Properties

Label 845.2.n.h.484.12
Level $845$
Weight $2$
Character 845.484
Analytic conductor $6.747$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(484,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.484"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,0,16,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 484.12
Character \(\chi\) \(=\) 845.484
Dual form 845.2.n.h.529.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.768923 - 0.443938i) q^{2} +(1.09905 - 0.634534i) q^{3} +(-0.605838 + 1.04934i) q^{4} +(1.33257 - 1.79562i) q^{5} +(0.563388 - 0.975816i) q^{6} +(1.97564 + 1.14064i) q^{7} +2.85157i q^{8} +(-0.694733 + 1.20331i) q^{9} +(0.227498 - 1.97227i) q^{10} +(1.56914 + 2.71784i) q^{11} +1.53770i q^{12} +2.02549 q^{14} +(0.325171 - 2.81903i) q^{15} +(0.0542440 + 0.0939534i) q^{16} +(1.49323 + 0.862115i) q^{17} +1.23367i q^{18} +(-2.13503 + 3.69799i) q^{19} +(1.07690 + 2.48618i) q^{20} +2.89510 q^{21} +(2.41310 + 1.39321i) q^{22} +(7.47747 - 4.31712i) q^{23} +(1.80942 + 3.13400i) q^{24} +(-1.44852 - 4.78558i) q^{25} +5.57053i q^{27} +(-2.39384 + 1.38208i) q^{28} +(-3.97125 - 6.87840i) q^{29} +(-1.00144 - 2.31197i) q^{30} +4.17039 q^{31} +(-4.85565 - 2.80341i) q^{32} +(3.44912 + 1.99135i) q^{33} +1.53090 q^{34} +(4.68084 - 2.02753i) q^{35} +(-0.841792 - 1.45803i) q^{36} +(-7.62481 + 4.40219i) q^{37} +3.79129i q^{38} +(5.12034 + 3.79991i) q^{40} +(-1.47350 - 2.55217i) q^{41} +(2.22611 - 1.28524i) q^{42} +(0.133162 + 0.0768812i) q^{43} -3.80259 q^{44} +(1.23492 + 2.85098i) q^{45} +(3.83307 - 6.63907i) q^{46} -6.54786i q^{47} +(0.119233 + 0.0688394i) q^{48} +(-0.897887 - 1.55519i) q^{49} +(-3.23830 - 3.03669i) q^{50} +2.18817 q^{51} -1.93126i q^{53} +(2.47297 + 4.28331i) q^{54} +(6.97121 + 0.804117i) q^{55} +(-3.25261 + 5.63369i) q^{56} +5.41901i q^{57} +(-6.10717 - 3.52598i) q^{58} +(2.75557 - 4.77279i) q^{59} +(2.76113 + 2.04909i) q^{60} +(4.95026 - 8.57410i) q^{61} +(3.20671 - 1.85139i) q^{62} +(-2.74509 + 1.58488i) q^{63} -5.19513 q^{64} +3.53615 q^{66} +(5.59042 - 3.22763i) q^{67} +(-1.80931 + 1.04460i) q^{68} +(5.47872 - 9.48942i) q^{69} +(2.69911 - 3.63702i) q^{70} +(2.37216 - 4.10870i) q^{71} +(-3.43133 - 1.98108i) q^{72} +13.1891i q^{73} +(-3.90860 + 6.76989i) q^{74} +(-4.62860 - 4.34044i) q^{75} +(-2.58697 - 4.48076i) q^{76} +7.15931i q^{77} -13.4510 q^{79} +(0.240989 + 0.0277977i) q^{80} +(1.45049 + 2.51233i) q^{81} +(-2.26601 - 1.30828i) q^{82} +6.32511i q^{83} +(-1.75396 + 3.03795i) q^{84} +(3.53786 - 1.53244i) q^{85} +0.136522 q^{86} +(-8.72916 - 5.03978i) q^{87} +(-7.75011 + 4.47453i) q^{88} +(7.86866 + 13.6289i) q^{89} +(2.21521 + 1.64396i) q^{90} +10.4619i q^{92} +(4.58344 - 2.64625i) q^{93} +(-2.90684 - 5.03480i) q^{94} +(3.79511 + 8.76154i) q^{95} -7.11543 q^{96} +(10.4629 + 6.04075i) q^{97} +(-1.38081 - 0.797212i) q^{98} -4.36055 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 16 q^{4} - 16 q^{6} + 18 q^{9} - 13 q^{10} - 22 q^{11} - 8 q^{14} - 8 q^{15} + 12 q^{16} + 28 q^{19} + 10 q^{20} + 52 q^{21} + 34 q^{24} - 16 q^{25} - 20 q^{29} - 31 q^{30} + 64 q^{31} - 36 q^{34}+ \cdots - 152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.768923 0.443938i 0.543711 0.313912i −0.202871 0.979206i \(-0.565027\pi\)
0.746581 + 0.665294i \(0.231694\pi\)
\(3\) 1.09905 0.634534i 0.634534 0.366348i −0.147972 0.988992i \(-0.547275\pi\)
0.782506 + 0.622643i \(0.213941\pi\)
\(4\) −0.605838 + 1.04934i −0.302919 + 0.524671i
\(5\) 1.33257 1.79562i 0.595943 0.803027i
\(6\) 0.563388 0.975816i 0.230002 0.398375i
\(7\) 1.97564 + 1.14064i 0.746723 + 0.431121i 0.824509 0.565849i \(-0.191452\pi\)
−0.0777855 + 0.996970i \(0.524785\pi\)
\(8\) 2.85157i 1.00818i
\(9\) −0.694733 + 1.20331i −0.231578 + 0.401104i
\(10\) 0.227498 1.97227i 0.0719413 0.623688i
\(11\) 1.56914 + 2.71784i 0.473115 + 0.819459i 0.999526 0.0307708i \(-0.00979619\pi\)
−0.526412 + 0.850230i \(0.676463\pi\)
\(12\) 1.53770i 0.443896i
\(13\) 0 0
\(14\) 2.02549 0.541335
\(15\) 0.325171 2.81903i 0.0839587 0.727871i
\(16\) 0.0542440 + 0.0939534i 0.0135610 + 0.0234883i
\(17\) 1.49323 + 0.862115i 0.362161 + 0.209094i 0.670028 0.742336i \(-0.266282\pi\)
−0.307867 + 0.951429i \(0.599615\pi\)
\(18\) 1.23367i 0.290780i
\(19\) −2.13503 + 3.69799i −0.489810 + 0.848376i −0.999931 0.0117264i \(-0.996267\pi\)
0.510121 + 0.860103i \(0.329601\pi\)
\(20\) 1.07690 + 2.48618i 0.240802 + 0.555926i
\(21\) 2.89510 0.631762
\(22\) 2.41310 + 1.39321i 0.514475 + 0.297033i
\(23\) 7.47747 4.31712i 1.55916 0.900182i 0.561823 0.827257i \(-0.310100\pi\)
0.997337 0.0729246i \(-0.0232333\pi\)
\(24\) 1.80942 + 3.13400i 0.369346 + 0.639726i
\(25\) −1.44852 4.78558i −0.289704 0.957116i
\(26\) 0 0
\(27\) 5.57053i 1.07205i
\(28\) −2.39384 + 1.38208i −0.452393 + 0.261189i
\(29\) −3.97125 6.87840i −0.737442 1.27729i −0.953643 0.300939i \(-0.902700\pi\)
0.216201 0.976349i \(-0.430633\pi\)
\(30\) −1.00144 2.31197i −0.182838 0.422107i
\(31\) 4.17039 0.749024 0.374512 0.927222i \(-0.377810\pi\)
0.374512 + 0.927222i \(0.377810\pi\)
\(32\) −4.85565 2.80341i −0.858365 0.495577i
\(33\) 3.44912 + 1.99135i 0.600415 + 0.346650i
\(34\) 1.53090 0.262548
\(35\) 4.68084 2.02753i 0.791206 0.342715i
\(36\) −0.841792 1.45803i −0.140299 0.243004i
\(37\) −7.62481 + 4.40219i −1.25351 + 0.723715i −0.971805 0.235786i \(-0.924234\pi\)
−0.281706 + 0.959501i \(0.590900\pi\)
\(38\) 3.79129i 0.615028i
\(39\) 0 0
\(40\) 5.12034 + 3.79991i 0.809597 + 0.600819i
\(41\) −1.47350 2.55217i −0.230122 0.398583i 0.727722 0.685872i \(-0.240579\pi\)
−0.957844 + 0.287290i \(0.907246\pi\)
\(42\) 2.22611 1.28524i 0.343496 0.198317i
\(43\) 0.133162 + 0.0768812i 0.0203070 + 0.0117243i 0.510119 0.860104i \(-0.329601\pi\)
−0.489812 + 0.871828i \(0.662935\pi\)
\(44\) −3.80259 −0.573262
\(45\) 1.23492 + 2.85098i 0.184090 + 0.424998i
\(46\) 3.83307 6.63907i 0.565155 0.978877i
\(47\) 6.54786i 0.955103i −0.878604 0.477552i \(-0.841524\pi\)
0.878604 0.477552i \(-0.158476\pi\)
\(48\) 0.119233 + 0.0688394i 0.0172098 + 0.00993611i
\(49\) −0.897887 1.55519i −0.128270 0.222169i
\(50\) −3.23830 3.03669i −0.457965 0.429453i
\(51\) 2.18817 0.306404
\(52\) 0 0
\(53\) 1.93126i 0.265279i −0.991164 0.132640i \(-0.957655\pi\)
0.991164 0.132640i \(-0.0423453\pi\)
\(54\) 2.47297 + 4.28331i 0.336529 + 0.582885i
\(55\) 6.97121 + 0.804117i 0.939997 + 0.108427i
\(56\) −3.25261 + 5.63369i −0.434648 + 0.752833i
\(57\) 5.41901i 0.717765i
\(58\) −6.10717 3.52598i −0.801911 0.462983i
\(59\) 2.75557 4.77279i 0.358745 0.621365i −0.629006 0.777400i \(-0.716538\pi\)
0.987751 + 0.156035i \(0.0498714\pi\)
\(60\) 2.76113 + 2.04909i 0.356460 + 0.264537i
\(61\) 4.95026 8.57410i 0.633816 1.09780i −0.352949 0.935642i \(-0.614821\pi\)
0.986765 0.162158i \(-0.0518455\pi\)
\(62\) 3.20671 1.85139i 0.407252 0.235127i
\(63\) −2.74509 + 1.58488i −0.345849 + 0.199676i
\(64\) −5.19513 −0.649392
\(65\) 0 0
\(66\) 3.53615 0.435270
\(67\) 5.59042 3.22763i 0.682978 0.394318i −0.117998 0.993014i \(-0.537648\pi\)
0.800976 + 0.598696i \(0.204314\pi\)
\(68\) −1.80931 + 1.04460i −0.219411 + 0.126677i
\(69\) 5.47872 9.48942i 0.659560 1.14239i
\(70\) 2.69911 3.63702i 0.322605 0.434707i
\(71\) 2.37216 4.10870i 0.281524 0.487613i −0.690236 0.723584i \(-0.742494\pi\)
