.9801i 0.428462 0.742119i −0.568274 0.822839i \(-0.692389\pi\)
0.996737 + 0.0807205i \(0.0257221\pi\)
\(588\) 5.39493 9.34429i 0.222483 0.385352i
\(589\) 0.682333 + 1.18184i 0.0281150 + 0.0486967i
\(590\) 11.9976 0.493934
\(591\) 20.1957 + 34.9799i 0.830739 + 1.43888i
\(592\) 3.74094 + 6.47950i 0.153752 + 0.266306i
\(593\) −31.9028 −1.31009 −0.655045 0.755590i \(-0.727350\pi\)
−0.655045 + 0.755590i \(0.727350\pi\)
\(594\) 11.0254 + 19.0966i 0.452378 + 0.783542i
\(595\) −5.69202 + 9.85887i −0.233350 + 0.404174i
\(596\) −6.33513 + 10.9728i −0.259497 + 0.449462i
\(597\) −30.7875 −1.26005
\(598\) 0 0
\(599\) −8.07846 −0.330077 −0.165038 0.986287i \(-0.552775\pi\)
−0.165038 + 0.986287i \(0.552775\pi\)
\(600\) −0.900969 + 1.56052i −0.0367819 + 0.0637081i
\(601\) 9.74847 16.8848i 0.397648 0.688747i −0.595787 0.803143i \(-0.703160\pi\)
0.993435 + 0.114395i \(0.0364930\pi\)
\(602\) −18.0465 31.2575i −0.735521 1.27396i
\(603\) 3.45712 0.140785
\(604\) 2.43296 + 4.21401i 0.0989957 + 0.171466i
\(605\) −4.37920 7.58499i −0.178040 0.308374i
\(606\) 27.1051 1.10107
\(607\) 17.9922 + 31.1635i 0.730282 + 1.26489i 0.956763 + 0.290870i \(0.0939447\pi\)
−0.226480 + 0.974016i \(0.572722\pi\)
\(608\) −0.178448 + 0.309081i −0.00723702 + 0.0125349i
\(609\) 9.38404 16.2536i 0.380261 0.658631i
\(610\) 12.3720 0.500926
\(611\) 0 0
\(612\) −0.780167 −0.0315364
\(613\) −9.08815 + 15.7411i −0.367067 + 0.635778i −0.989106 0.147208i \(-0.952971\pi\)
0.622039 + 0.782986i \(0.286305\pi\)
\(614\) −7.57942 + 13.1279i −0.305880 + 0.529800i
\(615\) 1.83728 + 3.18226i 0.0740863 + 0.128321i
\(616\) 16.0194 0.645439
\(617\) −21.5266 37.2852i −0.866629 1.50105i −0.865421 0.501046i \(-0.832949\pi\)
−0.00120820 0.999999i \(-0.500385\pi\)
\(618\) −7.04892 12.2091i −0.283549 0.491121i
\(619\) 39.5120 1.58812 0.794061 0.607838i \(-0.207963\pi\)
0.794061 + 0.607838i \(0.207963\pi\)
\(620\) −1.91185 3.31143i −0.0767819 0.132990i
\(621\) 16.1075 27.8990i 0.646373 1.11955i
\(622\) 2.69202 4.66272i 0.107940 0.186958i
\(623\) −28.9095 −1.15823
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −8.29321 + 14.3643i −0.331463 + 0.574111i
\(627\) −1.42931 + 2.47564i −0.0570812 + 0.0988676i
\(628\) 4.71379 + 8.16453i 0.188101 + 0.325800i
\(629\) 23.6340 0.942350
\(630\) −0.445042 0.770835i −0.0177309 0.0307108i
\(631\) −11.5308 19.9719i −0.459034 0.795070i 0.539876 0.841744i \(-0.318471\pi\)
−0.998910 + 0.0466746i \(0.985138\pi\)
\(632\) 5.87800 0.233814
\(633\) −4.98307 8.63094i −0.198059 0.343049i
\(634\) 6.05429 10.4863i 0.240447 0.416466i
\(635\) 5.82908 10.0963i 0.231320 0.400658i
\(636\) 22.2935 0.883995
\(637\) 0 0
\(638\) 12.8465 0.508600
\(639\) −1.58211 + 2.74029i −0.0625871 + 0.108404i
