Properties

Label 841.4.a.i.1.5
Level $841$
Weight $4$
Character 841.1
Self dual yes
Analytic conductor $49.621$
Analytic rank $0$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [841,4,Mod(1,841)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("841.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(841, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 841.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6206063148\)
Analytic rank: \(0\)
Dimension: \(21\)
Twist minimal: no (minimal twist has level 29)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Character \(\chi\) \(=\) 841.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.43388 q^{2} +9.14452 q^{3} +3.79157 q^{4} -5.89225 q^{5} -31.4012 q^{6} +28.3262 q^{7} +14.4513 q^{8} +56.6222 q^{9} +20.2333 q^{10} +19.6828 q^{11} +34.6720 q^{12} +9.96495 q^{13} -97.2688 q^{14} -53.8817 q^{15} -79.9566 q^{16} +55.5715 q^{17} -194.434 q^{18} +137.548 q^{19} -22.3408 q^{20} +259.029 q^{21} -67.5886 q^{22} +115.734 q^{23} +132.150 q^{24} -90.2814 q^{25} -34.2185 q^{26} +270.881 q^{27} +107.401 q^{28} +185.024 q^{30} -176.138 q^{31} +158.951 q^{32} +179.990 q^{33} -190.826 q^{34} -166.905 q^{35} +214.687 q^{36} +11.5698 q^{37} -472.323 q^{38} +91.1247 q^{39} -85.1505 q^{40} -326.005 q^{41} -889.476 q^{42} +132.620 q^{43} +74.6287 q^{44} -333.632 q^{45} -397.418 q^{46} -147.429 q^{47} -731.164 q^{48} +459.372 q^{49} +310.016 q^{50} +508.174 q^{51} +37.7828 q^{52} +206.394 q^{53} -930.173 q^{54} -115.976 q^{55} +409.350 q^{56} +1257.81 q^{57} +58.8115 q^{59} -204.296 q^{60} -355.632 q^{61} +604.839 q^{62} +1603.89 q^{63} +93.8318 q^{64} -58.7159 q^{65} -618.065 q^{66} -422.136 q^{67} +210.703 q^{68} +1058.33 q^{69} +573.132 q^{70} +308.924 q^{71} +818.263 q^{72} -1039.68 q^{73} -39.7294 q^{74} -825.580 q^{75} +521.521 q^{76} +557.539 q^{77} -312.912 q^{78} -372.510 q^{79} +471.124 q^{80} +948.273 q^{81} +1119.46 q^{82} +592.453 q^{83} +982.126 q^{84} -327.441 q^{85} -455.402 q^{86} +284.442 q^{88} +741.411 q^{89} +1145.65 q^{90} +282.269 q^{91} +438.814 q^{92} -1610.70 q^{93} +506.254 q^{94} -810.464 q^{95} +1453.53 q^{96} -850.276 q^{97} -1577.43 q^{98} +1114.48 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q + 6 q^{2} - q^{3} + 90 q^{4} + 35 q^{5} + 26 q^{6} + 37 q^{7} + 51 q^{8} + 188 q^{9} + 37 q^{10} - 7 q^{11} - 68 q^{12} + 97 q^{13} - 68 q^{14} - 330 q^{15} + 310 q^{16} + 70 q^{17} + 305 q^{18} - 73 q^{19}+ \cdots + 8702 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.43388 −1.21406 −0.607031 0.794678i \(-0.707640\pi\)
−0.607031 + 0.794678i \(0.707640\pi\)
