Newspace parameters
| Level: | \( N \) | \(=\) | \( 845 = 5 \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 845.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.74735897080\) |
| Analytic rank: | \(0\) |
| Dimension: | \(36\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 844.1 | −2.51756 | − | 2.61964i | 4.33809 | −0.117790 | + | 2.23296i | 6.59510i | −1.23067 | −5.88628 | −3.86253 | 0.296543 | − | 5.62161i | |||||||||||||
| 844.2 | −2.51756 | 2.61964i | 4.33809 | −0.117790 | − | 2.23296i | − | 6.59510i | −1.23067 | −5.88628 | −3.86253 | 0.296543 | + | 5.62161i | |||||||||||||
| 844.3 | −2.15692 | − | 1.75445i | 2.65230 | 2.22909 | + | 0.176470i | 3.78422i | −3.86123 | −1.40696 | −0.0781086 | −4.80798 | − | 0.380631i | |||||||||||||
| 844.4 | −2.15692 | 1.75445i | 2.65230 | 2.22909 | − | 0.176470i | − | 3.78422i | −3.86123 | −1.40696 | −0.0781086 | −4.80798 | + | 0.380631i | |||||||||||||
| 844.5 | −2.14790 | − | 2.37435i | 2.61347 | 1.93861 | + | 1.11435i | 5.09986i | 3.54879 | −1.31766 | −2.63754 | −4.16394 | − | 2.39351i | |||||||||||||
| 844.6 | −2.14790 | 2.37435i | 2.61347 | 1.93861 | − | 1.11435i | − | 5.09986i | 3.54879 | −1.31766 | −2.63754 | −4.16394 | + | 2.39351i | |||||||||||||
| 844.7 | −1.94561 | − | 0.752344i | 1.78540 | −2.08452 | + | 0.809176i | 1.46377i | −1.49584 | 0.417520 | 2.43398 | 4.05567 | − | 1.57434i | |||||||||||||
| 844.8 | −1.94561 | 0.752344i | 1.78540 | −2.08452 | − | 0.809176i | − | 1.46377i | −1.49584 | 0.417520 | 2.43398 | 4.05567 | + | 1.57434i | |||||||||||||
| 844.9 | −1.76651 | − | 0.691389i | 1.12056 | −0.913245 | + | 2.04107i | 1.22135i | 4.36221 | 1.55354 | 2.52198 | 1.61326 | − | 3.60558i | |||||||||||||
| 844.10 | −1.76651 | 0.691389i | 1.12056 | −0.913245 | − | 2.04107i | − | 1.22135i | 4.36221 | 1.55354 | 2.52198 | 1.61326 | + | 3.60558i | |||||||||||||
| 844.11 | −1.57695 | − | 2.97563i | 0.486782 | 0.978285 | − | 2.01071i | 4.69244i | 2.50257 | 2.38627 | −5.85440 | −1.54271 | + | 3.17080i | |||||||||||||
| 844.12 | −1.57695 | 2.97563i | 0.486782 | 0.978285 | + | 2.01071i | − | 4.69244i | 2.50257 | 2.38627 | −5.85440 | −1.54271 | − | 3.17080i | |||||||||||||
| 844.13 | −0.887876 | − | 1.26907i | −1.21168 | 1.79562 | − | 1.33257i | 1.12678i | −2.28128 | 2.85157 | 1.38947 | −1.59429 | + | 1.18316i | |||||||||||||
| 844.14 | −0.887876 | 1.26907i | −1.21168 | 1.79562 | + | 1.33257i | − | 1.12678i | −2.28128 | 2.85157 | 1.38947 | −1.59429 | − | 1.18316i | |||||||||||||
| 844.15 | −0.395078 | − | 2.73651i | −1.84391 | 1.91697 | + | 1.15119i | 1.08113i | 0.629405 | 1.51865 | −4.48846 | −0.757353 | − | 0.454808i | |||||||||||||
| 844.16 | −0.395078 | 2.73651i | −1.84391 | 1.91697 | − | 1.15119i | − | 1.08113i | 0.629405 | 1.51865 | −4.48846 | −0.757353 | + | 0.454808i | |||||||||||||