\(640\) 0.500000 0.866025i 0.0197642 0.0342327i
\(641\) −17.3523 30.0551i −0.685377 1.18711i −0.973318 0.229459i \(-0.926304\pi\)
0.287942 0.957648i \(-0.407029\pi\)
\(642\) 16.7603 0.661477
\(643\) −17.1054 29.6274i −0.674570 1.16839i −0.976594 0.215089i \(-0.930996\pi\)
0.302025 0.953300i \(-0.402338\pi\)
\(644\) −11.7017 20.2680i −0.461112 0.798669i
\(645\) −18.0465 −0.710581
\(646\) 0.563687 + 0.976335i 0.0221780 + 0.0384134i
\(647\) −2.22952 + 3.86164i −0.0876515 + 0.151817i −0.906518 0.422167i \(-0.861270\pi\)
0.818866 + 0.573984i \(0.194603\pi\)
\(648\) −4.83997 + 8.38307i −0.190132 + 0.329318i
\(649\) −53.3299 −2.09338
\(650\) 0 0
\(651\) 24.8310 0.973204
\(652\) −2.73825 + 4.74279i −0.107238 + 0.185742i
\(653\) −4.72348 + 8.18131i −0.184844 + 0.320159i −0.943524 0.331304i \(-0.892511\pi\)
0.758680 + 0.651464i \(0.225845\pi\)
\(654\) −0.731250 1.26656i −0.0285941 0.0495265i
\(655\) −1.34481 −0.0525462
\(656\) −1.01961 1.76602i −0.0398093 0.0689516i
\(657\) −0.860248 1.48999i −0.0335615 0.0581302i
\(658\) 42.1715 1.64402
\(659\) 8.88889 + 15.3960i 0.346262 + 0.599743i 0.985582 0.169197i \(-0.0541175\pi\)
−0.639320 + 0.768941i \(0.720784\pi\)
\(660\) 4.00484 6.93659i 0.155888 0.270007i
\(661\) −15.6407 + 27.0905i −0.608353 + 1.05370i 0.383159 + 0.923683i \(0.374836\pi\)
−0.991512 + 0.130016i \(0.958497\pi\)
\(662\) −14.6112 −0.567879
\(663\) 0 0
\(664\) −4.67456 −0.181408
\(665\) −0.643104 + 1.11389i −0.0249385 + 0.0431948i
\(666\) −0.923936 + 1.60030i −0.0358018 + 0.0620105i
\(667\) −9.38404 16.2536i −0.363352 0.629343i
\(668\) −2.68963 −0.104065
\(669\) 3.85086 + 6.66988i 0.148883 + 0.257872i
\(670\) 6.99880 + 12.1223i 0.270387 + 0.468325i
\(671\) −54.9939 −2.12302
\(672\) 3.24698 + 5.62393i 0.125255 + 0.216948i
\(673\) 7.23072 12.5240i 0.278724 0.482764i −0.692344 0.721567i \(-0.743422\pi\)
0.971068 + 0.238804i \(0.0767553\pi\)
\(674\) −2.22976 + 3.86205i −0.0858871 + 0.148761i
\(675\) 4.96077 0.190940
\(676\) 0 0
\(677\) 19.8974 0.764718 0.382359 0.924014i \(-0.375112\pi\)
0.382359 + 0.924014i \(0.375112\pi\)
\(678\) −6.31551 + 10.9388i −0.242546 + 0.420102i
\(679\) 7.11960 12.3315i 0.273225 0.473240i
\(680\) −1.57942 2.73563i −0.0605679 0.104907i
\(681\) 17.9366 0.687332
\(682\) 8.49827 + 14.7194i 0.325416 + 0.563636i
\(683\) 20.1519 + 34.9041i 0.771091 + 1.33557i 0.936966 + 0.349421i \(0.113622\pi\)
−0.165875 + 0.986147i \(0.553045\pi\)
\(684\) −0.0881460 −0.00337035
\(685\) −3.90097 6.75668i −0.149048 0.258159i
\(686\) 1.82371 3.15875i 0.0696295 0.120602i
\(687\) −20.7506 + 35.9411i −0.791686 + 1.37124i
\(688\) 10.0151 0.381821
\(689\) 0 0
\(690\) −11.7017 −0.445476
