Newspace parameters
Level: | \( N \) | \(=\) | \( 841 = 29^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 841.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(49.6206063148\) |
Analytic rank: | \(0\) |
Dimension: | \(21\) |
Twist minimal: | no (minimal twist has level 29) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −5.03979 | −4.10050 | 17.3995 | 5.61831 | 20.6656 | 23.4793 | −47.3712 | −10.1859 | −28.3151 | ||||||||||||||||||
1.2 | −4.99811 | −7.28662 | 16.9811 | 18.4749 | 36.4193 | −6.85185 | −44.8884 | 26.0948 | −92.3397 | ||||||||||||||||||
1.3 | −4.40657 | −3.38892 | 11.4179 | 3.00636 | 14.9335 | −3.63540 | −15.0611 | −15.5152 | −13.2478 | ||||||||||||||||||
1.4 | −4.19503 | 3.68104 | 9.59829 | −16.8481 | −15.4421 | −1.11840 | −6.70489 | −13.4499 | 70.6782 | ||||||||||||||||||
1.5 | −3.43388 | 9.14452 | 3.79157 | −5.89225 | −31.4012 | 28.3262 | 14.4513 | 56.6222 | 20.2333 | ||||||||||||||||||
1.6 | −3.12804 | 5.26604 | 1.78461 | −10.0822 | −16.4724 | −5.39859 | 19.4420 | 0.731188 | 31.5376 | ||||||||||||||||||
1.7 | −1.62919 | 5.65337 | −5.34573 | 13.9077 | −9.21044 | −14.2629 | 21.7428 | 4.96064 | −22.6583 | ||||||||||||||||||
1.8 | −1.18795 | −7.34487 | −6.58876 | 1.74990 | 8.72537 | −21.5895 | 17.3308 | 26.9471 | −2.07880 | ||||||||||||||||||
1.9 | −0.765028 | −4.91525 | −7.41473 | −3.09630 | 3.76030 | 21.6038 | 11.7927 | −2.84031 | 2.36876 | ||||||||||||||||||
1.10 | −0.720053 | 1.28637 | −7.48152 | 3.38147 | −0.926251 | −21.7530 | 11.1475 | −25.3453 | −2.43483 | ||||||||||||||||||
1.11 | 0.550953 | −9.96498 | −7.69645 | 10.3008 | −5.49024 | 17.6817 | −8.64801 | 72.3008 | 5.67526 | ||||||||||||||||||
1.12 | 0.604452 | 5.07443 | −7.63464 | 20.2395 | 3.06725 | 8.14730 | −9.45039 | −1.25014 | 12.2338 | ||||||||||||||||||
1.13 | 2.17873 | 0.884165 | −3.25312 | −14.1746 | 1.92636 | 17.3640 | −24.5176 | −26.2183 | −30.8826 | ||||||||||||||||||
1.14 | 2.35527 | −0.395486 | −2.45270 | −11.6438 | −0.931476 | 7.76573 | −24.6189 | −26.8436 | −27.4242 | ||||||||||||||||||
1.15 | 2.89852 | −4.45749 | 0.401406 | −3.28305 | −12.9201 | −34.7925 | −22.0247 | −7.13078 | −9.51599 | ||||||||||||||||||
1.16 | 2.93292 | 7.94540 | 0.602047 | −15.2999 | 23.3033 | 10.4958 | −21.6976 | 36.1294 | −44.8733 | ||||||||||||||||||
1.17 | 4.05460 | 6.11792 | 8.43978 | 16.9978 | 24.8057 | 11.2951 | 1.78313 | 10.4290 | 68.9192 | ||||||||||||||||||
1.18 | 4.70700 | 0.626516 | 14.1559 | 19.7268 | 2.94901 | 26.8676 | 28.9757 | −26.6075 | 92.8541 | ||||||||||||||||||
1.19 | 4.86780 | −8.27656 | 15.6955 | 12.6139 | −40.2886 | 26.7207 | 37.4602 | 41.5014 | 61.4021 | ||||||||||||||||||
1.20 | 5.13312 | −5.88101 | 18.3489 | −8.16248 | −30.1879 | −36.1470 | 53.1222 | 7.58626 | −41.8990 | ||||||||||||||||||
See all 21 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(29\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 841.4.a.i | 21 | |
29.b | even | 2 | 1 | 841.4.a.h | 21 | ||
29.e | even | 14 | 2 | 29.4.d.a | ✓ | 42 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
29.4.d.a | ✓ | 42 | 29.e | even | 14 | 2 | |
841.4.a.h | 21 | 29.b | even | 2 | 1 | ||
841.4.a.i | 21 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{21} - 6 T_{2}^{20} - 111 T_{2}^{19} + 689 T_{2}^{18} + 5057 T_{2}^{17} - 32968 T_{2}^{16} + \cdots - 192851968 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(841))\).