Properties

Label 845.2.d.e.844.14
Level $845$
Weight $2$
Character 845.844
Analytic conductor $6.747$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(844,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.844"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 844.14
Character \(\chi\) \(=\) 845.844
Dual form 845.2.d.e.844.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.887876 q^{2} +1.26907i q^{3} -1.21168 q^{4} +(1.79562 + 1.33257i) q^{5} -1.12678i q^{6} -2.28128 q^{7} +2.85157 q^{8} +1.38947 q^{9} +(-1.59429 - 1.18316i) q^{10} +3.13829i q^{11} -1.53770i q^{12} +2.02549 q^{14} +(-1.69112 + 2.27877i) q^{15} -0.108488 q^{16} +1.72423i q^{17} -1.23367 q^{18} +4.27007i q^{19} +(-2.17571 - 1.61464i) q^{20} -2.89510i q^{21} -2.78641i q^{22} -8.63424i q^{23} +3.61884i q^{24} +(1.44852 + 4.78558i) q^{25} +5.57053i q^{27} +2.76417 q^{28} +7.94250 q^{29} +(1.50151 - 2.02326i) q^{30} +4.17039i q^{31} -5.60682 q^{32} -3.98270 q^{33} -1.53090i q^{34} +(-4.09631 - 3.03996i) q^{35} -1.68358 q^{36} -8.80437 q^{37} -3.79129i q^{38} +(5.12034 + 3.79991i) q^{40} +2.94700i q^{41} +2.57049i q^{42} +0.153762i q^{43} -3.80259i q^{44} +(2.49496 + 1.85156i) q^{45} +7.66614i q^{46} -6.54786 q^{47} -0.137679i q^{48} -1.79577 q^{49} +(-1.28610 - 4.24900i) q^{50} -2.18817 q^{51} -1.93126i q^{53} -4.94594i q^{54} +(-4.18199 + 5.63518i) q^{55} -6.50522 q^{56} -5.41901 q^{57} -7.05195 q^{58} +5.51115i q^{59} +(2.04909 - 2.76113i) q^{60} -9.90052 q^{61} -3.70279i q^{62} -3.16976 q^{63} +5.19513 q^{64} +3.53615 q^{66} -6.45526 q^{67} -2.08921i q^{68} +10.9574 q^{69} +(3.63702 + 2.69911i) q^{70} -4.74432i q^{71} +3.96216 q^{72} +13.1891 q^{73} +7.81719 q^{74} +(-6.07323 + 1.83827i) q^{75} -5.17394i q^{76} -7.15931i q^{77} -13.4510 q^{79} +(-0.194804 - 0.144568i) q^{80} -2.90099 q^{81} -2.61657i q^{82} -6.32511 q^{83} +3.50792i q^{84} +(-2.29766 + 3.09607i) q^{85} -0.136522i q^{86} +10.0796i q^{87} +8.94905i q^{88} +15.7373i q^{89} +(-2.21521 - 1.64396i) q^{90} +10.4619i q^{92} -5.29250 q^{93} +5.81368 q^{94} +(-5.69016 + 7.66743i) q^{95} -7.11543i q^{96} +12.0815 q^{97} +1.59442 q^{98} +4.36055i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 32 q^{4} - 36 q^{9} - 26 q^{10} - 8 q^{14} - 24 q^{16} + 16 q^{25} + 40 q^{29} - 62 q^{30} + 20 q^{35} - 64 q^{36} + 6 q^{40} + 88 q^{49} + 80 q^{51} - 40 q^{55} + 40 q^{56} + 16 q^{61} - 136 q^{64}+ \cdots - 82 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.887876 −0.627823 −0.313912 0.949452i \(-0.601640\pi\)
−0.313912 + 0.949452i \(0.601640\pi\)
\(3\) 1.26907i 0.732697i 0.930478 + 0.366348i \(0.119392\pi\)
−0.930478 + 0.366348i \(0.880608\pi\)
\(4\) −1.21168 −0.605838
\(5\) 1.79562 + 1.33257i 0.803027 + 0.595943i
\(6\) 1.12678i 0.460004i
\(7\) −2.28128 −0.862242 −0.431121 0.902294i \(-0.641882\pi\)
−0.431121 + 0.902294i \(0.641882\pi\)
\(8\) 2.85157 1.00818
\(9\) 1.38947 0.463155
\(10\) −1.59429 1.18316i −0.504159 0.374147i
\(11\) 3.13829i 0.946230i 0.881001 + 0.473115i \(0.156870\pi\)
−0.881001 + 0.473115i \(0.843130\pi\)
\(12\) 1.53770i 0.443896i
\(13\) 0 0
\(14\) 2.02549 0.541335
\(15\) −1.69112 + 2.27877i −0.436646 + 0.588375i
\(16\) −0.108488 −0.0271220
\(17\) 1.72423i 0.418187i 0.977896 + 0.209094i \(0.0670513\pi\)
−0.977896 + 0.209094i \(0.932949\pi\)
\(18\) −1.23367 −0.290780
\(19\) 4.27007i 0.979621i 0.871829 + 0.489810i \(0.162934\pi\)
−0.871829 + 0.489810i \(0.837066\pi\)
\(20\) −2.17571 1.61464i −0.486504 0.361045i
\(21\) 2.89510i 0.631762i
\(22\) 2.78641i 0.594065i
\(23\) 8.63424i 1.80036i −0.435514 0.900182i \(-0.643433\pi\)
0.435514 0.900182i \(-0.356567\pi\)
\(24\) 3.61884i 0.738692i
\(25\) 1.44852 + 4.78558i 0.289704 + 0.957116i
\(26\) 0 0
\(27\) 5.57053i 1.07205i
\(28\) 2.76417 0.522379
\(29\) 7.94250 1.47488 0.737442 0.675410i \(-0.236033\pi\)
0.737442 + 0.675410i \(0.236033\pi\)
\(30\) 1.50151 2.02326i 0.274136 0.369395i
\(31\) 4.17039i 0.749024i 0.927222 + 0.374512i \(0.122190\pi\)
−0.927222 + 0.374512i \(0.877810\pi\)
\(32\) −5.60682 −0.991154
\(33\) −3.98270 −0.693300
\(34\) 1.53090i 0.262548i
\(35\) −4.09631 3.03996i −0.692403 0.513847i
\(36\) −1.68358 −0.280597
\(37\) −8.80437 −1.44743 −0.723715 0.690099i \(-0.757567\pi\)
−0.723715 + 0.690099i \(0.757567\pi\)
\(38\) 3.79129i 0.615028i
\(39\) 0 0
\(40\) 5.12034 + 3.79991i 0.809597 + 0.600819i
\(41\) 2.94700i 0.460244i 0.973162 + 0.230122i \(0.0739125\pi\)
−0.973162 + 0.230122i \(0.926088\pi\)
\(42\) 2.57049i 0.396635i
\(43\) 0.153762i 0.0234486i 0.999931 + 0.0117243i \(0.00373204\pi\)
−0.999931 + 0.0117243i \(0.996268\pi\)
\(44\) 3.80259i 0.573262i
\(45\) 2.49496 + 1.85156i 0.371926 + 0.276014i
\(46\) 7.66614i 1.13031i
\(47\) −6.54786 −0.955103 −0.477552 0.878604i \(-0.658476\pi\)
−0.477552 + 0.878604i \(0.658476\pi\)
\(48\) 0.137679i 0.0198722i
\(49\) −1.79577 −0.256539
\(50\) −1.28610 4.24900i −0.181883 0.600900i
\(51\) −2.18817 −0.306404
\(52\) 0 0
\(53\) 1.93126i 0.265279i −0.991164 0.132640i \(-0.957655\pi\)
0.991164 0.132640i \(-0.0423453\pi\)
\(54\) 4.94594i 0.673057i
\(55\) −4.18199 + 5.63518i −0.563899 + 0.759848i
\(56\) −6.50522 −0.869297
\(57\) −5.41901 −0.717765
\(58\) −7.05195 −0.925967
\(59\) 5.51115i 0.717490i 0.933436 + 0.358745i \(0.116795\pi\)
−0.933436 + 0.358745i \(0.883205\pi\)
\(60\) 2.04909 2.76113i 0.264537 0.356460i
\(61\) −9.90052 −1.26763 −0.633816 0.773484i \(-0.718512\pi\)
−0.633816 + 0.773484i \(0.718512\pi\)
\(62\) 3.70279i 0.470254i
\(63\) −3.16976 −0.399352
\(64\) 5.19513 0.649392
\(65\) 0 0
\(66\) 3.53615 0.435270
\(67\) −6.45526 −0.788635 −0.394318 0.918974i \(-0.629019\pi\)
−0.394318 + 0.918974i \(0.629019\pi\)
\(68\) 2.08921i 0.253354i
\(69\) 10.9574 1.31912
\(70\) 3.63702 + 2.69911i 0.434707 + 0.322605i
\(71\) 4.74432i 0.563047i −0.959554 0.281524i \(-0.909160\pi\)