\(3\) 9.14452 1.75986 0.879932 0.475101i \(-0.157588\pi\)
0.879932 + 0.475101i \(0.157588\pi\)
\(4\) 3.79157 0.473946
\(5\) −5.89225 −0.527018 −0.263509 0.964657i \(-0.584880\pi\)
−0.263509 + 0.964657i \(0.584880\pi\)
\(6\) −31.4012 −2.13658
\(7\) 28.3262 1.52947 0.764735 0.644345i \(-0.222870\pi\)
0.764735 + 0.644345i \(0.222870\pi\)
\(8\) 14.4513 0.638662
\(9\) 56.6222 2.09712
\(10\) 20.2333 0.639833
\(11\) 19.6828 0.539509 0.269754 0.962929i \(-0.413057\pi\)
0.269754 + 0.962929i \(0.413057\pi\)
\(12\) 34.6720 0.834079
\(13\) 9.96495 0.212599 0.106299 0.994334i \(-0.466100\pi\)
0.106299 + 0.994334i \(0.466100\pi\)
\(14\) −97.2688 −1.85687
\(15\) −53.8817 −0.927480
\(16\) −79.9566 −1.24932
\(17\) 55.5715 0.792827 0.396413 0.918072i \(-0.370255\pi\)
0.396413 + 0.918072i \(0.370255\pi\)
\(18\) −194.434 −2.54603
\(19\) 137.548 1.66082 0.830410 0.557152i \(-0.188106\pi\)
0.830410 + 0.557152i \(0.188106\pi\)
\(20\) −22.3408 −0.249778
\(21\) 259.029 2.69166
\(22\) −67.5886 −0.654997
\(23\) 115.734 1.04923 0.524614 0.851340i \(-0.324210\pi\)
0.524614 + 0.851340i \(0.324210\pi\)
\(24\) 132.150 1.12396
\(25\) −90.2814 −0.722252
\(26\) −34.2185 −0.258108
\(27\) 270.881 1.93078
\(28\) 107.401 0.724886
\(29\) 0 0
\(30\) 185.024 1.12602
\(31\) −176.138 −1.02050 −0.510248 0.860027i \(-0.670447\pi\)
−0.510248 + 0.860027i \(0.670447\pi\)
\(32\) 158.951 0.878090
\(33\) 179.990 0.949461
\(34\) −190.826 −0.962541
\(35\) −166.905 −0.806059
\(36\) 214.687 0.993920
\(37\) 11.5698 0.0514071 0.0257036 0.999670i \(-0.491817\pi\)
0.0257036 + 0.999670i \(0.491817\pi\)
\(38\) −472.323 −2.01634
\(39\) 91.1247 0.374144
\(40\) −85.1505 −0.336587
\(41\) −326.005 −1.24179 −0.620895 0.783893i \(-0.713231\pi\)
−0.620895 + 0.783893i \(0.713231\pi\)
\(42\) −889.476 −3.26784
\(43\) 132.620 0.470334 0.235167 0.971955i \(-0.424436\pi\)
0.235167 + 0.971955i \(0.424436\pi\)
\(44\) 74.6287 0.255698
\(45\) −333.632 −1.10522
\(46\) −397.418 −1.27383
\(47\) −147.429 −0.457548 −0.228774 0.973480i \(-0.573472\pi\)
−0.228774 + 0.973480i \(0.573472\pi\)
\(48\) −731.164 −2.19863
\(49\) 459.372 1.33928
\(50\) 310.016 0.876858
\(51\) 508.174 1.39527
\(52\) 37.7828 0.100760
\(53\) 206.394 0.534913 0.267456 0.963570i \(-0.413817\pi\)
0.267456 + 0.963570i \(0.413817\pi\)
\(54\) −930.173 −2.34408
\(55\) −115.976 −0.284331
\(56\) 409.350 0.976815
\(57\) 1257.81 2.92282
\(58\) 0 0
\(59\) 58.8115 0.129773 0.0648865 0.997893i \(-0.479331\pi\)
0.0648865 + 0.997893i \(0.479331\pi\)
\(60\) −204.296 −0.439575
\(61\) −355.632 −0.746459 −0.373229 0.927739i \(-0.621750\pi\)
−0.373229 + 0.927739i \(0.621750\pi\)
\(62\) 604.839 1.23895