\(691\) −0.374117 + 0.647990i −0.0142321 + 0.0246507i −0.873054 0.487624i \(-0.837864\pi\)
0.858822 + 0.512275i \(0.171197\pi\)
\(692\) −5.45473 + 9.44787i −0.207358 + 0.359154i
\(693\) 1.97823 + 3.42639i 0.0751467 + 0.130158i
\(694\) −28.5870 −1.08515
\(695\) −6.93631 12.0140i −0.263109 0.455719i
\(696\) 2.60388 + 4.51004i 0.0986996 + 0.170953i
\(697\) −6.44158 −0.243992
\(698\) −2.43967 4.22562i −0.0923427 0.159942i
\(699\) 16.7310 28.9790i 0.632825 1.09609i
\(700\) 1.80194 3.12105i 0.0681068 0.117965i
\(701\) −27.5555 −1.04076 −0.520379 0.853935i \(-0.674209\pi\)
−0.520379 + 0.853935i \(0.674209\pi\)
\(702\) 0 0
\(703\) 2.67025 0.100710
\(704\) −2.22252 + 3.84952i −0.0837644 + 0.145084i
\(705\) 10.5429 18.2608i 0.397068 0.687741i
\(706\) −2.02984 3.51578i −0.0763939 0.132318i
\(707\) −54.2103 −2.03879
\(708\) −10.8095 18.7226i −0.406245 0.703637i
\(709\) −3.54527 6.14059i −0.133145 0.230615i 0.791742 0.610856i \(-0.209174\pi\)
−0.924887 + 0.380241i \(0.875841\pi\)
\(710\) −12.8116 −0.480812
\(711\) 0.725873 + 1.25725i 0.0272224 + 0.0471505i
\(712\) 4.01089 6.94706i 0.150314 0.260352i
\(713\) 12.4155 21.5043i 0.464964 0.805342i
\(714\) 20.5133 0.767692
\(715\) 0 0
\(716\) 12.9825 0.485180
\(717\) −17.0761 + 29.5766i −0.637717 + 1.10456i
\(718\) −2.56033 + 4.43463i −0.0955509 + 0.165499i
\(719\) 5.35690 + 9.27842i 0.199779 + 0.346027i 0.948457 0.316907i \(-0.102644\pi\)
−0.748678 + 0.662934i \(0.769311\pi\)
\(720\) 0.246980 0.00920439
\(721\) 14.0978 + 24.4182i 0.525031 + 0.909380i
\(722\) −9.43631 16.3442i −0.351183 0.608267i
\(723\) −40.9831 −1.52418
\(724\) −11.3666 19.6875i −0.422436 0.731680i
\(725\) 1.44504 2.50289i 0.0536675 0.0929548i
\(726\) −7.89104 + 13.6677i −0.292864 + 0.507255i
\(727\) 1.37329 0.0509325 0.0254662 0.999676i \(-0.491893\pi\)
0.0254662 + 0.999676i \(0.491893\pi\)
\(728\) 0 0
\(729\) 24.4263 0.904676
\(730\) 3.48307 6.03286i 0.128914 0.223286i
\(731\) 15.8180 27.3975i 0.585048 1.01333i
\(732\) −11.1468 19.3067i −0.411996 0.713598i
\(733\) −12.6160 −0.465981 −0.232991 0.972479i \(-0.574851\pi\)
−0.232991 + 0.972479i \(0.574851\pi\)
\(734\) −4.64310 8.04209i −0.171380 0.296839i
\(735\) 5.39493 + 9.34429i 0.198995 + 0.344669i
\(736\) 6.49396 0.239371
\(737\) −31.1100 53.8841i −1.14595 1.98484i
\(738\) 0.251824 0.436172i 0.00926977 0.0160557i
\(739\) −18.5688 + 32.1622i −0.683065 + 1.18310i 0.290975 + 0.956731i \(0.406020\pi\)
−0.974041 + 0.226373i \(0.927313\pi\)
\(740\) −7.48188 −0.275039
\(741\) 0 0
\(742\) −44.5870 −1.63684
\(743\) −7.52648 + 13.0363i −0.276120 + 0.478254i −0.970417 0.241435i \(-0.922382\pi\)
0.694297 + 0.719688i \(0.255715\pi\)
\(744\) −3.44504 + 5.96699i −0.126301 + 0.218760i
\(745\) −6.33513 10.9728i −0.232101 0.402011i