0.959554 0.281524i \(-0.0908398\pi\)
\(72\) 3.96216 0.466945
\(73\) 13.1891 1.54367 0.771834 0.635824i \(-0.219340\pi\)
0.771834 + 0.635824i \(0.219340\pi\)
\(74\) 7.81719 0.908730
\(75\) −6.07323 + 1.83827i −0.701276 + 0.212265i
\(76\) 5.17394i 0.593492i
\(77\) 7.15931i 0.815879i
\(78\) 0 0
\(79\) −13.4510 −1.51335 −0.756676 0.653791i \(-0.773178\pi\)
−0.756676 + 0.653791i \(0.773178\pi\)
\(80\) −0.194804 0.144568i −0.0217797 0.0161632i
\(81\) −2.90099 −0.322332
\(82\) 2.61657i 0.288952i
\(83\) −6.32511 −0.694271 −0.347136 0.937815i \(-0.612846\pi\)
−0.347136 + 0.937815i \(0.612846\pi\)
\(84\) 3.50792i 0.382745i
\(85\) −2.29766 + 3.09607i −0.249216 + 0.335816i
\(86\) 0.136522i 0.0147215i
\(87\) 10.0796i 1.08064i
\(88\) 8.94905i 0.953972i
\(89\) 15.7373i 1.66815i 0.551649 + 0.834077i \(0.313999\pi\)
−0.551649 + 0.834077i \(0.686001\pi\)
\(90\) −2.21521 1.64396i −0.233504 0.173288i
\(91\) 0 0
\(92\) 10.4619i 1.09073i
\(93\) −5.29250 −0.548807
\(94\) 5.81368 0.599636
\(95\) −5.69016 + 7.66743i −0.583798 + 0.786661i
\(96\) 7.11543i 0.726216i
\(97\) 12.0815 1.22669 0.613345 0.789815i \(-0.289823\pi\)
0.613345 + 0.789815i \(0.289823\pi\)
\(98\) 1.59442 0.161061
\(99\) 4.36055i 0.438251i
\(100\) −1.75513 5.79858i −0.175513 0.579858i
\(101\) −3.79100 −0.377218 −0.188609 0.982052i \(-0.560398\pi\)
−0.188609 + 0.982052i \(0.560398\pi\)
\(102\) 1.94282 0.192368
\(103\) 14.6259i 1.44113i 0.693388 + 0.720564i \(0.256117\pi\)
−0.693388 + 0.720564i \(0.743883\pi\)
\(104\) 0 0
\(105\) 3.85792 5.19850i 0.376494 0.507322i
\(106\) 1.71472i 0.166548i
\(107\) 4.19100i 0.405159i −0.979266 0.202580i \(-0.935067\pi\)
0.979266 0.202580i \(-0.0649325\pi\)
\(108\) 6.74968i 0.649488i
\(109\) 16.1460i 1.54650i −0.634099 0.773252i \(-0.718629\pi\)
0.634099 0.773252i \(-0.281371\pi\)
\(110\) 3.71309 5.00334i 0.354029 0.477050i
\(111\) 11.1733i 1.06053i
\(112\) 0.247491 0.0233857
\(113\) 3.51935i 0.331072i 0.986204 + 0.165536i \(0.0529355\pi\)
−0.986204 + 0.165536i \(0.947065\pi\)
\(114\) 4.81141 0.450629
\(115\) 11.5057 15.5038i 1.07291 1.44574i
\(116\) −9.62373 −0.893541
\(117\) 0 0
\(118\) 4.89322i 0.450457i
\(119\) 3.93345i 0.360579i
\(120\) −4.82235 + 6.49806i −0.440218 + 0.593189i
\(121\) 1.15114 0.104649
\(122\) 8.79043 0.795848
\(123\) −3.73994 −0.337219
\(124\) 5.05316i 0.453787i
\(125\) −3.77613 + 10.5233i −0.337747 + 0.941237i
\(126\) 2.81435 0.250722
\(127\) 2.42242i 0.214955i 0.994208 + 0.107478i \(0.0342774\pi\)
−0.994208 + 0.107478i \(0.965723\pi\)
\(128\) 6.60100 0.583451
\(129\) −0.195135 −0.0171807
\(130\) 0 0
\(131\) −5.00647 −0.437418 −0.218709 0.975790i \(-0.570184\pi\)
−0.218709 + 0.975790i \(0.570184\pi\)
\(132\) 4.82575 0.420027
\(133\) 9.74121i 0.844670i
\(134\) 5.73147 0.495124
\(135\) −7.42312 + 10.0026i −0.638880 + 0.860884i
\(136\) 4.91676i 0.421609i
\(137\) 12.8154 1.09489 0.547447 0.836840i \(-0.315600\pi\)
0.547447 + 0.836840i \(0.315600\pi\)
\(138\) −9.72885 −0.828175
\(139\) 15.5289 1.31714 0.658571 0.752519i \(-0.271161\pi\)
0.658571 + 0.752519i \(0.271161\pi\)
\(140\) 4.96340 + 3.68345i 0.419484 + 0.311308i
\(141\) 8.30968i 0.699801i
\(142\) 4.21237i 0.353494i
\(143\) 0 0
\(144\) −0.150740 −0.0125617
\(145\) 14.2617 + 10.5839i 1.18437 + 0.878947i
\(146\) −11.7103 −0.969151
\(147\) 2.27896i 0.187965i
\(148\) 10.6681 0.876908
\(149\) 0.0413812i 0.00339008i 0.999999 + 0.00169504i \(0.000539549\pi\)
−0.999999 + 0.00169504i \(0.999460\pi\)
\(150\) 5.39227 1.63215i 0.440277 0.133265i
\(151\) 6.01321i 0.489348i 0.969605 + 0.244674i \(0.0786809\pi\)
−0.969605 + 0.244674i \(0.921319\pi\)
\(152\) 12.1764i 0.987636i
\(153\) 2.39576i 0.193686i
\(154\) 6.35658i 0.512228i
\(155\) −5.55733 + 7.48844i −0.446375 + 0.601486i
\(156\) 0 0
\(157\) 22.7846i 1.81841i −0.416348 0.909205i \(-0.636690\pi\)
0.416348 0.909205i \(-0.363310\pi\)
\(158\) 11.9428 0.950117
\(159\) 2.45090 0.194369
\(160\) −10.0677 7.47147i −0.795923 0.590672i
\(161\) 19.6971i 1.55235i
\(162\) 2.57572 0.202367
\(163\) −1.52126 −0.119154 −0.0595772 0.998224i \(-0.518975\pi\)
−0.0595772 + 0.998224i \(0.518975\pi\)
\(164\) 3.57081i 0.278833i
\(165\) −7.15143 5.30723i −0.556738 0.413167i
\(166\) 5.61592 0.435880
\(167\) 0.0491982 0.00380707 0.00190353 0.999998i \(-0.499394\pi\)
0.00190353 + 0.999998i \(0.499394\pi\)
\(168\) 8.25557i 0.636931i
\(169\) 0 0
\(170\) 2.04003 2.74892i 0.156463 0.210833i
\(171\) 5.93311i 0.453717i
\(172\) 0.186310i 0.0142060i
\(173\) 9.00465i 0.684611i 0.939589 + 0.342305i \(0.111208\pi\)
−0.939589 + 0.342305i \(0.888792\pi\)
\(174\) 8.94941i 0.678453i
\(175\) −3.30447 10.9172i −0.249795 0.825266i
\(176\) 0.340467i 0.0256637i
\(177\) −6.99402 −0.525703
\(178\) 13.9728i 1.04731i
\(179\) 22.8604 1.70866 0.854332 0.519727i \(-0.173966\pi\)
0.854332 + 0.519727i \(0.173966\pi\)
\(180\) −3.02308 2.24349i −0.225327 0.167220i
\(181\) 17.7138 1.31666 0.658328 0.752731i \(-0.271264\pi\)
0.658328 + 0.752731i \(0.271264\pi\)
\(182\) 0 0
\(183\) 12.5644i 0.928789i
\(184\) 24.6211i 1.81509i
\(185\) −15.8093 11.7324i −1.16232 0.862586i
\(186\) 4.69909 0.344554
\(187\) −5.41113 −0.395701
\(188\) 7.93388 0.578638
\(189\) 12.7079i 0.924366i
\(190\) 5.05216 6.80772i 0.366522 0.493884i
\(191\) 9.73516 0.704411 0.352206 0.935923i \(-0.385432\pi\)
0.352206 + 0.935923i \(0.385432\pi\)
\(192\) 6.59298i 0.475807i
\(193\) 10.0009 0.719883 0.359942 0.932975i \(-0.382797\pi\)
0.359942 + 0.932975i \(0.382797\pi\)
\(194\) −10.7269 −0.770145
\(195\) 0 0
\(196\) 2.17590 0.155421
\(197\) −5.99999 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 3.87162i 0.275144i
\(199\) 5.81284 0.412061 0.206031 0.978546i \(-0.433945\pi\)
0.206031 + 0.978546i \(0.433945\pi\)
\(200\) 4.13055 + 13.6464i 0.292074 + 0.964948i
\(201\) 8.19216i 0.577831i
\(202\) 3.36593 0.236826
\(203\) −18.1190 −1.27171