\(63\) 1603.89 3.20748
\(64\) 93.8318 0.183265
\(65\) −58.7159 −0.112043
\(66\) −618.065 −1.15270
\(67\) −422.136 −0.769733 −0.384866 0.922972i \(-0.625752\pi\)
−0.384866 + 0.922972i \(0.625752\pi\)
\(68\) 210.703 0.375757
\(69\) 1058.33 1.84650
\(70\) 573.132 0.978605
\(71\) 308.924 0.516374 0.258187 0.966095i \(-0.416875\pi\)
0.258187 + 0.966095i \(0.416875\pi\)
\(72\) 818.263 1.33935
\(73\) −1039.68 −1.66692 −0.833461 0.552578i \(-0.813644\pi\)
−0.833461 + 0.552578i \(0.813644\pi\)
\(74\) −39.7294 −0.0624114
\(75\) −825.580 −1.27106
\(76\) 521.521 0.787139
\(77\) 557.539 0.825162
\(78\) −312.912 −0.454234
\(79\) −372.510 −0.530514 −0.265257 0.964178i \(-0.585457\pi\)
−0.265257 + 0.964178i \(0.585457\pi\)
\(80\) 471.124 0.658415
\(81\) 948.273 1.30079
\(82\) 1119.46 1.50761
\(83\) 592.453 0.783497 0.391748 0.920072i \(-0.371870\pi\)
0.391748 + 0.920072i \(0.371870\pi\)
\(84\) 982.126 1.27570
\(85\) −327.441 −0.417834
\(86\) −455.402 −0.571014
\(87\) 0 0
\(88\) 284.442 0.344564
\(89\) 741.411 0.883028 0.441514 0.897254i \(-0.354442\pi\)
0.441514 + 0.897254i \(0.354442\pi\)
\(90\) 1145.65 1.34181
\(91\) 282.269 0.325163
\(92\) 438.814 0.497277
\(93\) −1610.70 −1.79593
\(94\) 506.254 0.555491
\(95\) −810.464 −0.875283
\(96\) 1453.53 1.54532
\(97\) −850.276 −0.890026 −0.445013 0.895524i \(-0.646801\pi\)
−0.445013 + 0.895524i \(0.646801\pi\)
\(98\) −1577.43 −1.62597
\(99\) 1114.48 1.13141
\(100\) −342.308 −0.342308
\(101\) −1214.94 −1.19694 −0.598470 0.801145i \(-0.704225\pi\)
−0.598470 + 0.801145i \(0.704225\pi\)
\(102\) −1745.01 −1.69394
\(103\) 1927.45 1.84386 0.921929 0.387359i \(-0.126613\pi\)
0.921929 + 0.387359i \(0.126613\pi\)
\(104\) 144.006 0.135779
\(105\) −1526.26 −1.41855
\(106\) −708.733 −0.649417
\(107\) −1018.81 −0.920490 −0.460245 0.887792i \(-0.652238\pi\)
−0.460245 + 0.887792i \(0.652238\pi\)
\(108\) 1027.06 0.915084
\(109\) 454.707 0.399569 0.199784 0.979840i \(-0.435976\pi\)
0.199784 + 0.979840i \(0.435976\pi\)
\(110\) 398.248 0.345195
\(111\) 105.800 0.0904695
\(112\) −2264.86 −1.91080
\(113\) 231.494 0.192718 0.0963590 0.995347i \(-0.469280\pi\)
0.0963590 + 0.995347i \(0.469280\pi\)
\(114\) −4319.16 −3.54848
\(115\) −681.934 −0.552962
\(116\) 0 0
\(117\) 564.237 0.445844
\(118\) −201.952 −0.157552
\(119\) 1574.13 1.21260
\(120\) −778.660 −0.592347
\(121\) −943.586 −0.708930
\(122\) 1221.20 0.906247
\(123\) −2981.16 −2.18538
\(124\) −667.840 −0.483660
\(125\) 1268.49 0.907658
\(126\) −5507.57 −3.89408
\(127\) −25.4155 −0.0177580 −0.00887900 0.999961i \(-0.502826\pi\)
−0.00887900 + 0.999961i \(0.502826\pi\)
\(128\) −1593.82 −1.10059