| 844.17 | −0.242854 | − | 1.19348i | −1.94102 | −1.65037 | + | 1.50873i | 0.289840i | −4.78046 | 0.957093 | 1.57562 | 0.400799 | − | 0.366402i | |||||||||||||
| 844.18 | −0.242854 | 1.19348i | −1.94102 | −1.65037 | − | 1.50873i | − | 0.289840i | −4.78046 | 0.957093 | 1.57562 | 0.400799 | + | 0.366402i | |||||||||||||
| 844.19 | 0.242854 | − | 1.19348i | −1.94102 | 1.65037 | − | 1.50873i | − | 0.289840i | 4.78046 | −0.957093 | 1.57562 | 0.400799 | − | 0.366402i | ||||||||||||
| 844.20 | 0.242854 | 1.19348i | −1.94102 | 1.65037 | + | 1.50873i | 0.289840i | 4.78046 | −0.957093 | 1.57562 | 0.400799 | + | 0.366402i | ||||||||||||||
| See all 36 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
| 13.b | even | 2 | 1 | inner |
| 65.d | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 845.2.d.e | 36 | |
| 5.b | even | 2 | 1 | inner | 845.2.d.e | 36 | |
| 13.b | even | 2 | 1 | inner | 845.2.d.e | 36 | |
| 13.c | even | 3 | 2 | 845.2.l.g | 72 | ||
| 13.d | odd | 4 | 1 | 845.2.b.g | ✓ | 18 | |
| 13.d | odd | 4 | 1 | 845.2.b.h | yes | 18 | |
| 13.e | even | 6 | 2 | 845.2.l.g | 72 | ||
| 13.f | odd | 12 | 2 | 845.2.n.h | 36 | ||
| 13.f | odd | 12 | 2 | 845.2.n.i | 36 | ||
| 65.d | even | 2 | 1 | inner | 845.2.d.e | 36 | |
| 65.f | even | 4 | 1 | 4225.2.a.ca | 18 | ||
| 65.f | even | 4 | 1 | 4225.2.a.cb | 18 | ||
| 65.g | odd | 4 | 1 | 845.2.b.g | ✓ | 18 | |
| 65.g | odd | 4 | 1 | 845.2.b.h | yes | 18 | |
| 65.k | even | 4 | 1 | 4225.2.a.ca | 18 | ||
| 65.k | even | 4 | 1 | 4225.2.a.cb | 18 | ||
| 65.l | even | 6 | 2 | 845.2.l.g | 72 | ||
| 65.n | even | 6 | 2 | 845.2.l.g | 72 | ||
| 65.s | odd | 12 | 2 | 845.2.n.h | 36 | ||
| 65.s | odd | 12 | 2 | 845.2.n.i | 36 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 845.2.b.g | ✓ | 18 | 13.d | odd | 4 | 1 | |
| 845.2.b.g | ✓ | 18 | 65.g | odd | 4 | 1 | |
| 845.2.b.h | yes | 18 | 13.d | odd | 4 | 1 | |
| 845.2.b.h | yes | 18 | 65.g | odd | 4 | 1 | |
| 845.2.d.e | 36 | 1.a | even | 1 | 1 | trivial | |
| 845.2.d.e | 36 | 5.b | even | 2 | 1 | inner | |
| 845.2.d.e | 36 | 13.b | even | 2 | 1 | inner | |
| 845.2.d.e | 36 | 65.d | even | 2 | 1 | inner | |
| 845.2.l.g | 72 | 13.c | even | 3 | 2 | ||
| 845.2.l.g | 72 | 13.e | even | 6 | 2 | ||
| 845.2.l.g | 72 | 65.l | even | 6 | 2 | ||
| 845.2.l.g | 72 | 65.n | even | 6 | 2 | ||
| 845.2.n.h | 36 | 13.f | odd | 12 | 2 | ||
| 845.2.n.h | 36 | 65.s | odd | 12 | 2 | ||
| 845.2.n.i | 36 | 13.f | odd | 12 | 2 | ||
| 845.2.n.i | 36 | 65.s | odd | 12 | 2 | ||
| 4225.2.a.ca | 18 | 65.f | even | 4 | 1 | ||
| 4225.2.a.ca | 18 | 65.k | even | 4 | 1 | ||
| 4225.2.a.cb | 18 | 65.f | even | 4 | 1 | ||
| 4225.2.a.cb | 18 | 65.k | even | 4 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{18} - 26 T_{2}^{16} + 281 T_{2}^{14} - 1632 T_{2}^{12} + 5482 T_{2}^{10} - 10620 T_{2}^{8} + \cdots - 29 \)
acting on \(S_{2}^{\mathrm{new}}(845, [\chi])\).