\(204\) 2.65135 0.185632
\(205\) −3.92708 + 5.29169i −0.274279 + 0.369588i
\(206\) 12.9859i 0.904774i
\(207\) 11.9970i 0.833848i
\(208\) 0 0
\(209\) −13.4007 −0.926946
\(210\) −3.42535 + 4.61562i −0.236372 + 0.318508i
\(211\) 8.71262 0.599801 0.299901 0.953970i \(-0.403046\pi\)
0.299901 + 0.953970i \(0.403046\pi\)
\(212\) 2.34006i 0.160716i
\(213\) 6.02087 0.412543
\(214\) 3.72109i 0.254368i
\(215\) −0.204899 + 0.276099i −0.0139740 + 0.0188298i
\(216\) 15.8848i 1.08082i
\(217\) 9.51381i 0.645839i
\(218\) 14.3356i 0.970930i
\(219\) 16.7379i 1.13104i
\(220\) 5.06722 6.82802i 0.341632 0.460345i
\(221\) 0 0
\(222\) 9.92055i 0.665824i
\(223\) −0.0454220 −0.00304168 −0.00152084 0.999999i \(-0.500484\pi\)
−0.00152084 + 0.999999i \(0.500484\pi\)
\(224\) 12.7907 0.854615
\(225\) 2.01267 + 6.64940i 0.134178 + 0.443294i
\(226\) 3.12474i 0.207855i
\(227\) −6.42258 −0.426281 −0.213141 0.977022i \(-0.568369\pi\)
−0.213141 + 0.977022i \(0.568369\pi\)
\(228\) 6.56608 0.434849
\(229\) 7.27972i 0.481057i −0.970642 0.240529i \(-0.922679\pi\)
0.970642 0.240529i \(-0.0773208\pi\)
\(230\) −10.2157 + 13.7655i −0.673600 + 0.907669i
\(231\) 9.08565 0.597792
\(232\) 22.6486 1.48695
\(233\) 4.56107i 0.298806i −0.988776 0.149403i \(-0.952265\pi\)
0.988776 0.149403i \(-0.0477351\pi\)
\(234\) 0 0
\(235\) −11.7575 8.72547i −0.766973 0.569187i
\(236\) 6.67773i 0.434683i
\(237\) 17.0702i 1.10883i
\(238\) 3.49241i 0.226380i
\(239\) 16.9338i 1.09536i −0.836688 0.547680i \(-0.815511\pi\)
0.836688 0.547680i \(-0.184489\pi\)
\(240\) 0.183466 0.247219i 0.0118427 0.0159579i
\(241\) 6.13059i 0.394906i −0.980312 0.197453i \(-0.936733\pi\)
0.980312 0.197453i \(-0.0632670\pi\)
\(242\) −1.02207 −0.0657010
\(243\) 13.0300i 0.835878i
\(244\) 11.9962 0.767979
\(245\) −3.22453 2.39299i −0.206008 0.152883i
\(246\) 3.32060 0.211714
\(247\) 0 0
\(248\) 11.8922i 0.755152i
\(249\) 8.02700i 0.508690i
\(250\) 3.35273 9.34343i 0.212046 0.590930i
\(251\) −11.5843 −0.731192 −0.365596 0.930774i \(-0.619135\pi\)
−0.365596 + 0.930774i \(0.619135\pi\)
\(252\) 3.84072 0.241943
\(253\) 27.0967 1.70356
\(254\) 2.15081i 0.134954i
\(255\) −3.92912 2.91588i −0.246051 0.182600i
\(256\) −16.2511 −1.01570
\(257\) 12.4669i 0.777665i 0.921309 + 0.388832i \(0.127121\pi\)
−0.921309 + 0.388832i \(0.872879\pi\)
\(258\) 0.173256 0.0107864
\(259\) 20.0852 1.24803
\(260\) 0 0
\(261\) 11.0358 0.683101
\(262\) 4.44513 0.274621
\(263\) 28.3288i 1.74683i 0.486975 + 0.873416i \(0.338100\pi\)
−0.486975 + 0.873416i \(0.661900\pi\)
\(264\) −11.3570 −0.698972
\(265\) 2.57354 3.46781i 0.158091 0.213026i
\(266\) 8.64898i 0.530303i
\(267\) −19.9717 −1.22225
\(268\) 7.82168 0.477785
\(269\) 12.1886 0.743154 0.371577 0.928402i \(-0.378817\pi\)
0.371577 + 0.928402i \(0.378817\pi\)
\(270\) 6.59081 8.88104i 0.401104 0.540483i
\(271\) 17.6547i 1.07245i −0.844076 0.536224i \(-0.819850\pi\)
0.844076 0.536224i \(-0.180150\pi\)
\(272\) 0.187058i 0.0113421i
\(273\) 0 0
\(274\) −11.3785 −0.687400
\(275\) −15.0185 + 4.54587i −0.905652 + 0.274126i
\(276\) −13.2769 −0.799174
\(277\) 11.7250i 0.704489i 0.935908 + 0.352245i \(0.114581\pi\)
−0.935908 + 0.352245i \(0.885419\pi\)
\(278\) −13.7877 −0.826932
\(279\) 5.79461i 0.346914i
\(280\) −11.6809 8.66866i −0.698069 0.518051i
\(281\) 20.2642i 1.20886i −0.796659 0.604430i \(-0.793401\pi\)
0.796659 0.604430i \(-0.206599\pi\)
\(282\) 7.37796i 0.439351i
\(283\) 8.24330i 0.490013i −0.969521 0.245007i \(-0.921210\pi\)
0.969521 0.245007i \(-0.0787901\pi\)
\(284\) 5.74858i 0.341116i
\(285\) −9.73049 7.22120i −0.576384 0.427747i
\(286\) 0 0
\(287\) 6.72292i 0.396841i
\(288\) −7.79048 −0.459059
\(289\) 14.0270 0.825119
\(290\) −12.6626 9.39721i −0.743576 0.551823i
\(291\) 15.3322i 0.898792i
\(292\) −15.9809 −0.935213
\(293\) 21.3215 1.24562 0.622808 0.782375i \(-0.285992\pi\)
0.622808 + 0.782375i \(0.285992\pi\)
\(294\) 2.02343i 0.118009i
\(295\) −7.34399 + 9.89594i −0.427583 + 0.576164i
\(296\) −25.1063 −1.45927
\(297\) −17.4819 −1.01441
\(298\) 0.0367414i 0.00212837i
\(299\) 0 0
\(300\) 7.35879 2.22739i 0.424860 0.128598i
\(301\) 0.350775i 0.0202183i
\(302\) 5.33898i 0.307224i
\(303\) 4.81103i 0.276387i
\(304\) 0.463251i 0.0265693i
\(305\) −17.7776 13.1931i −1.01794 0.755436i
\(306\) 2.12714i 0.121600i
\(307\) 8.38560 0.478591 0.239296 0.970947i \(-0.423083\pi\)
0.239296 + 0.970947i \(0.423083\pi\)
\(308\) 8.67476i 0.494291i
\(309\) −18.5612 −1.05591
\(310\) 4.93422 6.64881i 0.280245 0.377627i
\(311\) 2.82308 0.160082 0.0800412 0.996792i \(-0.474495\pi\)
0.0800412 + 0.996792i \(0.474495\pi\)
\(312\) 0 0
\(313\) 19.1965i 1.08505i 0.840040 + 0.542525i \(0.182532\pi\)
−0.840040 + 0.542525i \(0.817468\pi\)
\(314\) 20.2299i 1.14164i
\(315\) −5.69169 4.22392i −0.320690 0.237991i
\(316\) 16.2982 0.916846
\(317\) −5.76453 −0.323768 −0.161884 0.986810i \(-0.551757\pi\)
−0.161884 + 0.986810i \(0.551757\pi\)
\(318\) −2.17610 −0.122029
\(319\) 24.9259i 1.39558i
\(320\) 9.32850 + 6.92288i 0.521479 + 0.387001i
\(321\) 5.31867 0.296859
\(322\) 17.4886i 0.974600i
\(323\) −7.36258 −0.409665
\(324\) 3.51506 0.195281
\(325\) 0 0
\(326\) 1.35069 0.0748079
\(327\) 20.4903 1.13312
\(328\) 8.40357i 0.464010i
\(329\) 14.9375 0.823530
\(330\) 6.34958 + 4.71216i 0.349533 + 0.259396i
\(331\) 4.06009i 0.223163i −0.993755 0.111581i \(-0.964408\pi\)
0.993755 0.111581i \(-0.0355915\pi\)
\(332\) 7.66399 0.420616
\(333\) −12.2334 −0.670385
\(334\) −0.0436819 −0.00239017
\(335\) −11.5912 8.60208i −0.633295 0.469982i
\(336\) 0.314083i 0.0171346i
\(337\) 24.8339i 1.35279i 0.736539 + 0.676395i \(0.236459\pi\)
−0.736539 + 0.676395i \(0.763541\pi\)
\(338\) 0 0
\(339\) −4.46629 −0.242576
\(340\) 2.78402 3.75143i 0.150984 0.203450i
\(341\) −13.0879 −0.708749
\(342\) 5.26787i 0.284854i
\(343\) 20.0656 1.08344
