Properties

Label 2-29e2-1.1-c3-0-38
Degree $2$
Conductor $841$
Sign $1$
Analytic cond. $49.6206$
Root an. cond. $7.04418$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.35·2-s − 0.395·3-s − 2.45·4-s − 11.6·5-s − 0.931·6-s + 7.76·7-s − 24.6·8-s − 26.8·9-s − 27.4·10-s + 22.2·11-s + 0.970·12-s − 72.1·13-s + 18.2·14-s + 4.60·15-s − 38.3·16-s + 43.4·17-s − 63.2·18-s + 43.1·19-s + 28.5·20-s − 3.07·21-s + 52.3·22-s − 19.6·23-s + 9.73·24-s + 10.5·25-s − 170.·26-s + 21.2·27-s − 19.0·28-s + ⋯
L(s)  = 1  + 0.832·2-s − 0.0761·3-s − 0.306·4-s − 1.04·5-s − 0.0633·6-s + 0.419·7-s − 1.08·8-s − 0.994·9-s − 0.867·10-s + 0.609·11-s + 0.0233·12-s − 1.53·13-s + 0.349·14-s + 0.0792·15-s − 0.599·16-s + 0.620·17-s − 0.827·18-s + 0.520·19-s + 0.319·20-s − 0.0319·21-s + 0.507·22-s − 0.178·23-s + 0.0828·24-s + 0.0846·25-s − 1.28·26-s + 0.151·27-s − 0.128·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $1$
Analytic conductor: \(49.6206\)
Root analytic conductor: \(7.04418\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 841,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.324267452\)
\(L(\frac12)\) \(\approx\) \(1.324267452\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 - 2.35T + 8T^{2} \)
3 \( 1 + 0.395T + 27T^{2} \)
5 \( 1 + 11.6T + 125T^{2} \)
7 \( 1 - 7.76T + 343T^{2} \)
11 \( 1 - 22.2T + 1.33e3T^{2} \)
13 \( 1 + 72.1T + 2.19e3T^{2} \)
17 \( 1 - 43.4T + 4.91e3T^{2} \)
19 \( 1 - 43.1T + 6.85e3T^{2} \)
23 \( 1 + 19.6T + 1.21e4T^{2} \)
31 \( 1 + 202.T + 2.97e4T^{2} \)
37 \( 1 - 169.T + 5.06e4T^{2} \)
41 \( 1 - 227.T + 6.89e4T^{2} \)
43 \( 1 - 500.T + 7.95e4T^{2} \)
47 \( 1 - 431.T + 1.03e5T^{2} \)
53 \( 1 + 206.T + 1.48e5T^{2} \)
59 \( 1 + 163.T + 2.05e5T^{2} \)
61 \( 1 - 25.0T + 2.26e5T^{2} \)
67 \( 1 - 806.T + 3.00e5T^{2} \)
71 \( 1 + 1.01e3T + 3.57e5T^{2} \)
73 \( 1 - 579.T + 3.89e5T^{2} \)
79 \( 1 - 101.T + 4.93e5T^{2} \)
83 \( 1 - 1.07e3T + 5.71e5T^{2} \)
89 \( 1 + 1.48e3T + 7.04e5T^{2} \)
97 \( 1 - 717.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.628045714850246176443718349098, −9.019578945615186370070511787894, −7.948566920512214736515150273368, −7.37510821933361905483842734237, −6.01727452320689711563788138014, −5.25061652340347404084644580295, −4.39339887484256382695949541716, −3.58029578311543974589038097276, −2.55953103277961800841817375328, −0.54550859261316443324030122985, 0.54550859261316443324030122985, 2.55953103277961800841817375328, 3.58029578311543974589038097276, 4.39339887484256382695949541716, 5.25061652340347404084644580295, 6.01727452320689711563788138014, 7.37510821933361905483842734237, 7.948566920512214736515150273368, 9.019578945615186370070511787894, 9.628045714850246176443718349098

Graph of the $Z$-function along the critical line