0.971760 + 0.235970i \(0.0758268\pi\)
\(72\) −3.43133 1.98108i −0.404386 0.233473i
\(73\) 13.1891i 1.54367i 0.635824 + 0.771834i \(0.280660\pi\)
−0.635824 + 0.771834i \(0.719340\pi\)
\(74\) −3.90860 + 6.76989i −0.454365 + 0.786983i
\(75\) −4.62860 4.34044i −0.534465 0.501190i
\(76\) −2.58697 4.48076i −0.296746 0.513979i
\(77\) 7.15931i 0.815879i
\(78\) 0 0
\(79\) −13.4510 −1.51335 −0.756676 0.653791i \(-0.773178\pi\)
−0.756676 + 0.653791i \(0.773178\pi\)
\(80\) 0.240989 + 0.0277977i 0.0269434 + 0.00310787i
\(81\) 1.45049 + 2.51233i 0.161166 + 0.279147i
\(82\) −2.26601 1.30828i −0.250239 0.144476i
\(83\) 6.32511i 0.694271i 0.937815 + 0.347136i \(0.112846\pi\)
−0.937815 + 0.347136i \(0.887154\pi\)
\(84\) −1.75396 + 3.03795i −0.191373 + 0.331467i
\(85\) 3.53786 1.53244i 0.383735 0.166217i
\(86\) 0.136522 0.0147215
\(87\) −8.72916 5.03978i −0.935865 0.540322i
\(88\) −7.75011 + 4.47453i −0.826164 + 0.476986i
\(89\) 7.86866 + 13.6289i 0.834077 + 1.44466i 0.894780 + 0.446507i \(0.147332\pi\)
−0.0607034 + 0.998156i \(0.519334\pi\)
\(90\) 2.21521 + 1.64396i 0.233504 + 0.173288i
\(91\) 0 0
\(92\) 10.4619i 1.09073i
\(93\) 4.58344 2.64625i 0.475281 0.274404i
\(94\) −2.90684 5.03480i −0.299818 0.519300i
\(95\) 3.79511 + 8.76154i 0.389370 + 0.898915i
\(96\) −7.11543 −0.726216
\(97\) 10.4629 + 6.04075i 1.06235 + 0.613345i 0.926080 0.377327i \(-0.123157\pi\)
0.136265 + 0.990672i \(0.456490\pi\)
\(98\) −1.38081 0.797212i −0.139483 0.0805306i
\(99\) −4.36055 −0.438251
\(100\) 5.89928 + 1.37930i 0.589928 + 0.137930i
\(101\) −1.89550 3.28310i −0.188609 0.326681i 0.756178 0.654366i \(-0.227065\pi\)
−0.944787 + 0.327686i \(0.893731\pi\)
\(102\) 1.68253 0.971410i 0.166595 0.0961839i
\(103\) 14.6259i 1.44113i −0.693388 0.720564i \(-0.743883\pi\)
0.693388 0.720564i \(-0.256117\pi\)
\(104\) 0 0
\(105\) 3.85792 5.19850i 0.376494 0.507322i
\(106\) −0.857360 1.48499i −0.0832742 0.144235i
\(107\) −3.62951 + 2.09550i −0.350878 + 0.202580i −0.665072 0.746779i \(-0.731599\pi\)
0.314194 + 0.949359i \(0.398266\pi\)
\(108\) −5.84540 3.37484i −0.562473 0.324744i
\(109\) −16.1460 −1.54650 −0.773252 0.634099i \(-0.781371\pi\)
−0.773252 + 0.634099i \(0.781371\pi\)
\(110\) 5.71730 2.47648i 0.545123 0.236123i
\(111\) −5.58667 + 9.67640i −0.530264 + 0.918444i
\(112\) 0.247491i 0.0233857i
\(113\) −3.04784 1.75967i −0.286717 0.165536i 0.349743 0.936846i \(-0.386269\pi\)
−0.636460 + 0.771309i \(0.719602\pi\)
\(114\) 2.40570 + 4.16680i 0.225315 + 0.390256i
\(115\) 2.21233 19.1796i 0.206301 1.78850i
\(116\) 9.62373 0.893541
\(117\) 0 0
\(118\) 4.89322i 0.450457i
\(119\) 1.96672 + 3.40647i 0.180289 + 0.312270i
\(120\) 8.03866 + 0.927247i 0.733826 + 0.0846456i
\(121\) 0.575569 0.996915i 0.0523245 0.0906286i
\(122\) 8.79043i 0.795848i
\(123\) −3.23888 1.86997i −0.292040 0.168610i
\(124\) −2.52658 + 4.37616i −0.226894 + 0.392991i
\(125\) −10.5233 3.77613i −0.941237 0.337747i
\(126\) −1.40718 + 2.43730i −0.125361 + 0.217132i
\(127\) −2.09788 + 1.21121i −0.186157 + 0.107478i −0.590182 0.807270i \(-0.700944\pi\)
0.404025 + 0.914748i \(0.367611\pi\)
\(128\) 5.71663 3.30050i 0.505284 0.291726i
\(129\) 0.195135 0.0171807
\(130\) 0 0
\(131\) −5.00647 −0.437418 −0.218709 0.975790i \(-0.570184\pi\)
−0.218709 + 0.975790i \(0.570184\pi\)
\(132\) −4.17922 + 2.41287i −0.363754 + 0.210014i
\(133\) −8.43613 + 4.87060i −0.731505 + 0.422335i
\(134\) 2.86573 4.96360i 0.247562 0.428790i
\(135\) 10.0026 + 7.42312i 0.860884 + 0.638880i
\(136\) −2.45838 + 4.25804i −0.210805 + 0.365124i
\(137\) −11.0985 6.40771i −0.948207 0.547447i −0.0556833 0.998448i \(-0.517734\pi\)
−0.892523 + 0.451001i \(0.851067\pi\)
\(138\) 9.72885i 0.828175i
\(139\) −7.76443 + 13.4484i −0.658571 + 1.14068i 0.322415 + 0.946598i \(0.395505\pi\)
−0.980986 + 0.194079i \(0.937828\pi\)
\(140\) −0.708257 + 6.14016i −0.0598586 + 0.518938i
\(141\) −4.15484 7.19639i −0.349901 0.606045i
\(142\) 4.21237i 0.353494i
\(143\) 0 0
\(144\) −0.150740 −0.0125617
\(145\) −17.6430 2.03509i −1.46517 0.169005i
\(146\) 5.85515 + 10.1414i 0.484575 + 0.839309i
\(147\) −1.97364 1.13948i −0.162783 0.0939827i
\(148\) 10.6681i 0.876908i
\(149\) −0.0206906 + 0.0358372i −0.00169504 + 0.00293590i −0.866872 0.498531i \(-0.833873\pi\)
0.865177 + 0.501467i \(0.167206\pi\)
\(150\) −5.48592 1.28265i −0.447924 0.104728i
\(151\) −6.01321 −0.489348 −0.244674 0.969605i \(-0.578681\pi\)
−0.244674 + 0.969605i \(0.578681\pi\)
\(152\) −10.5451 6.08820i −0.855318 0.493818i
\(153\) −2.07479 + 1.19788i −0.167737 + 0.0968428i
\(154\) 3.17829 + 5.50496i 0.256114 + 0.443602i
\(155\) 5.55733 7.48844i 0.446375 0.601486i
\(156\) 0 0
\(157\) 22.7846i 1.81841i −0.416348 0.909205i \(-0.636690\pi\)
0.416348 0.909205i \(-0.363310\pi\)
\(158\) −10.3428 + 5.97139i −0.822825 + 0.475058i
\(159\) −1.22545 2.12254i −0.0971845 0.168329i
\(160\) −11.5043 + 4.98317i −0.909498 + 0.393954i
\(161\) 19.6971 1.55235
\(162\) 2.23063 + 1.28786i 0.175255 + 0.101184i
\(163\) 1.31745 + 0.760631i 0.103191 + 0.0595772i 0.550707 0.834698i \(-0.314358\pi\)
−0.447516 + 0.894276i \(0.647691\pi\)
\(164\) 3.57081 0.278833
\(165\) 8.17191 3.53971i 0.636182 0.275566i
\(166\) 2.80796 + 4.86353i 0.217940 + 0.377483i
\(167\) 0.0426069 0.0245991i 0.00329702 0.00190353i −0.498351 0.866976i \(-0.666061\pi\)
0.501648 + 0.865072i \(0.332727\pi\)
\(168\) 8.25557i 0.636931i
\(169\) 0 0
\(170\) 2.04003 2.74892i 0.156463 0.210833i
\(171\) −2.96656 5.13823i −0.226858 0.392930i
\(172\) −0.161350 + 0.0931552i −0.0123028 + 0.00710302i
\(173\) 7.79826 + 4.50232i 0.592890 + 0.342305i 0.766240 0.642555i \(-0.222126\pi\)
−0.173349 + 0.984860i \(0.555459\pi\)
\(174\) −8.94941 −0.678453
\(175\) 2.59686 11.1068i 0.196304 0.839598i
\(176\) −0.170233 + 0.294853i −0.0128318 + 0.0222254i
\(177\) 6.99402i 0.525703i
\(178\) 12.1008 + 6.98640i 0.906993 + 0.523653i
\(179\) 11.4302 + 19.7977i 0.854332 + 1.47975i 0.877263 + 0.480010i \(0.159367\pi\)
−0.0229307 + 0.999737i \(0.507300\pi\)
\(180\) −3.73981 0.431381i −0.278749 0.0321532i
\(181\) −17.7138 −1.31666 −0.658328 0.752731i \(-0.728736\pi\)
−0.658328 + 0.752731i \(0.728736\pi\)
\(182\) 0 0
\(183\) 12.5644i 0.928789i
\(184\) 12.3106 + 21.3225i 0.907547 + 1.57192i
\(185\) −2.25593 + 19.5575i −0.165859 + 1.43790i
\(186\) 2.34954 4.06953i 0.172277 0.298392i
\(187\) 5.41113i 0.395701i
\(188\) 6.87094 + 3.96694i 0.501115 + 0.289319i
\(189\) −6.35396 + 11.0054i −0.462183 + 0.800524i
\(190\) 6.80772 + 5.05216i 0.493884 + 0.366522i
\(191\) −4.86758 + 8.43090i −0.352206 + 0.610038i −0.986636 0.162942i \(-0.947902\pi\)
0.634430 + 0.772980i \(0.281235\pi\)
\(192\) −5.70969 + 3.29649i −0.412061 + 0.237904i
\(193\) 8.66107 5.00047i 0.623437 0.359942i −0.154769 0.987951i \(-0.549463\pi\)
0.778206 + 0.628009i \(0.216130\pi\)
\(194\) 10.7269 0.770145
\(195\) 0 0
\(196\) 2.17590 0.155421
\(197\) 5.19615 3.00000i 0.370210 0.213741i −0.303340 0.952882i \(-0.598102\pi\)
0.673550 + 0.739141i \(0.264768\pi\)
\(198\) −3.35293 + 1.93581i −0.238282 + 0.137572i
\(199\) 2.90642 5.03407i 0.206031 0.356856i −0.744430 0.667701i \(-0.767279\pi\)
0.950461 + 0.310845i \(0.100612\pi\)
\(200\) 13.6464 4.13055i 0.964948 0.292074i
\(201\) 4.09608 7.09462i 0.288915 0.500416i