\(344\) 0.438465i 0.0236404i
\(345\) 19.6754 + 14.6015i 1.05929 + 0.786121i
\(346\) 7.99501i 0.429815i
\(347\) 29.1599i 1.56538i −0.622409 0.782692i \(-0.713846\pi\)
0.622409 0.782692i \(-0.286154\pi\)
\(348\) 12.2132i 0.654695i
\(349\) 7.29040i 0.390246i 0.980779 + 0.195123i \(0.0625107\pi\)
−0.980779 + 0.195123i \(0.937489\pi\)
\(350\) 2.93396 + 9.69315i 0.156827 + 0.518121i
\(351\) 0 0
\(352\) 17.5958i 0.937860i
\(353\) −13.9534 −0.742665 −0.371333 0.928500i \(-0.621099\pi\)
−0.371333 + 0.928500i \(0.621099\pi\)
\(354\) 6.20982 0.330048
\(355\) 6.32214 8.51901i 0.335544 0.452142i
\(356\) 19.0685i 1.01063i
\(357\) 4.99181 0.264195
\(358\) −20.2972 −1.07274
\(359\) 16.2637i 0.858366i 0.903218 + 0.429183i \(0.141198\pi\)
−0.903218 + 0.429183i \(0.858802\pi\)
\(360\) 7.11454 + 5.27985i 0.374969 + 0.278273i
\(361\) 0.766527 0.0403435
\(362\) −15.7276 −0.826627
\(363\) 1.46087i 0.0766759i
\(364\) 0 0
\(365\) 23.6827 + 17.5754i 1.23961 + 0.919939i
\(366\) 11.1557i 0.583115i
\(367\) 34.4480i 1.79817i 0.437774 + 0.899085i \(0.355767\pi\)
−0.437774 + 0.899085i \(0.644233\pi\)
\(368\) 0.936712i 0.0488295i
\(369\) 4.09475i 0.213164i
\(370\) 14.0367 + 10.4169i 0.729734 + 0.541551i
\(371\) 4.40574i 0.228735i
\(372\) 6.41280 0.332488
\(373\) 23.2179i 1.20218i −0.799183 0.601088i \(-0.794734\pi\)
0.799183 0.601088i \(-0.205266\pi\)
\(374\) 4.80442 0.248430
\(375\) −13.3548 4.79216i −0.689641 0.247466i
\(376\) −18.6717 −0.962918
\(377\) 0 0
\(378\) 11.2831i 0.580338i
\(379\) 12.2666i 0.630094i −0.949076 0.315047i \(-0.897980\pi\)
0.949076 0.315047i \(-0.102020\pi\)
\(380\) 6.89463 9.29044i 0.353687 0.476590i
\(381\) −3.07422 −0.157497
\(382\) −8.64361 −0.442246
\(383\) −1.88332 −0.0962329 −0.0481165 0.998842i \(-0.515322\pi\)
−0.0481165 + 0.998842i \(0.515322\pi\)
\(384\) 8.37712i 0.427493i
\(385\) 9.54027 12.8554i 0.486217 0.655173i
\(386\) −8.87959 −0.451959
\(387\) 0.213648i 0.0108603i
\(388\) −14.6389 −0.743176
\(389\) −20.0438 −1.01626 −0.508131 0.861280i \(-0.669663\pi\)
−0.508131 + 0.861280i \(0.669663\pi\)
\(390\) 0 0
\(391\) 14.8874 0.752889
\(392\) −5.12078 −0.258638
\(393\) 6.35356i 0.320494i
\(394\) 5.32725 0.268383
\(395\) −24.1528 17.9243i −1.21526 0.901871i
\(396\) 5.28357i 0.265509i
\(397\) −20.6134 −1.03456 −0.517279 0.855817i \(-0.673055\pi\)
−0.517279 + 0.855817i \(0.673055\pi\)
\(398\) −5.16108 −0.258702
\(399\) 12.3623 0.618887
\(400\) −0.157147 0.519178i −0.00785734 0.0259589i
\(401\) 35.8148i 1.78851i 0.447560 + 0.894254i \(0.352293\pi\)
−0.447560 + 0.894254i \(0.647707\pi\)
\(402\) 7.27362i 0.362775i
\(403\) 0 0
\(404\) 4.59346 0.228533
\(405\) −5.20907 3.86576i −0.258841 0.192091i
\(406\) 16.0875 0.798407
\(407\) 27.6307i 1.36960i
\(408\) −6.23971 −0.308912
\(409\) 0.221949i 0.0109747i 0.999985 + 0.00548733i \(0.00174668\pi\)
−0.999985 + 0.00548733i \(0.998253\pi\)
\(410\) 3.48676 4.69837i 0.172199 0.232036i
\(411\) 16.2636i 0.802226i
\(412\) 17.7218i 0.873091i
\(413\) 12.5725i 0.618650i
\(414\) 10.6518i 0.523509i
\(415\) −11.3575 8.42865i −0.557518 0.413746i
\(416\) 0 0
\(417\) 19.7072i 0.965065i
\(418\) 11.8982 0.581958
\(419\) −0.680369 −0.0332382 −0.0166191 0.999862i \(-0.505290\pi\)
−0.0166191 + 0.999862i \(0.505290\pi\)
\(420\) −4.67455 + 6.29890i −0.228094 + 0.307355i
\(421\) 2.01932i 0.0984155i −0.998789 0.0492078i \(-0.984330\pi\)
0.998789 0.0492078i \(-0.0156696\pi\)
\(422\) −7.73572 −0.376569
\(423\) −9.09803 −0.442361
\(424\) 5.50712i 0.267450i
\(425\) −8.25145 + 2.49758i −0.400254 + 0.121150i
\(426\) −5.34578 −0.259004
\(427\) 22.5858 1.09300
\(428\) 5.07814i 0.245461i
\(429\) 0 0
\(430\) 0.181925 0.245142i 0.00877321 0.0118218i
\(431\) 6.85397i 0.330144i 0.986281 + 0.165072i \(0.0527857\pi\)
−0.986281 + 0.165072i \(0.947214\pi\)
\(432\) 0.604336i 0.0290761i
\(433\) 0.520934i 0.0250345i −0.999922 0.0125172i \(-0.996016\pi\)
0.999922 0.0125172i \(-0.00398447\pi\)
\(434\) 8.44708i 0.405473i
\(435\) −13.4317 + 18.0991i −0.644002 + 0.867785i
\(436\) 19.5637i 0.936931i
\(437\) 36.8688 1.76367
\(438\) 14.8612i 0.710094i
\(439\) −27.5889 −1.31675 −0.658374 0.752691i \(-0.728756\pi\)
−0.658374 + 0.752691i \(0.728756\pi\)
\(440\) −11.9252 + 16.0691i −0.568513 + 0.766065i
\(441\) −2.49517 −0.118818
\(442\) 0 0
\(443\) 7.20684i 0.342408i 0.985236 + 0.171204i \(0.0547656\pi\)
−0.985236 + 0.171204i \(0.945234\pi\)
\(444\) 13.5385i 0.642508i
\(445\) −20.9711 + 28.2583i −0.994124 + 1.33957i
\(446\) 0.0403291 0.00190964
\(447\) −0.0525156 −0.00248390
\(448\) −11.8515 −0.559933
\(449\) 0.135634i 0.00640098i 0.999995 + 0.00320049i \(0.00101875\pi\)
−0.999995 + 0.00320049i \(0.998981\pi\)
\(450\) −1.78700 5.90385i −0.0842399 0.278310i
\(451\) −9.24853 −0.435496
\(452\) 4.26431i 0.200576i
\(453\) −7.63117 −0.358544
\(454\) 5.70245 0.267629
\(455\) 0 0
\(456\) −15.4527 −0.723638
\(457\) −0.308011 −0.0144081 −0.00720406 0.999974i \(-0.502293\pi\)
−0.00720406 + 0.999974i \(0.502293\pi\)
\(458\) 6.46349i 0.302019i
\(459\) −9.60488 −0.448317
\(460\) −13.9412 + 18.7856i −0.650012 + 0.875884i
\(461\) 28.6721i 1.33539i 0.744434 + 0.667696i \(0.232719\pi\)
−0.744434 + 0.667696i \(0.767281\pi\)
\(462\) −8.06693 −0.375308
\(463\) 16.1023 0.748339 0.374169 0.927360i \(-0.377928\pi\)
0.374169 + 0.927360i \(0.377928\pi\)
\(464\) −0.861666 −0.0400018
\(465\) −9.50334 7.05263i −0.440707 0.327058i
\(466\) 4.04967i 0.187597i
\(467\) 3.47589i 0.160845i −0.996761 0.0804224i \(-0.974373\pi\)
0.996761 0.0804224i \(-0.0256269\pi\)
\(468\) 0 0
\(469\) 14.7262 0.679994
\(470\) 10.4392 + 7.74714i 0.481524 + 0.357349i
\(471\) 28.9152 1.33234
\(472\) 15.7154i 0.723361i
\(473\) −0.482551 −0.0221877
\(474\) 15.1562i 0.696148i
\(475\) −20.4348 + 6.18527i −0.937611 + 0.283800i
\(476\) 4.76606i 0.218452i
\(477\) 2.68342i 0.122865i
\(478\) 15.0352i 0.687692i