\(746\) 7.30559 0.267476
\(747\) −0.577261 0.999845i −0.0211209 0.0365824i
\(748\) 7.02057 + 12.1600i 0.256698 + 0.444613i
\(749\) −33.5206 −1.22482
\(750\) −0.900969 1.56052i −0.0328987 0.0569823i
\(751\) 11.1957 19.3915i 0.408536 0.707605i −0.586190 0.810174i \(-0.699373\pi\)
0.994726 + 0.102569i \(0.0327062\pi\)
\(752\) −5.85086 + 10.1340i −0.213359 + 0.369548i
\(753\) −26.2489 −0.956563
\(754\) 0 0
\(755\) −4.86592 −0.177089
\(756\) 8.93900 15.4828i 0.325108 0.563104i
\(757\) 7.93661 13.7466i 0.288461 0.499629i −0.684982 0.728560i \(-0.740190\pi\)
0.973443 + 0.228931i \(0.0735231\pi\)
\(758\) −15.2850 26.4744i −0.555177 0.961594i
\(759\) 52.0146 1.88801
\(760\) −0.178448 0.309081i −0.00647299 0.0112115i
\(761\) 19.2841 + 33.4011i 0.699048 + 1.21079i 0.968797 + 0.247857i \(0.0797262\pi\)
−0.269748 + 0.962931i \(0.586940\pi\)
\(762\) −21.0073 −0.761014
\(763\) 1.46250 + 2.53312i 0.0529461 + 0.0917053i
\(764\) −9.10992 + 15.7788i −0.329585 + 0.570858i
\(765\) 0.390084 0.675645i 0.0141035 0.0244280i
\(766\) −7.93230 −0.286606
\(767\) 0 0
\(768\) −1.80194 −0.0650218
\(769\) 24.5160 42.4630i 0.884070 1.53125i 0.0372951 0.999304i \(-0.488126\pi\)
0.846775 0.531951i \(-0.178541\pi\)
\(770\) −8.00969 + 13.8732i −0.288649 + 0.499955i
\(771\) 1.80582 + 3.12778i 0.0650351 + 0.112644i
\(772\) 18.7482 0.674764
\(773\) 5.94438 + 10.2960i 0.213804 + 0.370320i 0.952902 0.303278i \(-0.0980811\pi\)
−0.739098 + 0.673598i \(0.764748\pi\)
\(774\) 1.23676 + 2.14213i 0.0444544 + 0.0769972i
\(775\) 3.82371 0.137352
\(776\) 1.97554 + 3.42174i 0.0709178 + 0.122833i
\(777\) 24.2935 42.0776i 0.871525 1.50952i
\(778\) 0.679940 1.17769i 0.0243770 0.0422222i
\(779\) −0.727792 −0.0260759
\(780\) 0 0
\(781\) 56.9482 2.03777
\(782\) 10.2567 17.7651i 0.366778 0.635278i
\(783\) 7.16852 12.4162i 0.256182 0.443720i
\(784\) −2.99396 5.18569i −0.106927 0.185203i
\(785\) −9.42758 −0.336485
\(786\) 1.21164 + 2.09861i 0.0432176 + 0.0748551i
\(787\) 1.62833 + 2.82036i 0.0580438 + 0.100535i 0.893587 0.448890i \(-0.148180\pi\)
−0.835543 + 0.549424i \(0.814847\pi\)
\(788\) 22.4155 0.798519
\(789\) 3.97823 + 6.89050i 0.141629 + 0.245308i
\(790\) −2.93900 + 5.09050i −0.104565 + 0.181112i
\(791\) 12.6310 21.8776i 0.449107 0.777877i
\(792\) −1.09783 −0.0390099
\(793\) 0 0
\(794\) 24.6112 0.873418
\(795\) −11.1468 + 19.3067i −0.395335 + 0.684740i
\(796\) −8.54288 + 14.7967i −0.302794 + 0.524455i
\(797\) −18.4765 32.0022i −0.654471 1.13358i −0.982026 0.188745i \(-0.939558\pi\)
0.327555 0.944832i \(-0.393775\pi\)
\(798\) 2.31767 0.0820445
\(799\) 18.4819 + 32.0116i 0.653842 + 1.13249i
\(800\) 0.500000 + 0.866025i 0.0176777 + 0.0306186i
\(801\) 1.98121 0.0700027
