Properties

Label 29.4.d.a
Level $29$
Weight $4$
Character orbit 29.d
Analytic conductor $1.711$
Analytic rank $0$
Dimension $42$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [29,4,Mod(7,29)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("29.7"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(29, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([6])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 29.d (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.71105539017\)
Analytic rank: \(0\)
Dimension: \(42\)
Relative dimension: \(7\) over \(\Q(\zeta_{7})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 42 q - 5 q^{2} - 5 q^{3} - 23 q^{4} - 7 q^{5} - 11 q^{6} - 31 q^{7} + 38 q^{8} - 72 q^{9} + 31 q^{10} - 63 q^{11} + 136 q^{12} + 173 q^{13} + 129 q^{14} - 229 q^{15} - 451 q^{16} - 140 q^{17} + 846 q^{18}+ \cdots - 17404 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1 −0.980555 4.29609i −3.05331 1.47040i −10.2872 + 4.95403i −0.668979 2.93099i −3.32302 + 14.5591i 3.27538 + 1.57734i 9.39047 + 11.7753i −9.67359 12.1303i −11.9358 + 5.74798i
7.2 −0.764111 3.34779i 8.23892 + 3.96766i −3.41608 + 1.64510i 1.31115 + 5.74451i 6.98743 30.6139i −25.5210 12.2903i −9.01023 11.2985i 35.3034 + 44.2690i 18.2296 8.77890i
7.3 −0.160227 0.701999i 1.15898 + 0.558133i 6.74062 3.24611i −0.752447 3.29669i 0.206110 0.903028i 19.5988 + 9.43826i −6.95036 8.71548i −15.8025 19.8157i −2.19371 + 1.05643i
7.4 0.122599 + 0.537140i −8.97814 4.32364i 6.93426 3.33936i −2.29214 10.0425i 1.22169 5.35259i −15.9306 7.67179i 5.39195 + 6.76129i 45.0788 + 56.5271i 5.11323 2.46240i
7.5 0.484814 + 2.12411i 0.796605 + 0.383625i 2.93096 1.41147i 3.15414 + 13.8192i −0.428656 + 1.87806i −15.6444 7.53397i 15.2864 + 19.1686i −16.3468 20.4983i −27.8243 + 13.3995i
7.6 0.902233 + 3.95294i 5.51206 + 2.65447i −7.60398 + 3.66188i −3.78236 16.5716i −5.51979 + 24.1838i −10.1766 4.90078i −1.11176 1.39411i 6.50235 + 8.15369i 62.0941 29.9029i
7.7 1.14223 + 5.00442i −5.29861 2.55167i −16.5318 + 7.96129i 1.81632 + 7.95783i 6.71744 29.4310i 32.5673 + 15.6836i −33.1211 41.5326i 4.72996 + 5.93118i −37.7497 + 18.1793i
16.1 −4.50314 2.16860i 4.54313 5.69691i 10.5875 + 13.2763i −16.6453 8.01597i −32.8126 + 15.8017i −4.27206 + 5.35699i −9.98861 43.7630i −5.80663 25.4405i 57.5728 + 72.1941i
16.2 −3.77959 1.82016i −2.29509 + 2.87796i 5.98444 + 7.50425i 15.1796 + 7.31010i 13.9128 6.70007i −0.697313 + 0.874402i −1.49198 6.53678i 2.99289 + 13.1127i −44.0671 55.2584i
16.3 −1.46785 0.706881i −3.52482 + 4.41999i −3.33301 4.17946i −12.5304 6.03430i 8.29832 3.99626i −8.89280 + 11.1512i 4.83822 + 21.1976i −1.10385 4.83627i 14.1272 + 17.7149i
16.4 −0.689266 0.331933i 3.06461 3.84290i −4.62301 5.79707i 2.78967 + 1.34343i −3.38792 + 1.63153i 13.4697 16.8905i 2.62412 + 11.4970i 0.632029 + 2.76910i −1.47690 1.85197i
16.5 2.61147 + 1.25762i 2.77920 3.48501i 0.250272 + 0.313832i 2.95793 + 1.42446i 11.6406 5.60583i −21.6928 + 27.2019i −4.90095 21.4725i 1.58675 + 6.95200i 5.93312 + 7.43990i
16.6 2.64247 + 1.27255i −4.95388 + 6.21197i 0.375370 + 0.470699i 13.7847 + 6.63836i −20.9955 + 10.1109i 6.54400 8.20591i −4.82818 21.1536i −8.03955 35.2236i 27.9781 + 35.0834i
16.7 4.24086 + 2.04229i −0.390627 + 0.489830i 8.82604 + 11.0675i −17.7732 8.55914i −2.65697 + 1.27953i 16.7517 21.0059i 6.44769 + 28.2492i 5.92072 + 25.9404i −57.8936 72.5963i
20.1 −4.50314 + 2.16860i 4.54313 + 5.69691i 10.5875 13.2763i −16.6453 + 8.01597i −32.8126 15.8017i −4.27206 5.35699i −9.98861 + 43.7630i −5.80663 + 25.4405i 57.5728 72.1941i
20.2 −3.77959 + 1.82016i −2.29509 2.87796i 5.98444 7.50425i 15.1796 7.31010i 13.9128 + 6.70007i −0.697313 0.874402i −1.49198 + 6.53678i 2.99289 13.1127i −44.0671 + 55.2584i
20.3 −1.46785 + 0.706881i −3.52482 4.41999i −3.33301 + 4.17946i −12.5304 + 6.03430i 8.29832 + 3.99626i −8.89280 11.1512i 4.83822 21.1976i −1.10385 + 4.83627i 14.1272 17.7149i
20.4 −0.689266 + 0.331933i 3.06461 + 3.84290i −4.62301 + 5.79707i 2.78967 1.34343i −3.38792 1.63153i 13.4697 + 16.8905i 2.62412 11.4970i 0.632029 2.76910i −1.47690 + 1.85197i
20.5 2.61147 1.25762i 2.77920 + 3.48501i 0.250272 0.313832i 2.95793 1.42446i 11.6406 + 5.60583i −21.6928 27.2019i −4.90095 + 21.4725i 1.58675 6.95200i 5.93312 7.43990i
20.6 2.64247 1.27255i −4.95388 6.21197i 0.375370 0.470699i 13.7847 6.63836i −20.9955 10.1109i 6.54400 + 8.20591i −4.82818 + 21.1536i −8.03955 + 35.2236i 27.9781 35.0834i
See all 42 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 7.7
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.d even 7 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 29.4.d.a 42
29.d even 7 1 inner 29.4.d.a 42
29.d even 7 1 841.4.a.h 21
29.e even 14 1 841.4.a.i 21
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
29.4.d.a 42 1.a even 1 1 trivial
29.4.d.a 42 29.d even 7 1 inner
841.4.a.h 21 29.d even 7 1
841.4.a.i 21 29.e even 14 1

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(29, [\chi])\).