\(479\) 14.4576i 0.660587i −0.943878 0.330293i \(-0.892852\pi\)
0.943878 0.330293i \(-0.107148\pi\)
\(480\) 9.48181 12.7766i 0.432783 0.583171i
\(481\) 0 0
\(482\) 5.44320i 0.247931i
\(483\) −24.9970 −1.13740
\(484\) −1.39481 −0.0634003
\(485\) 21.6938 + 16.0994i 0.985065 + 0.731038i
\(486\) 11.5691i 0.524783i
\(487\) −2.91278 −0.131991 −0.0659954 0.997820i \(-0.521022\pi\)
−0.0659954 + 0.997820i \(0.521022\pi\)
\(488\) −28.2320 −1.27800
\(489\) 1.93058i 0.0873040i
\(490\) 2.86298 + 2.12468i 0.129336 + 0.0959833i
\(491\) 7.60764 0.343328 0.171664 0.985156i \(-0.445086\pi\)
0.171664 + 0.985156i \(0.445086\pi\)
\(492\) 4.53160 0.204300
\(493\) 13.6947i 0.616778i
\(494\) 0 0
\(495\) −5.81073 + 7.82990i −0.261173 + 0.351928i
\(496\) 0.452437i 0.0203150i
\(497\) 10.8231i 0.485483i
\(498\) 7.12698i 0.319368i
\(499\) 4.07246i 0.182309i 0.995837 + 0.0911543i \(0.0290556\pi\)
−0.995837 + 0.0911543i \(0.970944\pi\)
\(500\) 4.57545 12.7509i 0.204620 0.570237i
\(501\) 0.0624358i 0.00278943i
\(502\) 10.2854 0.459059
\(503\) 34.0821i 1.51965i 0.650130 + 0.759823i \(0.274714\pi\)
−0.650130 + 0.759823i \(0.725286\pi\)
\(504\) −9.03879 −0.402620
\(505\) −6.80720 5.05177i −0.302916 0.224801i
\(506\) −24.0586 −1.06953
\(507\) 0 0
\(508\) 2.93519i 0.130228i
\(509\) 1.30664i 0.0579159i −0.999581 0.0289579i \(-0.990781\pi\)
0.999581 0.0289579i \(-0.00921889\pi\)
\(510\) 3.48857 + 2.58894i 0.154476 + 0.114640i
\(511\) −30.0880 −1.33102
\(512\) 1.22700 0.0542260
\(513\) −23.7865 −1.05020
\(514\) 11.0691i 0.488236i
\(515\) −19.4900 + 26.2625i −0.858831 + 1.15726i
\(516\) 0.236441 0.0104087
\(517\) 20.5491i 0.903747i
\(518\) −17.8332 −0.783545
\(519\) −11.4275 −0.501612
\(520\) 0 0
\(521\) −0.550102 −0.0241004 −0.0120502 0.999927i \(-0.503836\pi\)
−0.0120502 + 0.999927i \(0.503836\pi\)
\(522\) −9.79845 −0.428866
\(523\) 17.0531i 0.745679i −0.927896 0.372840i \(-0.878384\pi\)
0.927896 0.372840i \(-0.121616\pi\)
\(524\) 6.06622 0.265004
\(525\) 13.8547 4.19360i 0.604670 0.183024i
\(526\) 25.1525i 1.09670i
\(527\) −7.19071 −0.313232
\(528\) 0.432076 0.0188037
\(529\) −51.5501 −2.24131
\(530\) −2.28498 + 3.07899i −0.0992533 + 0.133743i
\(531\) 7.65755i 0.332309i
\(532\) 11.8032i 0.511733i
\(533\) 0 0
\(534\) 17.7324 0.767357
\(535\) 5.58480 7.52546i 0.241452 0.325354i
\(536\) −18.4076 −0.795088
\(537\) 29.0114i 1.25193i
\(538\) −10.8220 −0.466569
\(539\) 5.63566i 0.242745i
\(540\) 8.99442 12.1199i 0.387058 0.521556i
\(541\) 30.1330i 1.29552i −0.761845 0.647759i \(-0.775706\pi\)
0.761845 0.647759i \(-0.224294\pi\)
\(542\) 15.6752i 0.673307i
\(543\) 22.4800i 0.964709i
\(544\) 9.66744i 0.414488i
\(545\) 21.5156 28.9921i 0.921628 1.24188i
\(546\) 0 0
\(547\) 5.36791i 0.229515i −0.993394 0.114758i \(-0.963391\pi\)
0.993394 0.114758i \(-0.0366091\pi\)
\(548\) −15.5281 −0.663329
\(549\) −13.7564 −0.587110
\(550\) 13.3346 4.03617i 0.568589 0.172103i
\(551\) 33.9150i 1.44483i
\(552\) 31.2459 1.32991
\(553\) 30.6854 1.30487
\(554\) 10.4104i 0.442294i
\(555\) 14.8893 20.0631i 0.632014 0.851632i
\(556\) −18.8160 −0.797974
\(557\) 7.05530 0.298943 0.149471 0.988766i \(-0.452243\pi\)
0.149471 + 0.988766i \(0.452243\pi\)
\(558\) 5.14490i 0.217801i
\(559\) 0 0
\(560\) 0.444401 + 0.329799i 0.0187794 + 0.0139366i
\(561\) 6.86710i 0.289929i
\(562\) 17.9921i 0.758950i
\(563\) 31.6656i 1.33455i −0.744814 0.667273i \(-0.767462\pi\)
0.744814 0.667273i \(-0.232538\pi\)
\(564\) 10.0686i 0.423966i
\(565\) −4.68977 + 6.31942i −0.197300 + 0.265860i
\(566\) 7.31903i 0.307642i
\(567\) 6.61795 0.277928
\(568\) 13.5288i 0.567655i
\(569\) 13.5818 0.569380 0.284690 0.958620i \(-0.408109\pi\)
0.284690 + 0.958620i \(0.408109\pi\)
\(570\) 8.63947 + 6.41153i 0.361867 + 0.268549i
\(571\) 34.7338 1.45356 0.726782 0.686868i \(-0.241015\pi\)
0.726782 + 0.686868i \(0.241015\pi\)
\(572\) 0 0
\(573\) 12.3546i 0.516120i
\(574\) 5.96912i 0.249146i
\(575\) 41.3199 12.5069i 1.72316 0.521572i
\(576\) 7.21846 0.300769
\(577\) 43.8511 1.82555 0.912773 0.408467i \(-0.133937\pi\)
0.912773 + 0.408467i \(0.133937\pi\)
\(578\) −12.4543 −0.518029
\(579\) 12.6919i 0.527456i
\(580\) −17.2806 12.8243i −0.717538 0.532500i
\(581\) 14.4293 0.598630
\(582\) 13.6131i 0.564283i
\(583\) 6.06085 0.251015
\(584\) 37.6097 1.55630
\(585\) 0 0
\(586\) −18.9308 −0.782026
\(587\) −4.11991 −0.170047 −0.0850235 0.996379i \(-0.527097\pi\)
−0.0850235 + 0.996379i \(0.527097\pi\)
\(588\) 2.76136i 0.113877i
\(589\) −17.8078 −0.733759
\(590\) 6.52055 8.78637i 0.268447 0.361729i
\(591\) 7.61440i 0.313215i
\(592\) 0.955169 0.0392572
\(593\) 2.16800 0.0890292 0.0445146 0.999009i \(-0.485826\pi\)
0.0445146 + 0.999009i \(0.485826\pi\)
\(594\) 15.5218 0.636867
\(595\) 5.24159 7.06299i 0.214884 0.289554i
\(596\) 0.0501407i 0.00205384i
\(597\) 7.37689i 0.301916i
\(598\) 0 0
\(599\) 37.1445 1.51768 0.758841 0.651276i \(-0.225766\pi\)
0.758841 + 0.651276i \(0.225766\pi\)
\(600\) −17.3182 + 5.24195i −0.707014 + 0.214002i
\(601\) −1.11320 −0.0454085 −0.0227043 0.999742i \(-0.507228\pi\)
−0.0227043 + 0.999742i \(0.507228\pi\)
\(602\) 0.311445i 0.0126935i
\(603\) −8.96936 −0.365261
\(604\) 7.28606i 0.296466i
\(605\) 2.06701 + 1.53397i 0.0840359 + 0.0623648i
\(606\) 4.27160i 0.173522i
\(607\) 8.21780i 0.333550i 0.985995 + 0.166775i \(0.0533354\pi\)
−0.985995 + 0.166775i \(0.946665\pi\)
\(608\) 23.9415i 0.970955i
\(609\) 22.9943i 0.931776i
\(610\) 15.7843 + 11.7139i 0.639087 + 0.474280i
\(611\) 0 0
\(612\) 2.90289i 0.117342i
\(613\) 28.6108 1.15558 0.577790 0.816185i \(-0.303915\pi\)
0.577790 + 0.816185i \(0.303915\pi\)
\(614\) −7.44537 −0.300471
\(615\) −6.71552 4.98373i −0.270796 0.200963i
\(616\) 20.4153i 0.822555i
\(617\) 0.844622 0.0340032 0.0170016 0.999855i \(-0.494588\pi\)
0.0170016 + 0.999855i \(0.494588\pi\)
\(618\) 16.4801 0.662925
