Newspace parameters
| Level: | \( N \) | \(=\) | \( 845 = 5 \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 845.n (of order \(6\), degree \(2\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.74735897080\) |
| Analytic rank: | \(0\) |
| Dimension: | \(36\) |
| Relative dimension: | \(18\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 484.1 | −2.18027 | + | 1.25878i | 2.26868 | − | 1.30982i | 2.16905 | − | 3.75690i | 2.23296 | − | 0.117790i | −3.29755 | + | 5.71153i | −1.06580 | − | 0.615337i | 5.88628i | 1.93127 | − | 3.34505i | −4.72019 | + | 3.06762i | ||
| 484.2 | −1.86795 | + | 1.07846i | −1.51940 | + | 0.877227i | 1.32615 | − | 2.29696i | −0.176470 | + | 2.22909i | 1.89211 | − | 3.27723i | −3.34392 | − | 1.93061i | 1.40696i | 0.0390543 | − | 0.0676440i | −2.07435 | − | 4.35414i | ||
| 484.3 | −1.86013 | + | 1.07395i | 2.05625 | − | 1.18717i | 1.30673 | − | 2.26333i | 1.11435 | + | 1.93861i | −2.54993 | + | 4.41661i | 3.07334 | + | 1.77439i | 1.31766i | 1.31877 | − | 2.28417i | −4.15482 | − | 2.40932i | ||
| 484.4 | −1.68495 | + | 0.972806i | −0.651549 | + | 0.376172i | 0.892702 | − | 1.54621i | −0.809176 | − | 2.08452i | 0.731885 | − | 1.26766i | −1.29544 | − | 0.747922i | − | 0.417520i | −1.21699 | + | 2.10789i | 3.39126 | + | 2.72514i | |
| 484.5 | −1.52984 | + | 0.883256i | −0.598760 | + | 0.345695i | 0.560281 | − | 0.970435i | −2.04107 | − | 0.913245i | 0.610673 | − | 1.05772i | 3.77778 | + | 2.18110i | − | 1.55354i | −1.26099 | + | 2.18410i | 3.92915 | − | 0.405668i | |
| 484.6 | −1.36568 | + | 0.788477i | 2.57698 | − | 1.48782i | 0.243391 | − | 0.421566i | −2.01071 | + | 0.978285i | −2.34622 | + | 4.06377i | 2.16729 | + | 1.25129i | − | 2.38627i | 2.92720 | − | 5.07006i | 1.97464 | − | 2.92142i | |
| 484.7 | −0.768923 | + | 0.443938i | −1.09905 | + | 0.634534i | −0.605838 | + | 1.04934i | 1.33257 | + | 1.79562i | 0.563388 | − | 0.975816i | −1.97564 | − | 1.14064i | − | 2.85157i | −0.694733 | + | 1.20331i | −1.82179 | − | 0.789117i | |
| 484.8 | −0.342148 | + | 0.197539i | −2.36988 | + | 1.36825i | −0.921957 | + | 1.59688i | −1.15119 | + | 1.91697i | 0.540567 | − | 0.936289i | 0.545081 | + | 0.314703i | − | 1.51865i | 2.24423 | − | 3.88712i | 0.0151994 | − | 0.883291i | |
| 484.9 | −0.210318 | + | 0.121427i | 1.03358 | − | 0.596738i | −0.970511 | + | 1.68097i | 1.50873 | − | 1.65037i | −0.144920 | + | 0.251009i | −4.14000 | − | 2.39023i | − | 0.957093i | −0.787808 | + | 1.36452i | −0.116914 | + | 0.530303i | |
| 484.10 | 0.210318 | − | 0.121427i | −1.03358 | + | 0.596738i | −0.970511 | + | 1.68097i | 1.50873 | + | 1.65037i | −0.144920 | + | 0.251009i | 4.14000 | + | 2.39023i | 0.957093i | −0.787808 | + | 1.36452i | 0.517713 | + | 0.163901i | ||
| 484.11 | 0.342148 | − | 0.197539i | 2.36988 | − | 1.36825i | −0.921957 | + | 1.59688i | −1.15119 | − | 1.91697i | 0.540567 | − | 0.936289i | −0.545081 | − | 0.314703i | 1.51865i | 2.24423 | − | 3.88712i | −0.772552 | − | 0.428482i | ||
| 484.12 | 0.768923 | − | 0.443938i | 1.09905 | − | 0.634534i | −0.605838 | + | 1.04934i | 1.33257 | − | 1.79562i | 0.563388 | − | 0.975816i | 1.97564 | + | 1.14064i | 2.85157i | −0.694733 | + | 1.20331i | 0.227498 | − | 1.97227i | ||
| 484.13 | 1.36568 | − | 0.788477i | −2.57698 | + | 1.48782i | 0.243391 | − | 0.421566i | −2.01071 | − | 0.978285i | −2.34622 | + | 4.06377i | −2.16729 | − | 1.25129i | 2.38627i | 2.92720 | − | 5.07006i | −3.51735 | + | 0.249373i | ||
| 484.14 | 1.52984 | − | 0.883256i | 0.598760 | − | 0.345695i | 0.560281 | − | 0.970435i | −2.04107 | + | 0.913245i | 0.610673 | − | 1.05772i | −3.77778 | − | 2.18110i | 1.55354i | −1.26099 | + | 2.18410i | −2.31590 | + | 3.19991i | ||