\(802\) 2.44773 + 4.23959i 0.0864324 + 0.149705i
\(803\) −15.4824 + 26.8163i −0.546362 + 0.946327i
\(804\) 12.6114 21.8436i 0.444770 0.770364i
\(805\) 23.4034 0.824862
\(806\) 0 0
\(807\) 32.7090 1.15141
\(808\) 7.52111 13.0269i 0.264592 0.458286i
\(809\) 2.08599 3.61304i 0.0733395 0.127028i −0.827023 0.562167i \(-0.809968\pi\)
0.900363 + 0.435140i \(0.143301\pi\)
\(810\) −4.83997 8.38307i −0.170059 0.294551i
\(811\) 17.0696 0.599396 0.299698 0.954034i \(-0.403114\pi\)
0.299698 + 0.954034i \(0.403114\pi\)
\(812\) −5.20775 9.02009i −0.182756 0.316543i
\(813\) −17.5429 30.3852i −0.615256 1.06565i
\(814\) 33.2573 1.16567
\(815\) −2.73825 4.74279i −0.0959167 0.166133i
\(816\) −2.84601 + 4.92944i −0.0996303 + 0.172565i
\(817\) 1.78717 3.09547i 0.0625251 0.108297i
\(818\) 4.37435 0.152946
\(819\) 0 0
\(820\) 2.03923 0.0712130
\(821\) −18.9148 + 32.7615i −0.660132 + 1.14338i 0.320448 + 0.947266i \(0.396167\pi\)
−0.980581 + 0.196117i \(0.937167\pi\)
\(822\) −7.02930 + 12.1751i −0.245175 + 0.424656i
\(823\) −20.5362 35.5697i −0.715846 1.23988i −0.962632 0.270812i \(-0.912708\pi\)
0.246786 0.969070i \(-0.420625\pi\)
\(824\) −7.82371 −0.272552
\(825\) 4.00484 + 6.93659i 0.139431 + 0.241501i
\(826\) 21.6189 + 37.4451i 0.752219 + 1.30288i
\(827\) 26.9855 0.938379 0.469189 0.883098i \(-0.344546\pi\)
0.469189 + 0.883098i \(0.344546\pi\)
\(828\) 0.801938 + 1.38900i 0.0278693 + 0.0482710i
\(829\) 6.08277 10.5357i 0.211263 0.365919i −0.740847 0.671674i \(-0.765576\pi\)
0.952110 + 0.305755i \(0.0989089\pi\)
\(830\) 2.33728 4.04829i 0.0811282 0.140518i
\(831\) 33.1487 1.14991
\(832\) 0 0
\(833\) −18.9148 −0.655360
\(834\) −12.4988 + 21.6486i −0.432798 + 0.749628i
\(835\) 1.34481 2.32929i 0.0465392 0.0806083i
\(836\) 0.793209 + 1.37388i 0.0274337 + 0.0475165i
\(837\) 18.9685 0.655649
\(838\) 8.37196 + 14.5007i 0.289205 + 0.500917i
\(839\) −0.933624 1.61708i −0.0322323 0.0558280i 0.849459 0.527654i \(-0.176928\pi\)
−0.881692 + 0.471826i \(0.843595\pi\)
\(840\) −6.49396 −0.224063
\(841\) 10.3237 + 17.8812i 0.355990 + 0.616593i
\(842\) 0.241603 0.418468i 0.00832618 0.0144214i
\(843\) −14.3671 + 24.8846i −0.494830 + 0.857070i
\(844\) −5.53079 −0.190378
\(845\) 0 0
\(846\) −2.89008 −0.0993631
\(847\) 15.7821 27.3354i 0.542279 0.939255i
\(848\) 6.18598 10.7144i 0.212427 0.367935i
\(849\) −25.2189 43.6805i −0.865511 1.49911i
\(850\) 3.15883 0.108347
\(851\) −24.2935 42.0776i −0.832771 1.44240i
\(852\) 11.5429 + 19.9928i 0.395452 + 0.684944i
\(853\) 27.7453 0.949979 0.474990 0.879991i \(-0.342452\pi\)
0.474990 + 0.879991i \(0.342452\pi\)
\(854\) 22.2935 + 38.6135i 0.762868 + 1.32133i
\(855\) 0.0440730 0.0763367i 0.00150726 0.00261066i