\(619\) 9.06143i 0.364210i −0.983279 0.182105i \(-0.941709\pi\)
0.983279 0.182105i \(-0.0582910\pi\)
\(620\) 6.73368 9.07356i 0.270431 0.364403i
\(621\) 48.0973 1.93008
\(622\) −2.50655 −0.100503
\(623\) 35.9012i 1.43835i
\(624\) 0 0
\(625\) −20.8036 + 13.8640i −0.832144 + 0.554560i
\(626\) 17.0441i 0.681219i
\(627\) 17.0064i 0.679171i
\(628\) 27.6076i 1.10166i
\(629\) 15.1808i 0.605297i
\(630\) 5.05351 + 3.75032i 0.201337 + 0.149416i
\(631\) 14.1174i 0.562003i −0.959707 0.281002i \(-0.909333\pi\)
0.959707 0.281002i \(-0.0906667\pi\)
\(632\) −38.3564 −1.52573
\(633\) 11.0569i 0.439472i
\(634\) 5.11819 0.203269
\(635\) −3.22805 + 4.34976i −0.128101 + 0.172615i
\(636\) −2.96970 −0.117756
\(637\) 0 0
\(638\) 22.1311i 0.876177i
\(639\) 6.59208i 0.260778i
\(640\) 11.8529 + 8.79629i 0.468527 + 0.347704i
\(641\) 9.19011 0.362988 0.181494 0.983392i \(-0.441907\pi\)
0.181494 + 0.983392i \(0.441907\pi\)
\(642\) −4.72232 −0.186375
\(643\) 4.14150 0.163325 0.0816624 0.996660i \(-0.473977\pi\)
0.0816624 + 0.996660i \(0.473977\pi\)
\(644\) 23.8665i 0.940472i
\(645\) −0.350389 0.260031i −0.0137965 0.0102387i
\(646\) 6.53706 0.257197
\(647\) 4.86077i 0.191097i −0.995425 0.0955483i \(-0.969540\pi\)
0.995425 0.0955483i \(-0.0304604\pi\)
\(648\) −8.27236 −0.324969
\(649\) −17.2956 −0.678911
\(650\) 0 0
\(651\) 12.0737 0.473204
\(652\) 1.84328 0.0721883
\(653\) 42.8456i 1.67668i −0.545148 0.838340i \(-0.683527\pi\)
0.545148 0.838340i \(-0.316473\pi\)
\(654\) −18.1929 −0.711398
\(655\) −8.98973 6.67147i −0.351258 0.260676i
\(656\) 0.319714i 0.0124827i
\(657\) 18.3258 0.714958
\(658\) −13.2626 −0.517031
\(659\) −0.355635 −0.0138536 −0.00692678 0.999976i \(-0.502205\pi\)
−0.00692678 + 0.999976i \(0.502205\pi\)
\(660\) 8.66522 + 6.43064i 0.337293 + 0.250312i
\(661\) 12.9399i 0.503303i 0.967818 + 0.251651i \(0.0809736\pi\)
−0.967818 + 0.251651i \(0.919026\pi\)
\(662\) 3.60485i 0.140107i
\(663\) 0 0
\(664\) −18.0365 −0.699952
\(665\) 12.9808 17.4915i 0.503375 0.678292i
\(666\) 10.8617 0.420883
\(667\) 68.5774i 2.65533i
\(668\) −0.0596123 −0.00230647
\(669\) 0.0576436i 0.00222863i
\(670\) 10.2916 + 7.63758i 0.397597 + 0.295065i
\(671\) 31.0707i 1.19947i
\(672\) 16.2323i 0.626174i
\(673\) 27.5011i 1.06009i −0.847970 0.530045i \(-0.822175\pi\)
0.847970 0.530045i \(-0.177825\pi\)
\(674\) 22.0494i 0.849312i
\(675\) −26.6582 + 8.06902i −1.02608 + 0.310577i
\(676\) 0 0
\(677\) 12.6270i 0.485297i −0.970114 0.242648i \(-0.921984\pi\)
0.970114 0.242648i \(-0.0780161\pi\)
\(678\) 3.96551 0.152295
\(679\) −27.5613 −1.05770
\(680\) −6.55193 + 8.82865i −0.251255 + 0.338563i
\(681\) 8.15069i 0.312335i
\(682\) 11.6204 0.444969
\(683\) −29.0442 −1.11135 −0.555673 0.831401i \(-0.687539\pi\)
−0.555673 + 0.831401i \(0.687539\pi\)
\(684\) 7.18901i 0.274879i
\(685\) 23.0116 + 17.0774i 0.879230 + 0.652495i
\(686\) −17.8158 −0.680209
\(687\) 9.23846 0.352469
\(688\) 0.0166814i 0.000635972i
\(689\) 0 0
\(690\) −17.4693 12.9644i −0.665046 0.493545i
\(691\) 5.54360i 0.210889i 0.994425 + 0.105444i \(0.0336265\pi\)
−0.994425 + 0.105444i \(0.966374\pi\)
\(692\) 10.9107i 0.414763i
\(693\) 9.94762i 0.377879i
\(694\) 25.8904i 0.982785i
\(695\) 27.8840 + 20.6933i 1.05770 + 0.784941i
\(696\) 28.7426i 1.08949i
\(697\) −5.08130 −0.192468
\(698\) 6.47297i 0.245006i
\(699\) 5.78831 0.218934
\(700\) 4.00395 + 13.2282i 0.151335 + 0.499977i
\(701\) 7.14386 0.269820 0.134910 0.990858i \(-0.456925\pi\)
0.134910 + 0.990858i \(0.456925\pi\)
\(702\) 0 0
\(703\) 37.5953i 1.41793i
\(704\) 16.3038i 0.614474i
\(705\) 11.0732 14.9210i 0.417042 0.561959i
\(706\) 12.3889 0.466262
\(707\) 8.64831 0.325253
\(708\) 8.47449 0.318491
\(709\) 33.2696i 1.24947i −0.780838 0.624733i \(-0.785208\pi\)
0.780838 0.624733i \(-0.214792\pi\)
\(710\) −5.61327 + 7.56382i −0.210662 + 0.283865i
\(711\) −18.6897 −0.700917
\(712\) 44.8761i 1.68180i
\(713\) 36.0081 1.34851
\(714\) −4.43211 −0.165868
\(715\) 0 0
\(716\) −27.6994 −1.03517
\(717\) 21.4902 0.802567
\(718\) 14.4402i 0.538902i
\(719\) 2.93123 0.109317 0.0546583 0.998505i \(-0.482593\pi\)
0.0546583 + 0.998505i \(0.482593\pi\)
\(720\) −0.270673 0.200872i −0.0100874 0.00748606i
\(721\) 33.3656i 1.24260i
\(722\) −0.680581 −0.0253286
\(723\) 7.78013 0.289346
\(724\) −21.4634 −0.797680
\(725\) 11.5048 + 38.0095i 0.427279 + 1.41164i
\(726\) 1.29707i 0.0481389i
\(727\) 14.9385i 0.554039i −0.960864 0.277019i \(-0.910653\pi\)
0.960864 0.277019i \(-0.0893466\pi\)
\(728\) 0 0
\(729\) −25.2390 −0.934777
\(730\) −21.0273 15.6048i −0.778254 0.577559i
\(731\) −0.265122 −0.00980589
\(732\) 15.2240i 0.562696i
\(733\) 9.64485 0.356241 0.178120 0.984009i \(-0.442998\pi\)
0.178120 + 0.984009i \(0.442998\pi\)
\(734\) 30.5855i 1.12893i
\(735\) 3.03687 4.09215i 0.112017 0.150941i
\(736\) 48.4106i 1.78444i
\(737\) 20.2585i 0.746230i
\(738\) 3.63563i 0.133830i
\(739\) 38.6006i 1.41995i −0.704229 0.709973i \(-0.748707\pi\)
0.704229 0.709973i \(-0.251293\pi\)
\(740\) 19.1558 + 14.2159i 0.704181 + 0.522588i
\(741\) 0 0
\(742\) 3.91175i 0.143605i
\(743\) 43.3909 1.59186 0.795928 0.605391i \(-0.206983\pi\)
0.795928 + 0.605391i \(0.206983\pi\)
\(744\) −15.0919 −0.553298
\(745\) −0.0551434 + 0.0743051i −0.00202030 + 0.00272233i
\(746\) 20.6146i 0.754754i
\(747\) −8.78853 −0.321555
\(748\) 6.55654 0.239731
\(749\) 9.56084i 0.349345i
\(750\) 11.8574 + 4.25485i 0.432973 + 0.155365i
\(751\) 34.8770 1.27268 0.636341 0.771408i \(-0.280447\pi\)
0.636341 + 0.771408i \(0.280447\pi\)
\(752\) 0.710364 0.0259043
\(753\) 14.7012i 0.535742i
\(754\) 0 0
\(755\) −8.01302 + 10.7974i −0.291624 + 0.392959i
\(756\) 15.3979i 0.560016i
\(757\) 11.6518i 0.423493i −0.977325 0.211746i \(-0.932085\pi\)
0.977325 0.211746i \(-0.0679151\pi\)
\(758\) 10.8912i 0.395588i
\(759\) 34.3876i 1.24819i
\(760\) −16.2259 + 21.8642i −0.588575 + 0.793098i