\(202\) −2.91498 1.68297i −0.205098 0.118413i
\(203\) 18.1190i 1.27171i
\(204\) −1.32567 + 2.29614i −0.0928158 + 0.160762i
\(205\) −6.54628 0.755103i −0.457212 0.0527387i
\(206\) −6.49297 11.2462i −0.452387 0.783557i
\(207\) 11.9970i 0.833848i
\(208\) 0 0
\(209\) −13.4007 −0.926946
\(210\) 0.658630 5.70992i 0.0454498 0.394022i
\(211\) −4.35631 7.54535i −0.299901 0.519443i 0.676212 0.736707i \(-0.263620\pi\)
−0.976113 + 0.217264i \(0.930287\pi\)
\(212\) 2.02655 + 1.17003i 0.139184 + 0.0803581i
\(213\) 6.02087i 0.412543i
\(214\) −1.86054 + 3.22256i −0.127184 + 0.220290i
\(215\) 0.315498 0.136659i 0.0215168 0.00932010i
\(216\) −15.8848 −1.08082
\(217\) 8.23920 + 4.75690i 0.559313 + 0.322920i
\(218\) −12.4150 + 7.16781i −0.840850 + 0.485465i
\(219\) 8.36894 + 14.4954i 0.565520 + 0.979510i
\(220\) −5.06722 + 6.82802i −0.341632 + 0.460345i
\(221\) 0 0
\(222\) 9.92055i 0.665824i
\(223\) 0.0393366 0.0227110i 0.00263417 0.00152084i −0.498682 0.866785i \(-0.666183\pi\)
0.501317 + 0.865264i \(0.332849\pi\)
\(224\) −6.39535 11.0771i −0.427307 0.740118i
\(225\) 6.76489 + 1.58168i 0.450992 + 0.105445i
\(226\) −3.12474 −0.207855
\(227\) −5.56211 3.21129i −0.369170 0.213141i 0.303926 0.952696i \(-0.401703\pi\)
−0.673096 + 0.739555i \(0.735036\pi\)
\(228\) −5.68639 3.28304i −0.376591 0.217425i
\(229\) 7.27972 0.481057 0.240529 0.970642i \(-0.422679\pi\)
0.240529 + 0.970642i \(0.422679\pi\)
\(230\) −6.81343 15.7298i −0.449264 1.03719i
\(231\) 4.54283 + 7.86840i 0.298896 + 0.517703i
\(232\) 19.6143 11.3243i 1.28774 0.743476i
\(233\) 4.56107i 0.298806i 0.988776 + 0.149403i \(0.0477351\pi\)
−0.988776 + 0.149403i \(0.952265\pi\)
\(234\) 0 0
\(235\) −11.7575 8.72547i −0.766973 0.569187i
\(236\) 3.33886 + 5.78308i 0.217341 + 0.376447i
\(237\) −14.7832 + 8.53509i −0.960273 + 0.554414i
\(238\) 3.02452 + 1.74621i 0.196050 + 0.113190i
\(239\) −16.9338 −1.09536 −0.547680 0.836688i \(-0.684489\pi\)
−0.547680 + 0.836688i \(0.684489\pi\)
\(240\) 0.282496 0.122365i 0.0182350 0.00789861i
\(241\) −3.06529 + 5.30924i −0.197453 + 0.341999i −0.947702 0.319157i \(-0.896600\pi\)
0.750249 + 0.661155i \(0.229934\pi\)
\(242\) 1.02207i 0.0657010i
\(243\) −11.2844 6.51502i −0.723891 0.417939i
\(244\) 5.99811 + 10.3890i 0.383990 + 0.665090i
\(245\) −3.98902 0.460127i −0.254849 0.0293965i
\(246\) −3.32060 −0.211714
\(247\) 0 0
\(248\) 11.8922i 0.755152i
\(249\) 4.01350 + 6.95158i 0.254345 + 0.440539i
\(250\) −9.76801 + 1.76816i −0.617783 + 0.111828i
\(251\) −5.79213 + 10.0323i −0.365596 + 0.633231i −0.988872 0.148772i \(-0.952468\pi\)
0.623276 + 0.782002i \(0.285801\pi\)
\(252\) 3.84072i 0.241943i
\(253\) 23.4665 + 13.5484i 1.47532 + 0.851779i
\(254\) −1.07541 + 1.86266i −0.0674769 + 0.116873i
\(255\) 2.91588 3.92912i 0.182600 0.246051i
\(256\) 8.12557 14.0739i 0.507848 0.879618i
\(257\) −10.7967 + 6.23346i −0.673477 + 0.388832i −0.797393 0.603460i \(-0.793788\pi\)
0.123916 + 0.992293i \(0.460455\pi\)
\(258\) 0.150044 0.0866279i 0.00934132 0.00539322i
\(259\) −20.0852 −1.24803
\(260\) 0 0
\(261\) 11.0358 0.683101
\(262\) −3.84959 + 2.22256i −0.237829 + 0.137310i
\(263\) 24.5335 14.1644i 1.51280 0.873416i 0.512913 0.858441i \(-0.328566\pi\)
0.999888 0.0149750i \(-0.00476687\pi\)
\(264\) −5.67848 + 9.83541i −0.349486 + 0.605328i
\(265\) −3.46781 2.57354i −0.213026 0.158091i
\(266\) −4.32449 + 7.49024i −0.265152 + 0.459256i
\(267\) 17.2960 + 9.98587i 1.05850 + 0.611125i
\(268\) 7.82168i 0.477785i
\(269\) −6.09431 + 10.5557i −0.371577 + 0.643590i −0.989808 0.142406i \(-0.954516\pi\)
0.618231 + 0.785996i \(0.287849\pi\)
\(270\) 10.9866 + 1.26729i 0.668624 + 0.0771247i
\(271\) −8.82735 15.2894i −0.536224 0.928766i −0.999103 0.0423452i \(-0.986517\pi\)
0.462880 0.886421i \(-0.346816\pi\)
\(272\) 0.187058i 0.0113421i
\(273\) 0 0
\(274\) −11.3785 −0.687400
\(275\) 10.7335 11.4461i 0.647255 0.690226i
\(276\) 6.63844 + 11.4981i 0.399587 + 0.692105i
\(277\) 10.1542 + 5.86252i 0.610105 + 0.352245i 0.773007 0.634398i \(-0.218752\pi\)
−0.162901 + 0.986642i \(0.552085\pi\)
\(278\) 13.7877i 0.826932i
\(279\) −2.89731 + 5.01828i −0.173457 + 0.300437i
\(280\) 5.78164 + 13.3477i 0.345519 + 0.797680i
\(281\) 20.2642 1.20886 0.604430 0.796659i \(-0.293401\pi\)
0.604430 + 0.796659i \(0.293401\pi\)
\(282\) −6.38950 3.68898i −0.380489 0.219676i
\(283\) 7.13891 4.12165i 0.424364 0.245007i −0.272579 0.962133i \(-0.587877\pi\)
0.696943 + 0.717127i \(0.254543\pi\)
\(284\) 2.87429 + 4.97842i 0.170558 + 0.295415i
\(285\) 9.73049 + 7.22120i 0.576384 + 0.427747i
\(286\) 0 0
\(287\) 6.72292i 0.396841i
\(288\) 6.74675 3.89524i 0.397556 0.229529i
\(289\) −7.01351 12.1478i −0.412560 0.714574i
\(290\) −14.4695 + 6.26756i −0.849681 + 0.368044i
\(291\) 15.3322 0.898792
\(292\) −13.8399 7.99046i −0.809918 0.467607i
\(293\) −18.4650 10.6607i −1.07873 0.622808i −0.148180 0.988960i \(-0.547341\pi\)
−0.930555 + 0.366153i \(0.880675\pi\)
\(294\) −2.02343 −0.118009
\(295\) −4.89814 11.3080i −0.285181 0.658380i
\(296\) −12.5531 21.7427i −0.729637 1.26377i
\(297\) −15.1398 + 8.74097i −0.878501 + 0.507203i
\(298\) 0.0367414i 0.00212837i
\(299\) 0 0
\(300\) 7.35879 2.22739i 0.424860 0.128598i
\(301\) 0.175387 + 0.303780i 0.0101092 + 0.0175096i
\(302\) −4.62369 + 2.66949i −0.266064 + 0.153612i
\(303\) −4.16648 2.40552i −0.239358 0.138193i
\(304\) −0.463251 −0.0265693
\(305\) −8.79928 20.3144i −0.503845 1.16320i
\(306\) −1.06357 + 1.84216i −0.0608002 + 0.105309i
\(307\) 8.38560i 0.478591i 0.970947 + 0.239296i \(0.0769165\pi\)
−0.970947 + 0.239296i \(0.923083\pi\)
\(308\) −7.51257 4.33738i −0.428068 0.247145i
\(309\) −9.28061 16.0745i −0.527955 0.914445i
\(310\) 0.948757 8.22514i 0.0538858 0.467157i
\(311\) −2.82308 −0.160082 −0.0800412 0.996792i \(-0.525505\pi\)
−0.0800412 + 0.996792i \(0.525505\pi\)
\(312\) 0 0
\(313\) 19.1965i 1.08505i 0.840040 + 0.542525i \(0.182532\pi\)
−0.840040 + 0.542525i \(0.817468\pi\)
\(314\) −10.1150 17.5196i −0.570820 0.988689i
\(315\) −0.812180 + 7.04111i −0.0457612 + 0.396721i
\(316\) 8.14910 14.1147i 0.458423 0.794012i
\(317\) 5.76453i 0.323768i 0.986810 + 0.161884i \(0.0517571\pi\)
−0.986810 + 0.161884i \(0.948243\pi\)
\(318\) −1.88455 1.08805i −0.105681 0.0610147i
\(319\) 12.4629 21.5864i 0.697790 1.20861i
\(320\) −6.92288 + 9.32850i −0.387001 + 0.521479i
\(321\) −2.65933 + 4.60610i −0.148430 + 0.257087i
\(322\) 15.1456 8.74429i 0.844029 0.487300i
\(323\) −6.37618 + 3.68129i −0.354780 + 0.204832i
\(324\) −3.51506 −0.195281
\(325\) 0 0
\(326\) 1.35069 0.0748079
\(327\) −17.7451 + 10.2452i −0.981309 + 0.566559i
\(328\) 7.27771 4.20179i 0.401844 0.232005i
\(329\) 7.46874 12.9362i 0.411765 0.713198i
\(330\) 4.71216 6.34958i 0.259396 0.349533i
\(331\) 2.03004 3.51614i 0.111581 0.193264i −0.804827 0.593510i \(-0.797742\pi\)
0.916408 + 0.400245i \(0.131075\pi\)
\(332\) −6.63721 3.83199i −0.364264 0.210308i
\(333\) 12.2334i 0.670385i
\(334\) 0.0218409 0.0378296i 0.00119508 0.00206994i
\(335\) 1.65402 14.3393i 0.0903686 0.783441i
\(336\) 0.157042 + 0.272004i 0.00856732 + 0.0148390i
\(337\) 24.8339i 1.35279i −0.736539 0.676395i \(-0.763541\pi\)
0.736539 0.676395i \(-0.236459\pi\)
\(338\) 0 0
\(339\) −4.46629 −0.242576