\(129\) 1212.75 0.827723
\(130\) 201.624 0.136028
\(131\) −625.214 −0.416986 −0.208493 0.978024i \(-0.566856\pi\)
−0.208493 + 0.978024i \(0.566856\pi\)
\(132\) 682.444 0.449993
\(133\) 3896.20 2.54017
\(134\) 1449.57 0.934503
\(135\) −1596.09 −1.01756
\(136\) 803.079 0.506349
\(137\) 1482.87 0.924743 0.462371 0.886686i \(-0.346999\pi\)
0.462371 + 0.886686i \(0.346999\pi\)
\(138\) −3634.19 −2.24176
\(139\) −1235.77 −0.754077 −0.377039 0.926197i \(-0.623058\pi\)
−0.377039 + 0.926197i \(0.623058\pi\)
\(140\) −632.830 −0.382028
\(141\) −1348.17 −0.805221
\(142\) −1060.81 −0.626909
\(143\) 196.138 0.114699
\(144\) −4527.31 −2.61997
\(145\) 0 0
\(146\) 3570.14 2.02375
\(147\) 4200.74 2.35695
\(148\) 43.8676 0.0243642
\(149\) 964.689 0.530405 0.265203 0.964193i \(-0.414561\pi\)
0.265203 + 0.964193i \(0.414561\pi\)
\(150\) 2834.95 1.54315
\(151\) 94.3117 0.0508277 0.0254138 0.999677i \(-0.491910\pi\)
0.0254138 + 0.999677i \(0.491910\pi\)
\(152\) 1987.74 1.06070
\(153\) 3146.58 1.66265
\(154\) −1914.53 −1.00180
\(155\) 1037.85 0.537821
\(156\) 345.505 0.177324
\(157\) −1304.76 −0.663255 −0.331627 0.943410i \(-0.607598\pi\)
−0.331627 + 0.943410i \(0.607598\pi\)
\(158\) 1279.16 0.644077
\(159\) 1887.37 0.941373
\(160\) −936.580 −0.462770
\(161\) 3278.31 1.60476
\(162\) −3256.26 −1.57923
\(163\) 912.133 0.438305 0.219153 0.975691i \(-0.429671\pi\)
0.219153 + 0.975691i \(0.429671\pi\)
\(164\) −1236.07 −0.588541
\(165\) −1060.54 −0.500384
\(166\) −2034.42 −0.951213
\(167\) 3777.65 1.75044 0.875220 0.483725i \(-0.160716\pi\)
0.875220 + 0.483725i \(0.160716\pi\)
\(168\) 3743.30 1.71906
\(169\) −2097.70 −0.954802
\(170\) 1124.39 0.507277
\(171\) 7788.25 3.48294
\(172\) 502.837 0.222913
\(173\) −1148.42 −0.504696 −0.252348 0.967637i \(-0.581203\pi\)
−0.252348 + 0.967637i \(0.581203\pi\)
\(174\) 0 0
\(175\) −2557.33 −1.10466
\(176\) −1573.77 −0.674020
\(177\) 537.803 0.228383
\(178\) −2545.92 −1.07205
\(179\) 1850.72 0.772789 0.386395 0.922334i \(-0.373720\pi\)
0.386395 + 0.922334i \(0.373720\pi\)
\(180\) −1264.99 −0.523814
\(181\) −257.569 −0.105773 −0.0528865 0.998601i \(-0.516842\pi\)
−0.0528865 + 0.998601i \(0.516842\pi\)
\(182\) −969.279 −0.394768
\(183\) −3252.08 −1.31367
\(184\) 1672.51 0.670102
\(185\) −68.1721 −0.0270925
\(186\) 5530.96 2.18038
\(187\) 1093.80 0.427737
\(188\) −558.987 −0.216853
\(189\) 7673.01 2.95307
\(190\) 2783.04 1.06265
\(191\) 291.002 0.110242 0.0551208 0.998480i \(-0.482446\pi\)
0.0551208 + 0.998480i \(0.482446\pi\)
\(192\) 858.046 0.322522
\(193\) −1005.81 −0.375127 −0.187564 0.982252i \(-0.560059\pi\)
−0.187564 + 0.982252i \(0.560059\pi\)
