Properties

Label 2-29e2-1.1-c3-0-100
Degree $2$
Conductor $841$
Sign $1$
Analytic cond. $49.6206$
Root an. cond. $7.04418$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.43·2-s + 9.14·3-s + 3.79·4-s − 5.89·5-s − 31.4·6-s + 28.3·7-s + 14.4·8-s + 56.6·9-s + 20.2·10-s + 19.6·11-s + 34.6·12-s + 9.96·13-s − 97.2·14-s − 53.8·15-s − 79.9·16-s + 55.5·17-s − 194.·18-s + 137.·19-s − 22.3·20-s + 259.·21-s − 67.5·22-s + 115.·23-s + 132.·24-s − 90.2·25-s − 34.2·26-s + 270.·27-s + 107.·28-s + ⋯
L(s)  = 1  − 1.21·2-s + 1.75·3-s + 0.473·4-s − 0.527·5-s − 2.13·6-s + 1.52·7-s + 0.638·8-s + 2.09·9-s + 0.639·10-s + 0.539·11-s + 0.834·12-s + 0.212·13-s − 1.85·14-s − 0.927·15-s − 1.24·16-s + 0.792·17-s − 2.54·18-s + 1.66·19-s − 0.249·20-s + 2.69·21-s − 0.654·22-s + 1.04·23-s + 1.12·24-s − 0.722·25-s − 0.258·26-s + 1.93·27-s + 0.724·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $1$
Analytic conductor: \(49.6206\)
Root analytic conductor: \(7.04418\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 841,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.628728195\)
\(L(\frac12)\) \(\approx\) \(2.628728195\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 + 3.43T + 8T^{2} \)
3 \( 1 - 9.14T + 27T^{2} \)
5 \( 1 + 5.89T + 125T^{2} \)
7 \( 1 - 28.3T + 343T^{2} \)
11 \( 1 - 19.6T + 1.33e3T^{2} \)
13 \( 1 - 9.96T + 2.19e3T^{2} \)
17 \( 1 - 55.5T + 4.91e3T^{2} \)
19 \( 1 - 137.T + 6.85e3T^{2} \)
23 \( 1 - 115.T + 1.21e4T^{2} \)
31 \( 1 + 176.T + 2.97e4T^{2} \)
37 \( 1 - 11.5T + 5.06e4T^{2} \)
41 \( 1 + 326.T + 6.89e4T^{2} \)
43 \( 1 - 132.T + 7.95e4T^{2} \)
47 \( 1 + 147.T + 1.03e5T^{2} \)
53 \( 1 - 206.T + 1.48e5T^{2} \)
59 \( 1 - 58.8T + 2.05e5T^{2} \)
61 \( 1 + 355.T + 2.26e5T^{2} \)
67 \( 1 + 422.T + 3.00e5T^{2} \)
71 \( 1 - 308.T + 3.57e5T^{2} \)
73 \( 1 + 1.03e3T + 3.89e5T^{2} \)
79 \( 1 + 372.T + 4.93e5T^{2} \)
83 \( 1 - 592.T + 5.71e5T^{2} \)
89 \( 1 - 741.T + 7.04e5T^{2} \)
97 \( 1 + 850.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.445008669307216081130093933534, −8.887675585387180290135857202243, −8.210097720097758549501586816373, −7.60521488066356056164845622973, −7.23528680136210860707242573534, −5.16385542387535528399048354399, −4.13968094879644060848928916301, −3.19146287290364701346823251029, −1.78098607425827244035244257476, −1.14954847839510008353227017344, 1.14954847839510008353227017344, 1.78098607425827244035244257476, 3.19146287290364701346823251029, 4.13968094879644060848928916301, 5.16385542387535528399048354399, 7.23528680136210860707242573534, 7.60521488066356056164845622973, 8.210097720097758549501586816373, 8.887675585387180290135857202243, 9.445008669307216081130093933534

Graph of the $Z$-function along the critical line