| 484.15 | 1.68495 | − | 0.972806i | 0.651549 | − | 0.376172i | 0.892702 | − | 1.54621i | −0.809176 | + | 2.08452i | 0.731885 | − | 1.26766i | 1.29544 | + | 0.747922i | 0.417520i | −1.21699 | + | 2.10789i | 0.664415 | + | 4.29949i | ||
| 484.16 | 1.86013 | − | 1.07395i | −2.05625 | + | 1.18717i | 1.30673 | − | 2.26333i | 1.11435 | − | 1.93861i | −2.54993 | + | 4.41661i | −3.07334 | − | 1.77439i | − | 1.31766i | 1.31877 | − | 2.28417i | −0.00912812 | − | 4.80284i | |
| 484.17 | 1.86795 | − | 1.07846i | 1.51940 | − | 0.877227i | 1.32615 | − | 2.29696i | −0.176470 | − | 2.22909i | 1.89211 | − | 3.27723i | 3.34392 | + | 1.93061i | − | 1.40696i | 0.0390543 | − | 0.0676440i | −2.73362 | − | 3.97351i | |
| 484.18 | 2.18027 | − | 1.25878i | −2.26868 | + | 1.30982i | 2.16905 | − | 3.75690i | 2.23296 | + | 0.117790i | −3.29755 | + | 5.71153i | 1.06580 | + | 0.615337i | − | 5.88628i | 1.93127 | − | 3.34505i | 5.01673 | − | 2.55399i | |
| 529.1 | −2.18027 | − | 1.25878i | 2.26868 | + | 1.30982i | 2.16905 | + | 3.75690i | 2.23296 | + | 0.117790i | −3.29755 | − | 5.71153i | −1.06580 | + | 0.615337i | − | 5.88628i | 1.93127 | + | 3.34505i | −4.72019 | − | 3.06762i | |
| 529.2 | −1.86795 | − | 1.07846i | −1.51940 | − | 0.877227i | 1.32615 | + | 2.29696i | −0.176470 | − | 2.22909i | 1.89211 | + | 3.27723i | −3.34392 | + | 1.93061i | − | 1.40696i | 0.0390543 | + | 0.0676440i | −2.07435 | + | 4.35414i | |
| See all 36 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
| 13.c | even | 3 | 1 | inner |
| 65.n | even | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 845.2.n.h | 36 | |
| 5.b | even | 2 | 1 | inner | 845.2.n.h | 36 | |
| 13.b | even | 2 | 1 | 845.2.n.i | 36 | ||
| 13.c | even | 3 | 1 | 845.2.b.h | yes | 18 | |
| 13.c | even | 3 | 1 | inner | 845.2.n.h | 36 | |
| 13.d | odd | 4 | 2 | 845.2.l.g | 72 | ||
| 13.e | even | 6 | 1 | 845.2.b.g | ✓ | 18 | |
| 13.e | even | 6 | 1 | 845.2.n.i | 36 | ||
| 13.f | odd | 12 | 2 | 845.2.d.e | 36 | ||
| 13.f | odd | 12 | 2 | 845.2.l.g | 72 | ||
| 65.d | even | 2 | 1 | 845.2.n.i | 36 | ||
| 65.g | odd | 4 | 2 | 845.2.l.g | 72 | ||
| 65.l | even | 6 | 1 | 845.2.b.g | ✓ | 18 | |
| 65.l | even | 6 | 1 | 845.2.n.i | 36 | ||
| 65.n | even | 6 | 1 | 845.2.b.h | yes | 18 | |
| 65.n | even | 6 | 1 | inner | 845.2.n.h | 36 | |
| 65.q | odd | 12 | 2 | 4225.2.a.cb | 18 | ||
| 65.r | odd | 12 | 2 | 4225.2.a.ca | 18 | ||
| 65.s | odd | 12 | 2 | 845.2.d.e | 36 | ||
| 65.s | odd | 12 | 2 | 845.2.l.g | 72 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 845.2.b.g | ✓ | 18 | 13.e | even | 6 | 1 | |
| 845.2.b.g | ✓ | 18 | 65.l | even | 6 | 1 | |
| 845.2.b.h | yes | 18 | 13.c | even | 3 | 1 | |
| 845.2.b.h | yes | 18 | 65.n | even | 6 | 1 | |
| 845.2.d.e | 36 | 13.f | odd | 12 | 2 | ||
| 845.2.d.e | 36 | 65.s | odd | 12 | 2 | ||
| 845.2.l.g | 72 | 13.d | odd | 4 | 2 | ||
| 845.2.l.g | 72 | 13.f | odd | 12 | 2 | ||
| 845.2.l.g | 72 | 65.g | odd | 4 | 2 | ||
| 845.2.l.g | 72 | 65.s | odd | 12 | 2 | ||
| 845.2.n.h | 36 | 1.a | even | 1 | 1 | trivial | |
| 845.2.n.h | 36 | 5.b | even | 2 | 1 | inner | |
| 845.2.n.h | 36 | 13.c | even | 3 | 1 | inner | |
| 845.2.n.h | 36 | 65.n | even | 6 | 1 | inner | |
| 845.2.n.i | 36 | 13.b | even | 2 | 1 | ||
| 845.2.n.i | 36 | 13.e | even | 6 | 1 | ||
| 845.2.n.i | 36 | 65.d | even | 2 | 1 | ||
| 845.2.n.i | 36 | 65.l | even | 6 | 1 | ||
| 4225.2.a.ca | 18 | 65.r | odd | 12 | 2 | ||
| 4225.2.a.cb | 18 | 65.q | odd | 12 | 2 | ||
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(845, [\chi])\):
|
\( T_{2}^{36} - 26 T_{2}^{34} + 395 T_{2}^{32} - 4042 T_{2}^{30} + 31047 T_{2}^{28} - 184148 T_{2}^{26} + \cdots + 841 \)
|
|
\( T_{11}^{18} + 11 T_{11}^{17} + 122 T_{11}^{16} + 659 T_{11}^{15} + 4263 T_{11}^{14} + 16144 T_{11}^{13} + \cdots + 235192896 \)
|