\(761\) 49.0684i 1.77873i −0.457200 0.889364i \(-0.651148\pi\)
0.457200 0.889364i \(-0.348852\pi\)
\(762\) 2.72952 0.0988803
\(763\) 36.8334i 1.33346i
\(764\) −11.7959 −0.426759
\(765\) −3.19252 + 4.30188i −0.115426 + 0.155535i
\(766\) 1.67215 0.0604172
\(767\) 0 0
\(768\) 20.6238i 0.744197i
\(769\) 40.1202i 1.44677i 0.690444 + 0.723386i \(0.257415\pi\)
−0.690444 + 0.723386i \(0.742585\pi\)
\(770\) −8.47058 + 11.4140i −0.305259 + 0.411332i
\(771\) −15.8214 −0.569792
\(772\) −12.1179 −0.436133
\(773\) 11.6461 0.418883 0.209441 0.977821i \(-0.432835\pi\)
0.209441 + 0.977821i \(0.432835\pi\)
\(774\) 0.189693i 0.00681836i
\(775\) −19.9577 + 6.04088i −0.716903 + 0.216995i
\(776\) 34.4512 1.23673
\(777\) 25.4895i 0.914431i
\(778\) 17.7964 0.638032
\(779\) −12.5839 −0.450864
\(780\) 0 0
\(781\) 14.8891 0.532772
\(782\) −13.2182 −0.472681
\(783\) 44.2439i 1.58115i
\(784\) 0.194820 0.00695786
\(785\) 30.3621 40.9126i 1.08367 1.46023i
\(786\) 5.64117i 0.201214i
\(787\) 25.5641 0.911262 0.455631 0.890169i \(-0.349414\pi\)
0.455631 + 0.890169i \(0.349414\pi\)
\(788\) 7.27005 0.258985
\(789\) −35.9512 −1.27990
\(790\) 21.4447 + 15.9146i 0.762969 + 0.566216i
\(791\) 8.02860i 0.285464i
\(792\) 12.4344i 0.441837i
\(793\) 0 0
\(794\) 18.3022 0.649519
\(795\) 4.40089 + 3.26600i 0.156084 + 0.115833i
\(796\) −7.04328 −0.249642
\(797\) 45.7347i 1.62001i 0.586425 + 0.810003i \(0.300535\pi\)
−0.586425 + 0.810003i \(0.699465\pi\)
\(798\) −10.9761 −0.388551
\(799\) 11.2900i 0.399412i
\(800\) −8.12157 26.8319i −0.287141 0.948650i
\(801\) 21.8665i 0.772614i
\(802\) 31.7991i 1.12287i
\(803\) 41.3912i 1.46067i
\(804\) 9.92625i 0.350072i
\(805\) −26.2477 + 35.3685i −0.925112 + 1.24658i
\(806\) 0 0
\(807\) 15.4682i 0.544506i
\(808\) −10.8103 −0.380305
\(809\) −31.4562 −1.10594 −0.552970 0.833201i \(-0.686506\pi\)
−0.552970 + 0.833201i \(0.686506\pi\)
\(810\) 4.62501 + 3.43232i 0.162506 + 0.120599i
\(811\) 38.0128i 1.33481i −0.744694 0.667406i \(-0.767405\pi\)
0.744694 0.667406i \(-0.232595\pi\)
\(812\) 21.9544 0.770449
\(813\) 22.4050 0.785779
\(814\) 24.5326i 0.859868i
\(815\) −2.73161 2.02719i −0.0956842 0.0710092i
\(816\) 0.237390 0.00831031
\(817\) −0.656576 −0.0229707
\(818\) 0.197063i 0.00689015i
\(819\) 0 0
\(820\) 4.75835 6.41182i 0.166169 0.223910i
\(821\) 55.7593i 1.94601i −0.230778 0.973006i \(-0.574127\pi\)
0.230778 0.973006i \(-0.425873\pi\)
\(822\) 14.4401i 0.503656i
\(823\) 30.7203i 1.07084i 0.844586 + 0.535420i \(0.179847\pi\)
−0.844586 + 0.535420i \(0.820153\pi\)
\(824\) 41.7067i 1.45292i
\(825\) −5.76902 19.0596i −0.200851 0.663568i
\(826\) 11.1628i 0.388403i
\(827\) −37.7024 −1.31104 −0.655520 0.755177i \(-0.727551\pi\)
−0.655520 + 0.755177i \(0.727551\pi\)
\(828\) 14.5365i 0.505177i
\(829\) −13.8208 −0.480015 −0.240008 0.970771i \(-0.577150\pi\)
−0.240008 + 0.970771i \(0.577150\pi\)
\(830\) 10.0841 + 7.48360i 0.350023 + 0.259759i
\(831\) −14.8799 −0.516177
\(832\) 0 0
\(833\) 3.09633i 0.107281i
\(834\) 17.4975i 0.605890i
\(835\) 0.0883413 + 0.0655600i 0.00305718 + 0.00226880i
\(836\) 16.2373 0.561579
\(837\) −23.2313 −0.802990
\(838\) 0.604083 0.0208677
\(839\) 16.0902i 0.555495i 0.960654 + 0.277747i \(0.0895879\pi\)
−0.960654 + 0.277747i \(0.910412\pi\)
\(840\) 11.0011 14.8239i 0.379575 0.511473i
\(841\) 34.0833 1.17528
\(842\) 1.79290i 0.0617875i
\(843\) 25.7166 0.885727
\(844\) −10.5569 −0.363382
\(845\) 0 0
\(846\) 8.07792 0.277725
\(847\) −2.62607 −0.0902327
\(848\) 0.209519i 0.00719490i
\(849\) 10.4613 0.359031
\(850\) 7.32626 2.21754i 0.251289 0.0760610i
\(851\) 76.0191i 2.60590i
\(852\) −7.29534 −0.249934
\(853\) 48.9861 1.67725 0.838625 0.544709i \(-0.183360\pi\)
0.838625 + 0.544709i \(0.183360\pi\)
\(854\) −20.0534 −0.686213
\(855\) −7.90629 + 10.6536i −0.270389 + 0.364346i
\(856\) 11.9509i 0.408475i
\(857\) 8.57696i 0.292983i −0.989212 0.146492i \(-0.953202\pi\)
0.989212 0.146492i \(-0.0467982\pi\)
\(858\) 0 0
\(859\) 17.9983 0.614095 0.307048 0.951694i \(-0.400659\pi\)
0.307048 + 0.951694i \(0.400659\pi\)
\(860\) 0.248271 0.334543i 0.00846599 0.0114078i
\(861\) 8.53184 0.290764
\(862\) 6.08548i 0.207272i
\(863\) −2.18400 −0.0743444 −0.0371722 0.999309i \(-0.511835\pi\)
−0.0371722 + 0.999309i \(0.511835\pi\)
\(864\) 31.2329i 1.06257i
\(865\) −11.9993 + 16.1689i −0.407989 + 0.549761i
\(866\) 0.462525i 0.0157172i
\(867\) 17.8013i 0.604562i
\(868\) 11.5277i 0.391274i
\(869\) 42.2130i 1.43198i
\(870\) 11.9257 16.0698i 0.404319 0.544816i
\(871\) 0 0
\(872\) 46.0414i 1.55916i
\(873\) 16.7868 0.568148
\(874\) −32.7349 −1.10727
\(875\) 8.61440 24.0067i 0.291220 0.811574i
\(876\) 20.2809i 0.685228i
\(877\) −27.9605 −0.944158 −0.472079 0.881556i \(-0.656496\pi\)
−0.472079 + 0.881556i \(0.656496\pi\)
\(878\) 24.4956 0.826685
\(879\) 27.0584i 0.912658i
\(880\) 0.453696 0.611350i 0.0152941 0.0206086i
\(881\) 3.38544 0.114058 0.0570292 0.998373i \(-0.481837\pi\)
0.0570292 + 0.998373i \(0.481837\pi\)
\(882\) 2.21540 0.0745964
\(883\) 9.67005i 0.325423i 0.986674 + 0.162712i \(0.0520240\pi\)
−0.986674 + 0.162712i \(0.947976\pi\)
\(884\) 0 0
\(885\) −12.5586 9.32002i −0.422153 0.313289i
\(886\) 6.39878i 0.214971i
\(887\) 10.1393i 0.340445i 0.985406 + 0.170223i \(0.0544486\pi\)
−0.985406 + 0.170223i \(0.945551\pi\)
\(888\) 31.8616i 1.06920i
\(889\) 5.52622i 0.185343i
\(890\) 18.6197 25.0899i 0.624134 0.841014i
\(891\) 9.10413i 0.305000i
\(892\) 0.0550368 0.00184277
\(893\) 27.9598i 0.935639i
\(894\) 0.0466273 0.00155945
\(895\) 41.0486 + 30.4630i 1.37210 + 1.01827i
\(896\) −15.0587 −0.503076
\(897\) 0 0
\(898\) 0.120427i 0.00401869i
\(899\) 33.1233i 1.10472i
\(900\) −2.43870 8.05693i −0.0812900 0.268564i
\(901\) 3.32994 0.110936
\(902\) 8.21155 0.273415
\(903\) 0.445157 0.0148139
\(904\) 10.0357i 0.333781i