\(856\) 4.65064 8.05514i 0.158955 0.275319i
\(857\) −24.2553 −0.828547 −0.414273 0.910153i \(-0.635964\pi\)
−0.414273 + 0.910153i \(0.635964\pi\)
\(858\) 0 0
\(859\) 26.1089 0.890823 0.445411 0.895326i \(-0.353057\pi\)
0.445411 + 0.895326i \(0.353057\pi\)
\(860\) −5.00753 + 8.67330i −0.170755 + 0.295757i
\(861\) −6.62133 + 11.4685i −0.225654 + 0.390845i
\(862\) −5.98792 10.3714i −0.203949 0.353251i
\(863\) 39.5905 1.34768 0.673838 0.738880i \(-0.264645\pi\)
0.673838 + 0.738880i \(0.264645\pi\)
\(864\) 2.48039 + 4.29615i 0.0843844 + 0.146158i
\(865\) −5.45473 9.44787i −0.185466 0.321237i
\(866\) 4.15452 0.141176
\(867\) −6.32640 10.9576i −0.214856 0.372141i
\(868\) 6.89008 11.9340i 0.233865 0.405066i
\(869\) 13.0640 22.6275i 0.443165 0.767585i
\(870\) −5.20775 −0.176559
\(871\) 0 0
\(872\) −0.811626 −0.0274851
\(873\) −0.487918 + 0.845099i −0.0165135 + 0.0286023i
\(874\) 1.15883 2.00716i 0.0391981 0.0678932i
\(875\) 1.80194 + 3.12105i 0.0609166 + 0.105511i
\(876\) −12.5526 −0.424112
\(877\) 20.2543 + 35.0814i 0.683938 + 1.18462i 0.973769 + 0.227538i \(0.0730676\pi\)
−0.289831 + 0.957078i \(0.593599\pi\)
\(878\) −6.25667 10.8369i −0.211152 0.365727i
\(879\) 24.4349 0.824168
\(880\) −2.22252 3.84952i −0.0749212 0.129767i
\(881\) 18.1876 31.5019i 0.612756 1.06132i −0.378018 0.925798i \(-0.623394\pi\)
0.990774 0.135526i \(-0.0432725\pi\)
\(882\) 0.739447 1.28076i 0.0248985 0.0431254i
\(883\) 6.51275 0.219171 0.109586 0.993977i \(-0.465048\pi\)
0.109586 + 0.993977i \(0.465048\pi\)
\(884\) 0 0
\(885\) 21.6189 0.726713
\(886\) −1.13975 + 1.97411i −0.0382907 + 0.0663215i
\(887\) −1.65817 + 2.87203i −0.0556759 + 0.0964335i −0.892520 0.451008i \(-0.851065\pi\)
0.836844 + 0.547441i \(0.184398\pi\)
\(888\) 6.74094 + 11.6756i 0.226211 + 0.391809i
\(889\) 42.0146 1.40912
\(890\) 4.01089 + 6.94706i 0.134445 + 0.232866i
\(891\) 21.5139 + 37.2631i 0.720742 + 1.24836i
\(892\) 4.27413 0.143108
\(893\) 2.08815 + 3.61677i 0.0698771 + 0.121031i
\(894\) −11.4155 + 19.7722i −0.381791 + 0.661282i
\(895\) −6.49127 + 11.2432i −0.216979 + 0.375819i
\(896\) 3.60388 0.120397
\(897\) 0 0
\(898\) −20.4547 −0.682583
\(899\) 5.52542 9.57030i 0.184283 0.319188i
\(900\) −0.123490 + 0.213891i −0.00411633 + 0.00712969i
\(901\) −19.5405 33.8451i −0.650988 1.12754i
\(902\) −9.06446 −0.301813
\(903\) −32.5187 56.3241i −1.08216 1.87435i
\(904\) 3.50484 + 6.07057i 0.116569 + 0.201904i
\(905\) 22.7332 0.755676
\(906\) 4.38404 + 7.59339i 0.145650 + 0.252273i
\(907\) 24.1824 41.8851i 0.802963 1.39077i −0.114694 0.993401i \(-0.536589\pi\)
0.917658 0.397372i \(-0.130078\pi\)
\(908\) 4.97703 8.62047i 0.165169 0.286080i
\(909\) 3.71512 0.123223
\(910\) 0 0
\(911\) −18.2634 −0.605093 −0.302546 0.953135i \(-0.597837\pi\)