\(340\) −0.535313 + 4.64084i −0.0290314 + 0.251685i
\(341\) 6.54394 + 11.3344i 0.354374 + 0.613794i
\(342\) −4.56211 2.63393i −0.246691 0.142427i
\(343\) 20.0656i 1.08344i
\(344\) −0.219232 + 0.379721i −0.0118202 + 0.0204732i
\(345\) −9.73864 22.4830i −0.524311 1.21045i
\(346\) 7.99501 0.429815
\(347\) 25.2532 + 14.5799i 1.35566 + 0.782692i 0.989036 0.147675i \(-0.0471791\pi\)
0.366627 + 0.930368i \(0.380512\pi\)
\(348\) 10.5769 6.10659i 0.566982 0.327347i
\(349\) 3.64520 + 6.31367i 0.195123 + 0.337963i 0.946941 0.321408i \(-0.104156\pi\)
−0.751818 + 0.659371i \(0.770823\pi\)
\(350\) −2.93396 9.69315i −0.156827 0.518121i
\(351\) 0 0
\(352\) 17.5958i 0.937860i
\(353\) 12.0840 6.97671i 0.643167 0.371333i −0.142667 0.989771i \(-0.545568\pi\)
0.785833 + 0.618438i \(0.212234\pi\)
\(354\) −3.10491 5.37786i −0.165024 0.285830i
\(355\) −4.21661 9.73464i −0.223794 0.516661i
\(356\) −19.0685 −1.01063
\(357\) 4.32304 + 2.49591i 0.228799 + 0.132097i
\(358\) 17.5779 + 10.1486i 0.929019 + 0.536370i
\(359\) −16.2637 −0.858366 −0.429183 0.903218i \(-0.641198\pi\)
−0.429183 + 0.903218i \(0.641198\pi\)
\(360\) −8.12976 + 3.52145i −0.428476 + 0.185597i
\(361\) 0.383263 + 0.663832i 0.0201718 + 0.0349385i
\(362\) −13.6205 + 7.86382i −0.715880 + 0.413313i
\(363\) 1.46087i 0.0766759i
\(364\) 0 0
\(365\) 23.6827 + 17.5754i 1.23961 + 0.919939i
\(366\) −5.57783 9.66108i −0.291558 0.504993i
\(367\) 29.8328 17.2240i 1.55726 0.899085i 0.559743 0.828666i \(-0.310900\pi\)
0.997518 0.0704187i \(-0.0224335\pi\)
\(368\) 0.811216 + 0.468356i 0.0422876 + 0.0244147i
\(369\) 4.09475 0.213164
\(370\) 6.94768 + 16.0397i 0.361193 + 0.833865i
\(371\) 2.20287 3.81548i 0.114367 0.198090i
\(372\) 6.41280i 0.332488i
\(373\) 20.1073 + 11.6089i 1.04112 + 0.601088i 0.920149 0.391569i \(-0.128067\pi\)
0.120966 + 0.992657i \(0.461401\pi\)
\(374\) 2.40221 + 4.16075i 0.124215 + 0.215147i
\(375\) −13.9617 + 2.52729i −0.720980 + 0.130509i
\(376\) 18.6717 0.962918
\(377\) 0 0
\(378\) 11.2831i 0.580338i
\(379\) 6.13331 + 10.6232i 0.315047 + 0.545678i 0.979448 0.201699i \(-0.0646463\pi\)
−0.664400 + 0.747377i \(0.731313\pi\)
\(380\) −11.4931 1.32571i −0.589582 0.0680073i
\(381\) −1.53711 + 2.66235i −0.0787485 + 0.136396i
\(382\) 8.64361i 0.442246i
\(383\) −1.63100 0.941658i −0.0833401 0.0481165i 0.457751 0.889081i \(-0.348655\pi\)
−0.541091 + 0.840964i \(0.681989\pi\)
\(384\) 4.18856 7.25480i 0.213746 0.370220i
\(385\) 12.8554 + 9.54027i 0.655173 + 0.486217i
\(386\) 4.43980 7.68995i 0.225980 0.391408i
\(387\) −0.185024 + 0.106824i −0.00940532 + 0.00543016i
\(388\) −12.6776 + 7.31943i −0.643609 + 0.371588i
\(389\) 20.0438 1.01626 0.508131 0.861280i \(-0.330337\pi\)
0.508131 + 0.861280i \(0.330337\pi\)
\(390\) 0 0
\(391\) 14.8874 0.752889
\(392\) 4.43472 2.56039i 0.223987 0.129319i
\(393\) −5.50234 + 3.17678i −0.277556 + 0.160247i
\(394\) 2.66363 4.61353i 0.134191 0.232426i
\(395\) −17.9243 + 24.1528i −0.901871 + 1.21526i
\(396\) 2.64179 4.57571i 0.132755 0.229938i
\(397\) 17.8517 + 10.3067i 0.895954 + 0.517279i 0.875885 0.482520i \(-0.160278\pi\)
0.0200684 + 0.999799i \(0.493612\pi\)
\(398\) 5.16108i 0.258702i
\(399\) −6.18113 + 10.7060i −0.309443 + 0.535972i
\(400\) 0.371048 0.395682i 0.0185524 0.0197841i
\(401\) 17.9074 + 31.0166i 0.894254 + 1.54889i 0.834725 + 0.550667i \(0.185626\pi\)
0.0595288 + 0.998227i \(0.481040\pi\)
\(402\) 7.27362i 0.362775i
\(403\) 0 0
\(404\) 4.59346 0.228533
\(405\) 6.44407 + 0.743313i 0.320209 + 0.0369355i
\(406\) −8.04373 13.9321i −0.399204 0.691441i
\(407\) −23.9289 13.8153i −1.18611 0.684801i
\(408\) 6.23971i 0.308912i
\(409\) −0.110974 + 0.192213i −0.00548733 + 0.00950434i −0.868756 0.495240i \(-0.835080\pi\)
0.863269 + 0.504745i \(0.168413\pi\)
\(410\) −5.36881 + 2.32553i −0.265146 + 0.114850i
\(411\) −16.2636 −0.802226
\(412\) 15.3475 + 8.86090i 0.756119 + 0.436545i
\(413\) 10.8881 6.28623i 0.535767 0.309325i
\(414\) 5.32592 + 9.22476i 0.261755 + 0.453372i
\(415\) 11.3575 + 8.42865i 0.557518 + 0.413746i
\(416\) 0 0
\(417\) 19.7072i 0.965065i
\(418\) −10.3041 + 5.94908i −0.503991 + 0.290979i
\(419\) 0.340184 + 0.589217i 0.0166191 + 0.0287851i 0.874215 0.485538i \(-0.161376\pi\)
−0.857596 + 0.514324i \(0.828043\pi\)
\(420\) 3.11773 + 7.19772i 0.152130 + 0.351213i
\(421\) −2.01932 −0.0984155 −0.0492078 0.998789i \(-0.515670\pi\)
−0.0492078 + 0.998789i \(0.515670\pi\)
\(422\) −6.69933 3.86786i −0.326118 0.188285i
\(423\) 7.87912 + 4.54901i 0.383096 + 0.221181i
\(424\) 5.50712 0.267450
\(425\) 1.96276 8.39475i 0.0952077 0.407205i
\(426\) −2.67289 4.62958i −0.129502 0.224304i
\(427\) 19.5599 11.2929i 0.946570 0.546502i
\(428\) 5.07814i 0.245461i
\(429\) 0 0
\(430\) 0.181925 0.245142i 0.00877321 0.0118218i
\(431\) −3.42699 5.93571i −0.165072 0.285913i 0.771609 0.636097i \(-0.219452\pi\)
−0.936681 + 0.350184i \(0.886119\pi\)
\(432\) −0.523370 + 0.302168i −0.0251807 + 0.0145381i
\(433\) −0.451142 0.260467i −0.0216805 0.0125172i 0.489121 0.872216i \(-0.337318\pi\)
−0.510801 + 0.859699i \(0.670651\pi\)
\(434\) 8.44708 0.405473
\(435\) −20.6818 + 8.95842i −0.991615 + 0.429523i
\(436\) 9.78184 16.9426i 0.468465 0.811406i
\(437\) 36.8688i 1.76367i
\(438\) 12.8701 + 7.43058i 0.614959 + 0.355047i
\(439\) −13.7945 23.8927i −0.658374 1.14034i −0.981036 0.193823i \(-0.937911\pi\)
0.322662 0.946514i \(-0.395422\pi\)
\(440\) −2.29300 + 19.8789i −0.109314 + 0.947688i
\(441\) 2.49517 0.118818
\(442\) 0 0
\(443\) 7.20684i 0.342408i 0.985236 + 0.171204i \(0.0547656\pi\)
−0.985236 + 0.171204i \(0.945234\pi\)
\(444\) −6.76924 11.7247i −0.321254 0.556428i
\(445\) 34.9579 + 4.03234i 1.65717 + 0.191151i
\(446\) 0.0201646 0.0349260i 0.000954819 0.00165380i
\(447\) 0.0525156i 0.00248390i
\(448\) −10.2637 5.92577i −0.484916 0.279966i
\(449\) 0.0678172 0.117463i 0.00320049 0.00554341i −0.864421 0.502769i \(-0.832315\pi\)
0.867621 + 0.497226i \(0.165648\pi\)
\(450\) 5.90385 1.78700i 0.278310 0.0842399i
\(451\) 4.62427 8.00946i 0.217748 0.377151i
\(452\) 3.69300 2.13215i 0.173704 0.100288i
\(453\) −6.60879 + 3.81559i −0.310508 + 0.179272i
\(454\) −5.70245 −0.267629
\(455\) 0 0
\(456\) −15.4527 −0.723638
\(457\) 0.266745 0.154005i 0.0124778 0.00720406i −0.493748 0.869605i \(-0.664374\pi\)
0.506226 + 0.862401i \(0.331040\pi\)
\(458\) 5.59754 3.23174i 0.261556 0.151009i
\(459\) −4.80244 + 8.31807i −0.224159 + 0.388254i
\(460\) 18.7856 + 13.9412i 0.875884 + 0.650012i
\(461\) −14.3360 + 24.8307i −0.667696 + 1.15648i 0.310851 + 0.950459i \(0.399386\pi\)
−0.978547 + 0.206024i \(0.933947\pi\)
\(462\) 6.98617 + 4.03347i 0.325026 + 0.187654i
\(463\) 16.1023i 0.748339i 0.927360 + 0.374169i \(0.122072\pi\)
−0.927360 + 0.374169i \(0.877928\pi\)
\(464\) 0.430833 0.746225i 0.0200009 0.0346426i
\(465\) 1.35609 11.7564i 0.0628870 0.545192i
\(466\) 2.02483 + 3.50711i 0.0937986 + 0.162464i
\(467\) 3.47589i 0.160845i 0.996761 + 0.0804224i \(0.0256269\pi\)
−0.996761 + 0.0804224i \(0.974373\pi\)
\(468\) 0 0
\(469\) 14.7262 0.679994
\(470\) −12.9142 1.48963i −0.595686 0.0687114i
\(471\) −14.4576 25.0413i −0.666172 1.15384i
\(472\) 13.6100 + 7.85771i 0.626449 + 0.361681i
\(473\) 0.482551i 0.0221877i
\(474\) −7.57810 + 13.1257i −0.348074 + 0.602881i
\(475\) 20.7897 + 4.86078i 0.953895 + 0.223028i