\(905\) 31.8073 + 23.6048i 1.05731 + 0.784652i
\(906\) 6.77553 0.225102
\(907\) 48.7631i 1.61915i 0.587014 + 0.809577i \(0.300303\pi\)
−0.587014 + 0.809577i \(0.699697\pi\)
\(908\) 7.78208 0.258258
\(909\) −5.26746 −0.174711
\(910\) 0 0
\(911\) −53.5943 −1.77566 −0.887829 0.460174i \(-0.847787\pi\)
−0.887829 + 0.460174i \(0.847787\pi\)
\(912\) 0.587897 0.0194672
\(913\) 19.8500i 0.656940i
\(914\) 0.273475 0.00904575
\(915\) 16.7430 22.5610i 0.553506 0.745843i
\(916\) 8.82066i 0.291443i
\(917\) 11.4212 0.377160
\(918\) 8.52794 0.281464
\(919\) 28.2142 0.930701 0.465350 0.885127i \(-0.345928\pi\)
0.465350 + 0.885127i \(0.345928\pi\)
\(920\) 32.8094 44.2103i 1.08169 1.45757i
\(921\) 10.6419i 0.350662i
\(922\) 25.4572i 0.838390i
\(923\) 0 0
\(924\) −11.0089 −0.362165
\(925\) −12.7533 42.1341i −0.419326 1.38536i
\(926\) −14.2969 −0.469824
\(927\) 20.3221i 0.667466i
\(928\) −44.5321 −1.46184
\(929\) 2.90575i 0.0953346i 0.998863 + 0.0476673i \(0.0151787\pi\)
−0.998863 + 0.0476673i \(0.984821\pi\)
\(930\) 8.43779 + 6.26186i 0.276686 + 0.205334i
\(931\) 7.66808i 0.251311i
\(932\) 5.52654i 0.181028i
\(933\) 3.58269i 0.117292i
\(934\) 3.08616i 0.100982i
\(935\) −9.71635 7.21071i −0.317759 0.235815i
\(936\) 0 0
\(937\) 44.6821i 1.45970i 0.683607 + 0.729850i \(0.260410\pi\)
−0.683607 + 0.729850i \(0.739590\pi\)
\(938\) −13.0751 −0.426916
\(939\) −24.3616 −0.795012
\(940\) 14.2463 + 10.5724i 0.464662 + 0.344835i
\(941\) 5.09938i 0.166235i 0.996540 + 0.0831175i \(0.0264877\pi\)
−0.996540 + 0.0831175i \(0.973512\pi\)
\(942\) −25.6731 −0.836476
\(943\) 25.4451 0.828606
\(944\) 0.597894i 0.0194598i
\(945\) 16.9342 22.8186i 0.550869 0.742290i
\(946\) 0.428446 0.0139300
\(947\) 6.85210 0.222663 0.111332 0.993783i \(-0.464488\pi\)
0.111332 + 0.993783i \(0.464488\pi\)
\(948\) 20.6835i 0.671770i
\(949\) 0 0
\(950\) 18.1435 5.49175i 0.588654 0.178176i
\(951\) 7.31558i 0.237224i
\(952\) 11.2165i 0.363529i
\(953\) 31.9155i 1.03385i −0.856032 0.516923i \(-0.827077\pi\)
0.856032 0.516923i \(-0.172923\pi\)
\(954\) 2.38254i 0.0771377i
\(955\) 17.4807 + 12.9728i 0.565661 + 0.419789i
\(956\) 20.5183i 0.663611i
\(957\) −31.6326 −1.02254
\(958\) 12.8366i 0.414732i
\(959\) −29.2355 −0.944064
\(960\) −8.78560 + 11.8385i −0.283554 + 0.382086i
\(961\) 13.6079 0.438964
\(962\) 0 0
\(963\) 5.82325i 0.187652i
\(964\) 7.42829i 0.239249i
\(965\) 17.9579 + 13.3269i 0.578086 + 0.429010i
\(966\) 22.1942 0.714087
\(967\) −15.8568 −0.509920 −0.254960 0.966952i \(-0.582062\pi\)
−0.254960 + 0.966952i \(0.582062\pi\)
\(968\) 3.28255 0.105505
\(969\) 9.34361i 0.300160i
\(970\) −19.2614 14.2943i −0.618447 0.458962i
\(971\) 18.3168 0.587813 0.293907 0.955834i \(-0.405045\pi\)
0.293907 + 0.955834i \(0.405045\pi\)
\(972\) 15.7882i 0.506407i
\(973\) −35.4256 −1.13569
\(974\) 2.58619 0.0828669
\(975\) 0 0
\(976\) 1.07409 0.0343807
\(977\) 13.5382 0.433127 0.216563 0.976269i \(-0.430515\pi\)
0.216563 + 0.976269i \(0.430515\pi\)
\(978\) 1.71412i 0.0548115i
\(979\) −49.3883 −1.57846
\(980\) 3.90709 + 2.89953i 0.124807 + 0.0926222i
\(981\) 22.4343i 0.716271i
\(982\) −6.75464 −0.215549
\(983\) −34.5313 −1.10138 −0.550688 0.834711i \(-0.685635\pi\)
−0.550688 + 0.834711i \(0.685635\pi\)
\(984\) −10.6647 −0.339978
\(985\) −10.7737 7.99541i −0.343279 0.254755i
\(986\) 12.1592i 0.387227i
\(987\) 18.9567i 0.603398i
\(988\) 0 0
\(989\) 1.32762 0.0422159
\(990\) 5.15921 6.95198i 0.163970 0.220948i
\(991\) 43.5272 1.38269 0.691343 0.722526i \(-0.257019\pi\)
0.691343 + 0.722526i \(0.257019\pi\)
\(992\) 23.3826i 0.742398i
\(993\) 5.15253 0.163510
\(994\) 9.60958i 0.304797i
\(995\) 10.4377 + 7.74601i 0.330896 + 0.245565i
\(996\) 9.72612i 0.308184i
\(997\) 45.3802i 1.43720i 0.695422 + 0.718602i \(0.255218\pi\)
−0.695422 + 0.718602i \(0.744782\pi\)
\(998\) 3.61584i 0.114457i
\(999\) 49.0450i 1.55172i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.d.e.844.14 36
5.4 even 2 inner 845.2.d.e.844.23 36
13.2 odd 12 845.2.n.h.529.7 36
13.3 even 3 845.2.l.g.654.23 72
13.4 even 6 845.2.l.g.699.14 72
13.5 odd 4 845.2.b.h.339.12 yes 18
13.6 odd 12 845.2.n.h.484.12 36
13.7 odd 12 845.2.n.i.484.7 36
13.8 odd 4 845.2.b.g.339.7 18
13.9 even 3 845.2.l.g.699.24 72
13.10 even 6 845.2.l.g.654.13 72
13.11 odd 12 845.2.n.i.529.12 36
13.12 even 2 inner 845.2.d.e.844.24 36
65.4 even 6 845.2.l.g.699.23 72
65.8 even 4 4225.2.a.ca.1.7 18
65.9 even 6 845.2.l.g.699.13 72
65.18 even 4 4225.2.a.cb.1.12 18
65.19 odd 12 845.2.n.h.484.7 36
65.24 odd 12 845.2.n.i.529.7 36
65.29 even 6 845.2.l.g.654.14 72
65.34 odd 4 845.2.b.g.339.12 yes 18
65.44 odd 4 845.2.b.h.339.7 yes 18
65.47 even 4 4225.2.a.ca.1.12 18
65.49 even 6 845.2.l.g.654.24 72
65.54 odd 12 845.2.n.h.529.12 36
65.57 even 4 4225.2.a.cb.1.7 18
65.59 odd 12 845.2.n.i.484.12 36
65.64 even 2 inner 845.2.d.e.844.13 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.b.g.339.7 18 13.8 odd 4
845.2.b.g.339.12 yes 18 65.34 odd 4
845.2.b.h.339.7 yes 18 65.44 odd 4
845.2.b.h.339.12 yes 18 13.5 odd 4
845.2.d.e.844.13 36 65.64 even 2 inner
845.2.d.e.844.14 36 1.1 even 1 trivial
845.2.d.e.844.23 36 5.4 even 2 inner
845.2.d.e.844.24 36 13.12 even 2 inner
845.2.l.g.654.13 72 13.10 even 6
845.2.l.g.654.14 72 65.29 even 6
845.2.l.g.654.23 72 13.3 even 3
845.2.l.g.654.24 72 65.49 even 6
845.2.l.g.699.13 72 65.9 even 6
845.2.l.g.699.14 72 13.4 even 6
845.2.l.g.699.23 72 65.4 even 6
845.2.l.g.699.24 72 13.9 even 3
845.2.n.h.484.7 36 65.19 odd 12
845.2.n.h.484.12 36 13.6 odd 12
845.2.n.h.529.7 36 13.2 odd 12
845.2.n.h.529.12 36 65.54 odd 12
845.2.n.i.484.7 36 13.7 odd 12
845.2.n.i.484.12 36 65.59 odd 12
845.2.n.i.529.7 36 65.24 odd 12
845.2.n.i.529.12 36 13.11 odd 12
4225.2.a.ca.1.7 18 65.8 even 4
4225.2.a.ca.1.12 18 65.47 even 4
4225.2.a.cb.1.7 18 65.57 even 4
4225.2.a.cb.1.12 18 65.18 even 4