−0.302546 + 0.953135i \(0.597837\pi\)
\(912\) −0.321552 + 0.556945i −0.0106477 + 0.0184423i
\(913\) −10.3893 + 17.9948i −0.343836 + 0.595542i
\(914\) 8.92154 + 15.4526i 0.295098 + 0.511125i
\(915\) 22.2935 0.737001
\(916\) 11.5157 + 19.9458i 0.380490 + 0.659029i
\(917\) −2.42327 4.19723i −0.0800235 0.138605i
\(918\) 15.6703 0.517195
\(919\) −11.0804 19.1918i −0.365508 0.633078i 0.623350 0.781943i \(-0.285771\pi\)
−0.988858 + 0.148865i \(0.952438\pi\)
\(920\) −3.24698 + 5.62393i −0.107050 + 0.185416i
\(921\) −13.6576 + 23.6557i −0.450034 + 0.779483i
\(922\) −3.52542 −0.116103
\(923\) 0 0
\(924\) 28.8659 0.949619
\(925\) 3.74094 6.47950i 0.123001 0.213045i
\(926\) 1.86294 3.22670i 0.0612199 0.106036i
\(927\) −0.966148 1.67342i −0.0317325 0.0549622i
\(928\) 2.89008 0.0948716
\(929\) −3.96399 6.86584i −0.130054 0.225261i 0.793643 0.608384i \(-0.208182\pi\)
−0.923697 + 0.383123i \(0.874849\pi\)
\(930\) −3.44504 5.96699i −0.112967 0.195665i
\(931\) −2.13706 −0.0700394
\(932\) −9.28501 16.0821i −0.304141 0.526787i
\(933\) 4.85086 8.40193i 0.158810 0.275067i
\(934\) −6.42878 + 11.1350i −0.210356 + 0.364347i
\(935\) −14.0411 −0.459195
\(936\) 0 0
\(937\) 28.1758 0.920464 0.460232 0.887799i \(-0.347766\pi\)
0.460232 + 0.887799i \(0.347766\pi\)
\(938\) −25.2228 + 43.6872i −0.823554 + 1.42644i
\(939\) −14.9438 + 25.8835i −0.487674 + 0.844676i
\(940\) −5.85086 10.1340i −0.190834 0.330534i
\(941\) −31.4228 −1.02435 −0.512177 0.858880i \(-0.671161\pi\)
−0.512177 + 0.858880i \(0.671161\pi\)
\(942\) 8.49396 + 14.7120i 0.276748 + 0.479342i
\(943\) 6.62133 + 11.4685i 0.215620 + 0.373465i
\(944\) −11.9976 −0.390489
\(945\) 8.93900 + 15.4828i 0.290786 + 0.503656i
\(946\) 22.2587 38.5532i 0.723693 1.25347i
\(947\) 3.98039 6.89423i 0.129345 0.224032i −0.794078 0.607816i \(-0.792046\pi\)
0.923423 + 0.383784i \(0.125379\pi\)
\(948\) 10.5918 0.344005
\(949\) 0 0
\(950\) 0.356896 0.0115792
\(951\) 10.9095 18.8957i 0.353764 0.612736i
\(952\) 5.69202 9.85887i 0.184479 0.319528i
\(953\) 3.45257 + 5.98003i 0.111840 + 0.193712i 0.916512 0.400007i \(-0.130992\pi\)
−0.804672 + 0.593719i \(0.797659\pi\)
\(954\) 3.05562 0.0989294
\(955\) −9.10992 15.7788i −0.294790 0.510591i
\(956\) 9.47650 + 16.4138i 0.306492 + 0.530860i
\(957\) 23.1487 0.748290
\(958\) −16.9976 29.4407i −0.549168 0.951186i
\(959\) 14.0586 24.3502i 0.453976 0.786310i
\(960\) 0.900969 1.56052i 0.0290786 0.0503657i
\(961\) −16.3793 −0.528363
\(962\) 0 0
\(963\) 2.29722 0.0740270
\(964\) −11.3720 + 19.6968i −0.366266 + 0.634392i
\(965\) −9.37412 + 16.2364i −0.301764 + 0.522670i
\(966\) −21.0858 36.5216i −0.678423 1.17506i
\(967\) 31.3297 1.00750 0.503748 0.863850i \(-0.331954\pi\)