\(476\) −4.76606 −0.218452
\(477\) 2.32391 + 1.34171i 0.106405 + 0.0614327i
\(478\) −13.0208 + 7.51758i −0.595559 + 0.343846i
\(479\) −7.22882 12.5207i −0.330293 0.572085i 0.652276 0.757982i \(-0.273814\pi\)
−0.982569 + 0.185897i \(0.940481\pi\)
\(480\) −9.48181 + 12.7766i −0.432783 + 0.583171i
\(481\) 0 0
\(482\) 5.44320i 0.247931i
\(483\) 21.6480 12.4985i 0.985018 0.568701i
\(484\) 0.697403 + 1.20794i 0.0317002 + 0.0549063i
\(485\) 24.7894 10.7377i 1.12563 0.487573i
\(486\) −11.5691 −0.524783
\(487\) −2.52255 1.45639i −0.114307 0.0659954i 0.441756 0.897135i \(-0.354356\pi\)
−0.556064 + 0.831140i \(0.687689\pi\)
\(488\) 24.4496 + 14.1160i 1.10678 + 0.639002i
\(489\) 1.93058 0.0873040
\(490\) −3.27152 + 1.41708i −0.147792 + 0.0640170i
\(491\) 3.80382 + 6.58841i 0.171664 + 0.297331i 0.939002 0.343912i \(-0.111752\pi\)
−0.767338 + 0.641243i \(0.778419\pi\)
\(492\) 3.92448 2.26580i 0.176929 0.102150i
\(493\) 13.6947i 0.616778i
\(494\) 0 0
\(495\) −5.81073 + 7.82990i −0.261173 + 0.351928i
\(496\) 0.226219 + 0.391822i 0.0101575 + 0.0175933i
\(497\) 9.37309 5.41156i 0.420441 0.242742i
\(498\) 6.17214 + 3.56349i 0.276580 + 0.159684i
\(499\) 4.07246 0.182309 0.0911543 0.995837i \(-0.470944\pi\)
0.0911543 + 0.995837i \(0.470944\pi\)
\(500\) 10.3379 8.75487i 0.462325 0.391530i
\(501\) 0.0312179 0.0540710i 0.00139471 0.00241571i
\(502\) 10.2854i 0.459059i
\(503\) −29.5160 17.0410i −1.31605 0.759823i −0.332961 0.942941i \(-0.608048\pi\)
−0.983091 + 0.183118i \(0.941381\pi\)
\(504\) −4.51939 7.82782i −0.201310 0.348679i
\(505\) −8.42109 0.971359i −0.374733 0.0432249i
\(506\) 24.0586 1.06953
\(507\) 0 0
\(508\) 2.93519i 0.130228i
\(509\) 0.653321 + 1.13159i 0.0289579 + 0.0501566i 0.880141 0.474712i \(-0.157448\pi\)
−0.851183 + 0.524869i \(0.824114\pi\)
\(510\) 0.497804 4.31566i 0.0220431 0.191101i
\(511\) −15.0440 + 26.0570i −0.665508 + 1.15269i
\(512\) 1.22700i 0.0542260i
\(513\) −20.5998 11.8933i −0.909501 0.525101i
\(514\) −5.53454 + 9.58610i −0.244118 + 0.422825i
\(515\) −26.2625 19.4900i −1.15726 0.858831i
\(516\) −0.118220 + 0.204764i −0.00520436 + 0.00901421i
\(517\) 17.7960 10.2745i 0.782668 0.451874i
\(518\) −15.4440 + 8.91659i −0.678570 + 0.391773i
\(519\) 11.4275 0.501612
\(520\) 0 0
\(521\) −0.550102 −0.0241004 −0.0120502 0.999927i \(-0.503836\pi\)
−0.0120502 + 0.999927i \(0.503836\pi\)
\(522\) 8.48571 4.89922i 0.371409 0.214433i
\(523\) −14.7684 + 8.52654i −0.645777 + 0.372840i −0.786837 0.617161i \(-0.788283\pi\)
0.141059 + 0.990001i \(0.454949\pi\)
\(524\) 3.03311 5.25350i 0.132502 0.229500i
\(525\) −4.19360 13.8547i −0.183024 0.604670i
\(526\) 12.5763 21.7827i 0.548351 0.949771i
\(527\) 6.22734 + 3.59535i 0.271267 + 0.156616i
\(528\) 0.432076i 0.0188037i
\(529\) 25.7751 44.6437i 1.12065 1.94103i
\(530\) −3.80897 0.439359i −0.165451 0.0190845i
\(531\) 3.82878 + 6.63164i 0.166155 + 0.287788i
\(532\) 11.8032i 0.511733i
\(533\) 0 0
\(534\) 17.7324 0.767357
\(535\) −1.07385 + 9.30964i −0.0464266 + 0.402491i
\(536\) 9.20381 + 15.9415i 0.397544 + 0.688567i
\(537\) 25.1246 + 14.5057i 1.08421 + 0.625967i
\(538\) 10.8220i 0.466569i
\(539\) 2.81783 4.88062i 0.121373 0.210223i
\(540\) −13.8493 + 5.99891i −0.595980 + 0.258152i
\(541\) 30.1330 1.29552 0.647759 0.761845i \(-0.275706\pi\)
0.647759 + 0.761845i \(0.275706\pi\)
\(542\) −13.5751 7.83759i −0.583101 0.336654i
\(543\) −19.4683 + 11.2400i −0.835463 + 0.482355i
\(544\) −4.83372 8.37225i −0.207244 0.358957i
\(545\) −21.5156 + 28.9921i −0.921628 + 1.24188i
\(546\) 0 0
\(547\) 5.36791i 0.229515i −0.993394 0.114758i \(-0.963391\pi\)
0.993394 0.114758i \(-0.0366091\pi\)
\(548\) 13.4478 7.76407i 0.574460 0.331665i
\(549\) 6.87822 + 11.9134i 0.293555 + 0.508452i
\(550\) 3.17188 13.5662i 0.135249 0.578464i
\(551\) 33.9150 1.44483
\(552\) 27.0598 + 15.6230i 1.15174 + 0.664957i
\(553\) −26.5743 15.3427i −1.13005 0.652437i
\(554\) 10.4104 0.442294
\(555\) 9.93054 + 22.9260i 0.421528 + 0.973156i
\(556\) −9.40798 16.2951i −0.398987 0.691066i
\(557\) 6.11007 3.52765i 0.258892 0.149471i −0.364937 0.931032i \(-0.618909\pi\)
0.623829 + 0.781561i \(0.285576\pi\)
\(558\) 5.14490i 0.217801i
\(559\) 0 0
\(560\) 0.444401 + 0.329799i 0.0187794 + 0.0139366i
\(561\) 3.43355 + 5.94708i 0.144965 + 0.251086i
\(562\) 15.5816 8.99604i 0.657270 0.379475i
\(563\) −27.4232 15.8328i −1.15575 0.667273i −0.205468 0.978664i \(-0.565872\pi\)
−0.950282 + 0.311391i \(0.899205\pi\)
\(564\) 10.0686 0.423966
\(565\) −7.22117 + 3.12789i −0.303797 + 0.131591i
\(566\) 3.65951 6.33846i 0.153821 0.266426i
\(567\) 6.61795i 0.277928i
\(568\) 11.7163 + 6.76438i 0.491603 + 0.283827i
\(569\) 6.79091 + 11.7622i 0.284690 + 0.493097i 0.972534 0.232761i \(-0.0747761\pi\)
−0.687844 + 0.725858i \(0.741443\pi\)
\(570\) 10.6878 + 1.23282i 0.447661 + 0.0516370i
\(571\) −34.7338 −1.45356 −0.726782 0.686868i \(-0.758985\pi\)
−0.726782 + 0.686868i \(0.758985\pi\)
\(572\) 0 0
\(573\) 12.3546i 0.516120i
\(574\) −2.98456 5.16941i −0.124573 0.215767i
\(575\) −31.4912 29.5306i −1.31327 1.23151i
\(576\) 3.60923 6.25137i 0.150385 0.260474i
\(577\) 43.8511i 1.82555i −0.408467 0.912773i \(-0.633937\pi\)
0.408467 0.912773i \(-0.366063\pi\)
\(578\) −10.7857 6.22713i −0.448626 0.259015i
\(579\) 6.34594 10.9915i 0.263728 0.456791i
\(580\) 12.8243 17.2806i 0.532500 0.717538i
\(581\) −7.21467 + 12.4962i −0.299315 + 0.518429i
\(582\) 11.7893 6.80657i 0.488683 0.282141i
\(583\) 5.24885 3.03043i 0.217385 0.125507i
\(584\) −37.6097 −1.55630
\(585\) 0 0
\(586\) −18.9308 −0.782026
\(587\) 3.56795 2.05996i 0.147265 0.0850235i −0.424557 0.905401i \(-0.639570\pi\)
0.571822 + 0.820378i \(0.306237\pi\)
\(588\) 2.39141 1.38068i 0.0986201 0.0569383i
\(589\) −8.90392 + 15.4220i −0.366879 + 0.635454i
\(590\) −8.78637 6.52055i −0.361729 0.268447i
\(591\) 3.80720 6.59426i 0.156607 0.271252i
\(592\) −0.827201 0.477585i −0.0339977 0.0196286i
\(593\) 2.16800i 0.0890292i 0.999009 + 0.0445146i \(0.0141741\pi\)
−0.999009 + 0.0445146i \(0.985826\pi\)
\(594\) −7.76090 + 13.4423i −0.318433 + 0.551543i
\(595\) 8.73752 + 1.00786i 0.358203 + 0.0413182i
\(596\) −0.0250703 0.0434231i −0.00102692 0.00177868i
\(597\) 7.37689i 0.301916i
\(598\) 0 0
\(599\) 37.1445 1.51768 0.758841 0.651276i \(-0.225766\pi\)
0.758841 + 0.651276i \(0.225766\pi\)
\(600\) 12.3771 13.1988i 0.505291 0.538838i
\(601\) 0.556602 + 0.964062i 0.0227043 + 0.0393249i 0.877154 0.480209i \(-0.159439\pi\)
−0.854450 + 0.519534i \(0.826106\pi\)
\(602\) 0.269719 + 0.155722i 0.0109929 + 0.00634677i
\(603\) 8.96936i 0.365261i
\(604\) 3.64303 6.30991i 0.148233 0.256747i
\(605\) −1.02310 2.36196i −0.0415948 0.0960274i
\(606\) −4.27160 −0.173522
\(607\) −7.11683 4.10890i −0.288863 0.166775i 0.348566 0.937284i \(-0.386669\pi\)
−0.637429 + 0.770509i \(0.720002\pi\)
\(608\) 20.7339 11.9707i 0.840872 0.485478i
\(609\) −11.4971 19.9136i −0.465888 0.806941i
\(610\) −15.7843 11.7139i −0.639087 0.474280i
\(611\) 0 0
\(612\) 2.90289i 0.117342i
\(613\) −24.7777 + 14.3054i −1.00076 + 0.577790i −0.908474 0.417942i \(-0.862752\pi\)
−0.0922886 + 0.995732i \(0.529418\pi\)
\(614\) 3.72269 + 6.44788i 0.150235 + 0.260215i
\(615\) −7.67380 + 3.32395i −0.309437 + 0.134034i
\(616\) −20.4153 −0.822555
\(617\) 0.731464 + 0.422311i 0.0294476 + 0.0170016i 0.514652 0.857399i \(-0.327921\pi\)
−0.485204 + 0.874401i \(0.661255\pi\)
\(618\) −14.2721 8.24003i −0.574110 0.331462i
\(619\) 9.06143 0.364210 0.182105 0.983279i \(-0.441709\pi\)
0.182105 + 0.983279i \(0.441709\pi\)
\(620\) 4.49109 + 10.3683i 0.180367 + 0.416402i
\(621\) 24.0487 + 41.6535i 0.965039 + 1.67150i
\(622\) −2.17073 + 1.25327i −0.0870385 + 0.0502517i
\(623\) 35.9012i 1.43835i
\(624\) 0 0
\(625\) −20.8036 + 13.8640i −0.832144 + 0.554560i
\(626\) 8.52205 + 14.7606i 0.340610 + 0.589953i
\(627\) −14.7280 + 8.50321i −0.588179 + 0.339585i
\(628\) 23.9089 + 13.8038i 0.954068 + 0.550831i
\(629\) −15.1808 −0.605297
\(630\) 2.50131 + 5.77463i 0.0996546 + 0.230067i
\(631\) −7.05868 + 12.2260i −0.281002 + 0.486709i −0.971632 0.236499i \(-0.924000\pi\)
0.690630 + 0.723208i \(0.257333\pi\)
\(632\) 38.3564i 1.52573i
\(633\) −9.57556 5.52845i −0.380594 0.219736i
\(634\) 2.55910 + 4.43248i 0.101635 + 0.176036i
\(635\) −0.620692 + 5.38102i −0.0246314 + 0.213539i
\(636\) 2.96970 0.117756
\(637\) 0 0
\(638\) 22.1311i 0.876177i
\(639\) 3.29604 + 5.70890i 0.130389 + 0.225841i
\(640\) 1.69136 14.6631i 0.0668568 0.579608i
\(641\) 4.59506 7.95887i 0.181494 0.314356i −0.760896 0.648874i \(-0.775240\pi\)
0.942389 + 0.334518i \(0.108573\pi\)
\(642\) 4.72232i 0.186375i
\(643\) 3.58664 + 2.07075i 0.141443 + 0.0816624i 0.569052 0.822302i \(-0.307310\pi\)
−0.427608 + 0.903964i \(0.640644\pi\)
\(644\) −11.9333 + 20.6690i −0.470236 + 0.814473i
\(645\) 0.260031 0.350389i 0.0102387 0.0137965i
\(646\) −3.26853 + 5.66126i −0.128599 + 0.222739i
\(647\) 4.20955 2.43038i 0.165494 0.0955483i −0.414965 0.909837i \(-0.636206\pi\)
0.580460 + 0.814289i \(0.302873\pi\)
\(648\) −7.16408 + 4.13618i −0.281432 + 0.162485i
\(649\) 17.2956 0.678911
\(650\) 0 0
\(651\) 12.0737 0.473204
\(652\) −1.59632 + 0.921638i −0.0625169 + 0.0360941i
\(653\) −37.1054 + 21.4228i −1.45205 + 0.838340i −0.998598 0.0529423i \(-0.983140\pi\)
−0.453449 + 0.891282i \(0.649807\pi\)
\(654\) −9.09644 + 15.7555i −0.355699 + 0.616088i
\(655\) −6.67147 + 8.98973i −0.260676 + 0.351258i
\(656\) 0.159857 0.276880i 0.00624137 0.0108104i
\(657\) −15.8706 9.16291i −0.619172 0.357479i
\(658\) 13.2626i 0.517031i
\(659\) 0.177817 0.307989i 0.00692678 0.0119975i −0.862541 0.505987i \(-0.831128\pi\)
0.869468 + 0.493989i \(0.164462\pi\)
\(660\) −1.23649 + 10.7196i −0.0481303 + 0.417261i
\(661\) 6.46993 + 11.2063i 0.251651 + 0.435873i 0.963981 0.265973i \(-0.0856931\pi\)
−0.712329 + 0.701845i \(0.752360\pi\)
\(662\) 3.60485i 0.140107i
\(663\) 0 0
\(664\) −18.0365 −0.699952
\(665\) −2.49597 + 21.6385i −0.0967895 + 0.839106i
\(666\) −5.43086 9.40653i −0.210442 0.364496i
\(667\) −59.3898 34.2887i −2.29958 1.32766i
\(668\) 0.0596123i 0.00230647i
\(669\) 0.0288218 0.0499208i 0.00111432 0.00193005i
\(670\) −5.09396 11.7601i −0.196797 0.454333i
\(671\) 31.0707 1.19947
\(672\) −14.0576 8.11614i −0.542282 0.313087i
\(673\) 23.8167 13.7506i 0.918065 0.530045i 0.0350476 0.999386i \(-0.488842\pi\)
0.883017 + 0.469341i \(0.155508\pi\)
\(674\) −11.0247 19.0954i −0.424656 0.735526i
\(675\) 26.6582 8.06902i 1.02608 0.310577i
\(676\) 0 0
\(677\) 12.6270i 0.485297i −0.970114 0.242648i \(-0.921984\pi\)
0.970114 0.242648i \(-0.0780161\pi\)
\(678\) −3.43423 + 1.98276i −0.131891 + 0.0761473i
\(679\) 13.7806 + 23.8687i 0.528852 + 0.915998i
\(680\) 4.36987 + 10.0885i 0.167577 + 0.386875i
\(681\) −8.15069 −0.312335
\(682\) 10.0636 + 5.81021i 0.385354 + 0.222484i
\(683\) 25.1530 + 14.5221i 0.962453 + 0.555673i 0.896927 0.442178i \(-0.145794\pi\)
0.0655262 + 0.997851i \(0.479127\pi\)
\(684\) 7.18901 0.274879
\(685\) −26.2953 + 11.3900i −1.00469 + 0.435188i
\(686\) −8.90788 15.4289i −0.340105 0.589078i
\(687\) 8.00074 4.61923i 0.305247 0.176235i
\(688\) 0.0166814i 0.000635972i
\(689\) 0 0
\(690\) −17.4693 12.9644i −0.665046 0.493545i
\(691\) −2.77180 4.80090i −0.105444 0.182635i 0.808475 0.588530i \(-0.200293\pi\)
−0.913920 + 0.405895i \(0.866960\pi\)
\(692\) −9.44896 + 5.45536i −0.359196 + 0.207382i
\(693\) −8.61489 4.97381i −0.327253 0.188939i
\(694\) 25.8904 0.982785
\(695\) 13.8016 + 31.8629i 0.523524 + 1.20863i
\(696\) 14.3713 24.8918i 0.544743 0.943522i
\(697\) 5.08130i 0.192468i
\(698\) 5.60576 + 3.23649i 0.212181 + 0.122503i
\(699\) 2.89416 + 5.01283i 0.109467 + 0.189602i
\(700\) 10.0816 + 9.45395i 0.381049 + 0.357326i
\(701\) −7.14386 −0.269820 −0.134910 0.990858i \(-0.543075\pi\)
−0.134910 + 0.990858i \(0.543075\pi\)
\(702\) 0 0
\(703\) 37.5953i 1.41793i
\(704\) −8.15192 14.1195i −0.307237 0.532150i
\(705\) −18.4586 2.12917i −0.695191 0.0801892i
\(706\) 6.19445 10.7291i 0.233131 0.403795i
\(707\) 8.64831i 0.325253i
\(708\) 7.33912 + 4.23725i 0.275821 + 0.159245i
\(709\) −16.6348 + 28.8123i −0.624733 + 1.08207i 0.363859 + 0.931454i \(0.381459\pi\)
−0.988592 + 0.150616i \(0.951874\pi\)
\(710\) −7.56382 5.61327i −0.283865 0.210662i
\(711\) 9.34483 16.1857i 0.350458 0.607012i
\(712\) −38.8638 + 22.4380i −1.45648 + 0.840901i
\(713\) 31.1840 18.0041i 1.16785 0.674257i
\(714\) 4.43211 0.165868
\(715\) 0 0
\(716\) −27.6994 −1.03517
\(717\) −18.6111 + 10.7451i −0.695043 + 0.401283i
\(718\) −12.5055 + 7.22008i −0.466703 + 0.269451i
\(719\) 1.46562 2.53852i 0.0546583 0.0946710i −0.837402 0.546588i \(-0.815926\pi\)
0.892060 + 0.451917i \(0.149260\pi\)
\(720\) −0.200872 + 0.270673i −0.00748606 + 0.0100874i
\(721\) 16.6828 28.8955i 0.621301 1.07612i
\(722\) 0.589400 + 0.340290i 0.0219352 + 0.0126643i
\(723\) 7.78013i 0.289346i
\(724\) 10.7317 18.5878i 0.398840 0.690811i
\(725\) −27.1647 + 28.9682i −1.00887 + 1.07585i
\(726\) −0.648537 1.12330i −0.0240695 0.0416895i
\(727\) 14.9385i 0.554039i 0.960864 + 0.277019i \(0.0893466\pi\)
−0.960864 + 0.277019i \(0.910653\pi\)
\(728\) 0 0
\(729\) −25.2390 −0.934777
\(730\) 26.0125 + 3.00050i 0.962767 + 0.111054i
\(731\) 0.132561 + 0.229602i 0.00490294 + 0.00849215i
\(732\) 13.1844 + 7.61201i 0.487309 + 0.281348i
\(733\) 9.64485i 0.356241i −0.984009 0.178120i \(-0.942998\pi\)
0.984009 0.178120i \(-0.0570016\pi\)
\(734\) 15.2928 26.4878i 0.564466 0.977684i
\(735\) −4.67608 + 2.02547i −0.172480 + 0.0747106i
\(736\) −48.4106 −1.78444
\(737\) 17.5444 + 10.1292i 0.646254 + 0.373115i
\(738\) 3.14855 1.81782i 0.115900 0.0669148i
\(739\) −19.3003 33.4291i −0.709973 1.22971i −0.964867 0.262740i \(-0.915374\pi\)
0.254894 0.966969i \(-0.417960\pi\)
\(740\) −19.1558 14.2159i −0.704181 0.522588i
\(741\) 0 0
\(742\) 3.91175i 0.143605i
\(743\) −37.5776 + 21.6954i −1.37859 + 0.795928i −0.991990 0.126320i \(-0.959683\pi\)
−0.386599 + 0.922248i \(0.626350\pi\)
\(744\) 7.54597 + 13.0700i 0.276649 + 0.479170i
\(745\) 0.0367784 + 0.0849081i 0.00134746 + 0.00311079i
\(746\) 20.6146 0.754754
\(747\) −7.61109 4.39426i −0.278475 0.160778i
\(748\) −5.67813 3.27827i −0.207613 0.119865i
\(749\) −9.56084 −0.349345
\(750\) −9.61353 + 8.14143i −0.351036 + 0.297283i
\(751\) 17.4385 + 30.2044i 0.636341 + 1.10217i 0.986229 + 0.165383i \(0.0528860\pi\)
−0.349889 + 0.936791i \(0.613781\pi\)
\(752\) 0.615193 0.355182i 0.0224338 0.0129522i
\(753\) 14.7012i 0.535742i
\(754\) 0 0
\(755\) −8.01302 + 10.7974i −0.291624 + 0.392959i