0.503748 + 0.863850i \(0.331954\pi\)
\(968\) 4.37920 + 7.58499i 0.140753 + 0.243791i
\(969\) 1.01573 + 1.75930i 0.0326299 + 0.0565167i
\(970\) −3.95108 −0.126862
\(971\) 2.45257 + 4.24798i 0.0787069 + 0.136324i 0.902692 0.430287i \(-0.141588\pi\)
−0.823985 + 0.566611i \(0.808254\pi\)
\(972\) −1.28017 + 2.21732i −0.0410614 + 0.0711204i
\(973\) 24.9976 43.2971i 0.801386 1.38804i
\(974\) −25.4819 −0.816492
\(975\) 0 0
\(976\) −12.3720 −0.396017
\(977\) −6.75816 + 11.7055i −0.216213 + 0.374491i −0.953647 0.300927i \(-0.902704\pi\)
0.737434 + 0.675419i \(0.236037\pi\)
\(978\) −4.93416 + 8.54621i −0.157777 + 0.273278i
\(979\) −17.8286 30.8800i −0.569803 0.986928i
\(980\) 5.98792 0.191277
\(981\) −0.100228 0.173599i −0.00320002 0.00554260i
\(982\) 12.8889 + 22.3242i 0.411301 + 0.712394i
\(983\) 31.7453 1.01252 0.506258 0.862382i \(-0.331028\pi\)
0.506258 + 0.862382i \(0.331028\pi\)
\(984\) −1.83728 3.18226i −0.0585704 0.101447i
\(985\) −11.2078 + 19.4124i −0.357109 + 0.618530i
\(986\) 4.56465 7.90620i 0.145368 0.251785i
\(987\) 75.9904 2.41880
\(988\) 0 0
\(989\) −65.0374 −2.06807
\(990\) 0.548917 0.950753i 0.0174457 0.0302169i
\(991\) −6.80492 + 11.7865i −0.216165 + 0.374410i −0.953632 0.300974i \(-0.902688\pi\)
0.737467 + 0.675383i \(0.236022\pi\)
\(992\) 1.91185 + 3.31143i 0.0607014 + 0.105138i
\(993\) −26.3284 −0.835507
\(994\) −23.0858 39.9857i −0.732236 1.26827i
\(995\) −8.54288 14.7967i −0.270827 0.469087i
\(996\) −8.42327 −0.266902
\(997\) 19.7060 + 34.1318i 0.624096 + 1.08097i 0.988715 + 0.149809i \(0.0478659\pi\)
−0.364619 + 0.931157i \(0.618801\pi\)
\(998\) −10.8143 + 18.7309i −0.342321 + 0.592918i
\(999\) 18.5579 32.1433i 0.587147 1.01697i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1690.2.e.r.191.3 6
13.2 odd 12 1690.2.l.m.361.6 12
13.3 even 3 inner 1690.2.e.r.991.3 6
13.4 even 6 1690.2.a.r.1.1 yes 3
13.5 odd 4 1690.2.l.m.1161.3 12
13.6 odd 12 1690.2.d.i.1351.4 6
13.7 odd 12 1690.2.d.i.1351.1 6
13.8 odd 4 1690.2.l.m.1161.6 12
13.9 even 3 1690.2.a.p.1.1 3
13.10 even 6 1690.2.e.p.991.3 6
13.11 odd 12 1690.2.l.m.361.3 12
13.12 even 2 1690.2.e.p.191.3 6
65.4 even 6 8450.2.a.bv.1.3 3
65.9 even 6 8450.2.a.cg.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1690.2.a.p.1.1 3 13.9 even 3
1690.2.a.r.1.1 yes 3 13.4 even 6
1690.2.d.i.1351.1 6 13.7 odd 12
1690.2.d.i.1351.4 6 13.6 odd 12
1690.2.e.p.191.3 6 13.12 even 2
1690.2.e.p.991.3 6 13.10 even 6
1690.2.e.r.191.3 6 1.1 even 1 trivial
1690.2.e.r.991.3 6 13.3 even 3 inner
1690.2.l.m.361.3 12 13.11 odd 12
1690.2.l.m.361.6 12 13.2 odd 12
1690.2.l.m.1161.3 12 13.5 odd 4
1690.2.l.m.1161.6 12 13.8 odd 4
8450.2.a.bv.1.3 3 65.4 even 6
8450.2.a.cg.1.3 3 65.9 even 6