\(756\) −7.69895 13.3350i −0.280008 0.484988i
\(757\) −10.0908 + 5.82591i −0.366755 + 0.211746i −0.672040 0.740515i \(-0.734582\pi\)
0.305285 + 0.952261i \(0.401248\pi\)
\(758\) 9.43209 + 5.44562i 0.342589 + 0.197794i
\(759\) 34.3876 1.24819
\(760\) −24.9841 + 10.8220i −0.906270 + 0.392556i
\(761\) −24.5342 + 42.4945i −0.889364 + 1.54042i −0.0487353 + 0.998812i \(0.515519\pi\)
−0.840629 + 0.541612i \(0.817814\pi\)
\(762\) 2.72952i 0.0988803i
\(763\) −31.8987 18.4167i −1.15481 0.666730i
\(764\) −5.89793 10.2155i −0.213380 0.369584i
\(765\) −0.613860 + 5.32179i −0.0221942 + 0.192410i
\(766\) −1.67215 −0.0604172
\(767\) 0 0
\(768\) 20.6238i 0.744197i
\(769\) −20.0601 34.7451i −0.723386 1.25294i −0.959635 0.281248i \(-0.909252\pi\)
0.236249 0.971692i \(-0.424082\pi\)
\(770\) 14.1201 + 1.62873i 0.508854 + 0.0586954i
\(771\) −7.91068 + 13.7017i −0.284896 + 0.493455i
\(772\) 12.1179i 0.436133i
\(773\) 10.0859 + 5.82307i 0.362763 + 0.209441i 0.670292 0.742097i \(-0.266169\pi\)
−0.307529 + 0.951539i \(0.599502\pi\)
\(774\) −0.0948464 + 0.164279i −0.00340918 + 0.00590488i
\(775\) −6.04088 19.9577i −0.216995 0.716903i
\(776\) −17.2256 + 29.8357i −0.618364 + 1.07104i
\(777\) −22.0746 + 12.7448i −0.791920 + 0.457216i
\(778\) 15.4121 8.89821i 0.552552 0.319016i
\(779\) 12.5839 0.450864
\(780\) 0 0
\(781\) 14.8891 0.532772
\(782\) 11.4473 6.60909i 0.409354 0.236341i
\(783\) 38.3164 22.1220i 1.36932 0.790575i
\(784\) 0.0974100 0.168719i 0.00347893 0.00602568i
\(785\) −40.9126 30.3621i −1.46023 1.08367i
\(786\) −2.82058 + 4.88540i −0.100607 + 0.174256i
\(787\) −22.1392 12.7821i −0.789176 0.455631i 0.0504961 0.998724i \(-0.483920\pi\)
−0.839673 + 0.543093i \(0.817253\pi\)
\(788\) 7.27005i 0.258985i
\(789\) 17.9756 31.1347i 0.639949 1.10842i
\(790\) −3.06007 + 26.5290i −0.108873 + 0.943858i
\(791\) −4.01430 6.95298i −0.142732 0.247219i
\(792\) 12.4344i 0.441837i
\(793\) 0 0
\(794\) 18.3022 0.649519
\(795\) −5.44428 0.627989i −0.193089 0.0222725i
\(796\) 3.52164 + 6.09966i 0.124821 + 0.216197i
\(797\) 39.6074 + 22.8674i 1.40297 + 0.810003i 0.994696 0.102858i \(-0.0327986\pi\)
0.408271 + 0.912861i \(0.366132\pi\)
\(798\) 10.9761i 0.388551i
\(799\) 5.64501 9.77744i 0.199706 0.345901i
\(800\) −6.38245 + 27.2979i −0.225654 + 0.965126i
\(801\) −21.8665 −0.772614
\(802\) 27.5389 + 15.8996i 0.972431 + 0.561433i
\(803\) −35.8459 + 20.6956i −1.26497 + 0.730333i
\(804\) 4.96312 + 8.59638i 0.175036 + 0.303171i
\(805\) 26.2477 35.3685i 0.925112 1.24658i
\(806\) 0 0
\(807\) 15.4682i 0.544506i
\(808\) 9.36199 5.40515i 0.329354 0.190152i
\(809\) 15.7281 + 27.2418i 0.552970 + 0.957772i 0.998058 + 0.0622856i \(0.0198390\pi\)
−0.445088 + 0.895487i \(0.646828\pi\)
\(810\) 5.28498 2.28922i 0.185695 0.0804349i
\(811\) −38.0128 −1.33481 −0.667406 0.744694i \(-0.732595\pi\)
−0.667406 + 0.744694i \(0.732595\pi\)
\(812\) 19.0131 + 10.9772i 0.667228 + 0.385224i
\(813\) −19.4033 11.2025i −0.680504 0.392889i
\(814\) −24.5326 −0.859868
\(815\) 3.12140 1.35205i 0.109338 0.0473603i
\(816\) 0.118695 + 0.205586i 0.00415515 + 0.00719694i
\(817\) −0.568612 + 0.328288i −0.0198932 + 0.0114853i
\(818\) 0.197063i 0.00689015i
\(819\) 0 0
\(820\) 4.75835 6.41182i 0.166169 0.223910i
\(821\) 27.8796 + 48.2890i 0.973006 + 1.68530i 0.686363 + 0.727259i \(0.259206\pi\)
0.286643 + 0.958037i \(0.407461\pi\)
\(822\) −12.5055 + 7.22005i −0.436179 + 0.251828i
\(823\) 26.6045 + 15.3601i 0.927375 + 0.535420i 0.885980 0.463723i \(-0.153487\pi\)
0.0413947 + 0.999143i \(0.486820\pi\)
\(824\) 41.7067 1.45292
\(825\) 4.53366 19.3906i 0.157842 0.675093i
\(826\) 5.58139 9.66725i 0.194201 0.336367i
\(827\) 37.7024i 1.31104i −0.755177 0.655520i \(-0.772449\pi\)
0.755177 0.655520i \(-0.227551\pi\)
\(828\) −12.5889 7.26823i −0.437496 0.252589i
\(829\) −6.91039 11.9691i −0.240008 0.415705i 0.720709 0.693238i \(-0.243817\pi\)
−0.960716 + 0.277533i \(0.910483\pi\)
\(830\) 12.4749 + 1.43895i 0.433008 + 0.0499468i
\(831\) 14.8799 0.516177
\(832\) 0 0
\(833\) 3.09633i 0.107281i
\(834\) 8.74877 + 15.1533i 0.302945 + 0.524716i
\(835\) 0.0126059 0.109286i 0.000436247 0.00378199i
\(836\) 8.11866 14.0619i 0.280790 0.486342i
\(837\) 23.2313i 0.802990i
\(838\) 0.523151 + 0.302042i 0.0180720 + 0.0104339i
\(839\) 8.04509 13.9345i 0.277747 0.481073i −0.693077 0.720863i \(-0.743745\pi\)
0.970825 + 0.239791i \(0.0770788\pi\)
\(840\) 14.8239 + 11.0011i 0.511473 + 0.379575i
\(841\) −17.0416 + 29.5170i −0.587642 + 1.01783i
\(842\) −1.55270 + 0.896452i −0.0535096 + 0.0308938i
\(843\) 22.2712 12.8583i 0.767062 0.442864i
\(844\) 10.5569 0.363382
\(845\) 0 0
\(846\) 8.07792 0.277725
\(847\) 2.27424 1.31303i 0.0781438 0.0451163i
\(848\) 0.181448 0.104759i 0.00623097 0.00359745i
\(849\) 5.23065 9.05976i 0.179516 0.310930i
\(850\) −2.21754 7.32626i −0.0760610 0.251289i
\(851\) −38.0095 + 65.8345i −1.30295 + 2.25678i
\(852\) 6.31795 + 3.64767i 0.216449 + 0.124967i
\(853\) 48.9861i 1.67725i 0.544709 + 0.838625i \(0.316640\pi\)
−0.544709 + 0.838625i \(0.683360\pi\)
\(854\) 10.0267 17.3668i 0.343107 0.594278i
\(855\) −13.1795 1.52023i −0.450728 0.0519907i
\(856\) −5.97547 10.3498i −0.204237 0.353749i
\(857\) 8.57696i 0.292983i 0.989212 + 0.146492i \(0.0467982\pi\)
−0.989212 + 0.146492i \(0.953202\pi\)
\(858\) 0 0
\(859\) 17.9983 0.614095 0.307048 0.951694i \(-0.400659\pi\)
0.307048 + 0.951694i \(0.400659\pi\)
\(860\) −0.0477379 + 0.413859i −0.00162785 + 0.0141125i
\(861\) −4.26592 7.38879i −0.145382 0.251809i
\(862\) −5.27018 3.04274i −0.179503 0.103636i
\(863\) 2.18400i 0.0743444i 0.999309 + 0.0371722i \(0.0118350\pi\)
−0.999309 + 0.0371722i \(0.988165\pi\)
\(864\) 15.6165 27.0485i 0.531283 0.920210i
\(865\) 18.4762 8.00306i 0.628209 0.272112i
\(866\) −0.462525 −0.0157172
\(867\) −15.4163 8.90063i −0.523566 0.302281i
\(868\) −9.98324 + 5.76383i −0.338853 + 0.195637i
\(869\) −21.1065 36.5575i −0.715989 1.24013i
\(870\) −11.9257 + 16.0698i −0.404319 + 0.544816i
\(871\) 0 0
\(872\) 46.0414i 1.55916i
\(873\) −14.5378 + 8.39342i −0.492031 + 0.284074i
\(874\) 16.3675 + 28.3493i 0.553637 + 0.958928i
\(875\) −16.4832 19.4636i −0.557234 0.657991i
\(876\) −20.2809 −0.685228
\(877\) −24.2145 13.9802i −0.817665 0.472079i 0.0319457 0.999490i \(-0.489830\pi\)
−0.849611 + 0.527411i \(0.823163\pi\)
\(878\) −21.2138 12.2478i −0.715930 0.413343i
\(879\) −27.0584 −0.912658
\(880\) 0.302597 + 0.698587i 0.0102005 + 0.0235494i
\(881\) 1.69272 + 2.93188i 0.0570292 + 0.0987775i 0.893131 0.449798i \(-0.148504\pi\)
−0.836101 + 0.548575i \(0.815171\pi\)
\(882\) 1.91859 1.10770i 0.0646024 0.0372982i
\(883\) 9.67005i 0.325423i −0.986674 0.162712i \(-0.947976\pi\)
0.986674 0.162712i \(-0.0520240\pi\)
\(884\) 0 0
\(885\) −12.5586 9.32002i −0.422153 0.313289i
\(886\) 3.19939 + 5.54151i 0.107486 + 0.186171i
\(887\) 8.78091 5.06966i 0.294834 0.170223i −0.345286 0.938498i \(-0.612218\pi\)
0.640120 + 0.768275i \(0.278885\pi\)
\(888\) −27.5929 15.9308i −0.925959 0.534602i
\(889\) −5.52622 −0.185343
\(890\) 28.6701 12.4186i 0.961023 0.416272i
\(891\) −4.55207 + 7.88441i −0.152500 + 0.264138i
\(892\) 0.0550368i 0.00184277i
\(893\) 24.2139 + 13.9799i 0.810287 + 0.467819i
\(894\) 0.0233137 + 0.0403805i 0.000779726 + 0.00135052i
\(895\) 50.7806 + 5.85746i 1.69741 + 0.195793i
\(896\) 15.0587 0.503076
\(897\) 0 0
\(898\) 0.120427i 0.00401869i
\(899\) −16.5616 28.6856i −0.552362 0.956718i
\(900\) −5.75815 + 6.14044i −0.191938 + 0.204681i
\(901\) 1.66497 2.88381i 0.0554682 0.0960737i
\(902\) 8.21155i 0.273415i
\(903\) 0.385517 + 0.222579i 0.0128292 + 0.00740695i
\(904\) 5.01783 8.69114i 0.166891 0.289063i
\(905\) −23.6048 + 31.8073i −0.784652 + 1.05731i
\(906\) −3.38777 + 5.86778i −0.112551 + 0.194944i
\(907\) −42.2301 + 24.3816i −1.40223 + 0.809577i −0.994621 0.103581i \(-0.966970\pi\)
−0.407607 + 0.913157i \(0.633637\pi\)
\(908\) 6.73948 3.89104i 0.223658 0.129129i
\(909\) 5.26746 0.174711
\(910\) 0 0
\(911\) −53.5943 −1.77566 −0.887829 0.460174i \(-0.847787\pi\)
−0.887829 + 0.460174i \(0.847787\pi\)
\(912\) −0.509134 + 0.293949i −0.0168591 + 0.00973361i
\(913\) −17.1906 + 9.92502i −0.568927 + 0.328470i
\(914\) 0.136738 0.236836i 0.00452288 0.00783385i
\(915\) −22.5610 16.7430i −0.745843 0.553506i
\(916\) −4.41033 + 7.63892i −0.145721 + 0.252397i
\(917\) −9.89101 5.71058i −0.326630 0.188580i
\(918\) 8.52794i 0.281464i
\(919\) −14.1071 + 24.4342i −0.465350 + 0.806010i −0.999217 0.0395582i \(-0.987405\pi\)
0.533867 + 0.845568i \(0.320738\pi\)
\(920\) 54.6919 + 6.30862i 1.80314 + 0.207989i
\(921\) 5.32095 + 9.21615i 0.175331 + 0.303683i
\(922\) 25.4572i 0.838390i
\(923\) 0 0
\(924\) −11.0089 −0.362165
\(925\) 32.1117 + 30.1125i 1.05583 + 0.990093i
\(926\) 7.14843 + 12.3815i 0.234912 + 0.406880i
\(927\) 17.5995 + 10.1611i 0.578043 + 0.333733i
\(928\) 44.5321i 1.46184i
\(929\) −1.45288 + 2.51645i −0.0476673 + 0.0825622i −0.888875 0.458151i \(-0.848512\pi\)
0.841207 + 0.540713i \(0.181845\pi\)
\(930\) −4.17641 9.64182i −0.136950 0.316168i
\(931\) 7.66808 0.251311
\(932\) −4.78613 2.76327i −0.156775 0.0905140i
\(933\) −3.10270 + 1.79134i −0.101578 + 0.0586459i
\(934\) 1.54308 + 2.67269i 0.0504911 + 0.0874531i
\(935\) 9.71635 + 7.21071i 0.317759 + 0.235815i
\(936\) 0 0
\(937\) 44.6821i 1.45970i 0.683607 + 0.729850i \(0.260410\pi\)
−0.683607 + 0.729850i \(0.739590\pi\)
\(938\) 11.3233 6.53753i 0.369720 0.213458i
\(939\) 12.1808 + 21.0978i 0.397506 + 0.688501i
\(940\) 16.2791 7.05140i 0.530967 0.229991i
\(941\) 5.09938 0.166235 0.0831175 0.996540i \(-0.473512\pi\)
0.0831175 + 0.996540i \(0.473512\pi\)
\(942\) −22.2336 12.8366i −0.724410 0.418238i
\(943\) −22.0361 12.7225i −0.717594 0.414303i
\(944\) 0.597894 0.0194598
\(945\) 11.2944 + 26.0748i 0.367408 + 0.848212i
\(946\) 0.214223 + 0.371045i 0.00696498 + 0.0120637i
\(947\) 5.93410 3.42605i 0.192832 0.111332i −0.400476 0.916307i \(-0.631155\pi\)
0.593308 + 0.804976i \(0.297822\pi\)
\(948\) 20.6835i 0.671770i
\(949\) 0 0
\(950\) 18.1435 5.49175i 0.588654 0.178176i
\(951\) 3.65779 + 6.33548i 0.118612 + 0.205442i
\(952\) −9.71377 + 5.60825i −0.314825 + 0.181764i
\(953\) −27.6397 15.9578i −0.895337 0.516923i −0.0196525 0.999807i \(-0.506256\pi\)
−0.875684 + 0.482884i \(0.839589\pi\)
\(954\) 2.38254 0.0771377
\(955\) 8.65232 + 19.9751i 0.279982 + 0.646379i
\(956\) 10.2592 17.7694i 0.331805 0.574704i
\(957\) 31.6326i 1.02254i
\(958\) −11.1168 6.41830i −0.359168 0.207366i
\(959\) −14.6178 25.3187i −0.472032 0.817583i
\(960\) −1.68930 + 14.6452i −0.0545221 + 0.472673i
\(961\) −13.6079 −0.438964
\(962\) 0 0
\(963\) 5.82325i 0.187652i
\(964\) −3.71414 6.43309i −0.119625 0.207196i
\(965\) 2.56252 22.2155i 0.0824904 0.715142i
\(966\) 11.0971 19.2207i 0.357043 0.618417i
\(967\) 15.8568i 0.509920i 0.966952 + 0.254960i \(0.0820623\pi\)
−0.966952 + 0.254960i \(0.917938\pi\)
\(968\) 2.84277 + 1.64128i 0.0913702 + 0.0527526i
\(969\) −4.67181 + 8.09181i −0.150080 + 0.259946i
\(970\) 14.2943 19.2614i 0.458962 0.618447i
\(971\) −9.15839 + 15.8628i −0.293907 + 0.509061i −0.974730 0.223386i \(-0.928289\pi\)
0.680823 + 0.732448i \(0.261622\pi\)
\(972\) 13.6730 7.89410i 0.438561 0.253203i
\(973\) −30.6795 + 17.7128i −0.983540 + 0.567847i
\(974\) −2.58619 −0.0828669
\(975\) 0 0
\(976\) 1.07409 0.0343807
\(977\) −11.7245 + 6.76912i −0.375099 + 0.216563i −0.675684 0.737192i \(-0.736151\pi\)
0.300585 + 0.953755i \(0.402818\pi\)
\(978\) 1.48447 0.857060i 0.0474681 0.0274057i
\(979\) −24.6941 + 42.7715i −0.789228 + 1.36698i
\(980\) 2.89953 3.90709i 0.0926222 0.124807i
\(981\) 11.2171 19.4287i 0.358136 0.620309i
\(982\) 5.84969 + 3.37732i 0.186671 + 0.107775i
\(983\) 34.5313i 1.10138i −0.834711 0.550688i \(-0.814365\pi\)
0.834711 0.550688i \(-0.185635\pi\)
\(984\) 5.33235 9.23590i 0.169989 0.294430i
\(985\) 1.53737 13.3280i 0.0489845 0.424666i
\(986\) −6.07959 10.5302i −0.193614 0.335349i
\(987\) 18.9567i 0.603398i
\(988\) 0 0
\(989\) 1.32762 0.0422159
\(990\) −0.992018 + 8.60019i −0.0315284 + 0.273332i
\(991\) −21.7636 37.6957i −0.691343 1.19744i −0.971398 0.237458i \(-0.923686\pi\)
0.280055 0.959984i \(-0.409647\pi\)
\(992\) −20.2499 11.6913i −0.642936 0.371199i
\(993\) 5.15253i 0.163510i
\(994\) 4.80479 8.32214i 0.152399 0.263962i
\(995\) −5.16628 11.9271i −0.163782 0.378114i
\(996\) −9.72612 −0.308184
\(997\) −39.3004 22.6901i −1.24466 0.718602i −0.274617 0.961554i \(-0.588551\pi\)
−0.970038 + 0.242952i \(0.921884\pi\)
\(998\) 3.13141 1.80792i 0.0991231 0.0572287i
\(999\) −24.5225 42.4743i −0.775858 1.34383i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.n.h.484.12 36
5.4 even 2 inner 845.2.n.h.484.7 36
13.2 odd 12 845.2.d.e.844.24 36
13.3 even 3 845.2.b.h.339.12 yes 18
13.4 even 6 845.2.n.i.529.12 36
13.5 odd 4 845.2.l.g.699.14 72
13.6 odd 12 845.2.l.g.654.13 72
13.7 odd 12 845.2.l.g.654.23 72
13.8 odd 4 845.2.l.g.699.24 72
13.9 even 3 inner 845.2.n.h.529.7 36
13.10 even 6 845.2.b.g.339.7 18
13.11 odd 12 845.2.d.e.844.14 36
13.12 even 2 845.2.n.i.484.7 36
65.3 odd 12 4225.2.a.cb.1.12 18
65.4 even 6 845.2.n.i.529.7 36
65.9 even 6 inner 845.2.n.h.529.12 36
65.19 odd 12 845.2.l.g.654.24 72
65.23 odd 12 4225.2.a.ca.1.7 18
65.24 odd 12 845.2.d.e.844.23 36
65.29 even 6 845.2.b.h.339.7 yes 18
65.34 odd 4 845.2.l.g.699.13 72
65.42 odd 12 4225.2.a.cb.1.7 18
65.44 odd 4 845.2.l.g.699.23 72
65.49 even 6 845.2.b.g.339.12 yes 18
65.54 odd 12 845.2.d.e.844.13 36
65.59 odd 12 845.2.l.g.654.14 72
65.62 odd 12 4225.2.a.ca.1.12 18
65.64 even 2 845.2.n.i.484.12 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.b.g.339.7 18 13.10 even 6
845.2.b.g.339.12 yes 18 65.49 even 6
845.2.b.h.339.7 yes 18 65.29 even 6
845.2.b.h.339.12 yes 18 13.3 even 3
845.2.d.e.844.13 36 65.54 odd 12
845.2.d.e.844.14 36 13.11 odd 12
845.2.d.e.844.23 36 65.24 odd 12
845.2.d.e.844.24 36 13.2 odd 12
845.2.l.g.654.13 72 13.6 odd 12
845.2.l.g.654.14 72 65.59 odd 12
845.2.l.g.654.23 72 13.7 odd 12
845.2.l.g.654.24 72 65.19 odd 12
845.2.l.g.699.13 72 65.34 odd 4
845.2.l.g.699.14 72 13.5 odd 4
845.2.l.g.699.23 72 65.44 odd 4
845.2.l.g.699.24 72 13.8 odd 4
845.2.n.h.484.7 36 5.4 even 2 inner
845.2.n.h.484.12 36 1.1 even 1 trivial
845.2.n.h.529.7 36 13.9 even 3 inner
845.2.n.h.529.12 36 65.9 even 6 inner
845.2.n.i.484.7 36 13.12 even 2
845.2.n.i.484.12 36 65.64 even 2
845.2.n.i.529.7 36 65.4 even 6
845.2.n.i.529.12 36 13.4 even 6
4225.2.a.ca.1.7 18 65.23 odd 12
4225.2.a.ca.1.12 18 65.62 odd 12
4225.2.a.cb.1.7 18 65.42 odd 12
4225.2.a.cb.1.12 18 65.3 odd 12