\(194\) 2919.75 1.08055
\(195\) −536.929 −0.197181
\(196\) 1741.74 0.634745
\(197\) 1418.87 0.513149 0.256575 0.966524i \(-0.417406\pi\)
0.256575 + 0.966524i \(0.417406\pi\)
\(198\) −3827.01 −1.37361
\(199\) 2510.56 0.894317 0.447159 0.894455i \(-0.352436\pi\)
0.447159 + 0.894455i \(0.352436\pi\)
\(200\) −1304.68 −0.461275
\(201\) −3860.23 −1.35462
\(202\) 4171.96 1.45316
\(203\) 0 0
\(204\) 1926.78 0.661281
\(205\) 1920.90 0.654447
\(206\) −6618.64 −2.23856
\(207\) 6553.12 2.20035
\(208\) −796.763 −0.265604
\(209\) 2707.33 0.896027
\(210\) 5241.01 1.72221
\(211\) −2369.11 −0.772967 −0.386483 0.922296i \(-0.626310\pi\)
−0.386483 + 0.922296i \(0.626310\pi\)
\(212\) 782.556 0.253520
\(213\) 2824.96 0.908747
\(214\) 3498.49 1.11753
\(215\) −781.430 −0.247875
\(216\) 3914.57 1.23311
\(217\) −4989.33 −1.56082
\(218\) −1561.41 −0.485101
\(219\) −9507.37 −2.93356
\(220\) −439.731 −0.134757
\(221\) 553.767 0.168554
\(222\) −363.306 −0.109836
\(223\) 485.779 0.145875 0.0729375 0.997337i \(-0.476763\pi\)
0.0729375 + 0.997337i \(0.476763\pi\)
\(224\) 4502.48 1.34301
\(225\) −5111.93 −1.51465
\(226\) −794.924 −0.233972
\(227\) 4520.61 1.32178 0.660889 0.750484i \(-0.270180\pi\)
0.660889 + 0.750484i \(0.270180\pi\)
\(228\) 4769.06 1.38526
\(229\) 4815.89 1.38971 0.694854 0.719151i \(-0.255469\pi\)
0.694854 + 0.719151i \(0.255469\pi\)
\(230\) 2341.68 0.671330
\(231\) 5098.43 1.45217
\(232\) 0 0
\(233\) 4969.07 1.39714 0.698571 0.715540i \(-0.253819\pi\)
0.698571 + 0.715540i \(0.253819\pi\)
\(234\) −1937.53 −0.541282
\(235\) 868.688 0.241136
\(236\) 222.988 0.0615053
\(237\) −3406.42 −0.933632
\(238\) −5405.37 −1.47218
\(239\) −1539.34 −0.416619 −0.208309 0.978063i \(-0.566796\pi\)
−0.208309 + 0.978063i \(0.566796\pi\)
\(240\) 4308.20 1.15872
\(241\) −5010.06 −1.33911 −0.669557 0.742761i \(-0.733516\pi\)
−0.669557 + 0.742761i \(0.733516\pi\)
\(242\) 3240.17 0.860685
\(243\) 1357.72 0.358428
\(244\) −1348.40 −0.353781
\(245\) −2706.73 −0.705824
\(246\) 10237.0 2.65319
\(247\) 1370.66 0.353088
\(248\) −2545.43 −0.651753
\(249\) 5417.70 1.37885
\(250\) −4355.85 −1.10195
\(251\) −1681.87 −0.422944 −0.211472 0.977384i \(-0.567826\pi\)
−0.211472 + 0.977384i \(0.567826\pi\)
\(252\) 6081.25 1.52017
\(253\) 2277.98 0.566068
\(254\) 87.2741 0.0215593
\(255\) −2994.29 −0.735331
\(256\) 4722.33 1.15291
\(257\) −1253.50 −0.304245 −0.152123 0.988362i \(-0.548611\pi\)
−0.152123 + 0.988362i \(0.548611\pi\)
\(258\) −4164.43 −1.00491
\(259\) 327.728 0.0786256
\(260\) −222.625 −0.0531025
\(261\) 0 0
\(262\) 2146.91 0.506247
\(263\) 58.1849 0.0136420 0.00682098 0.999977i \(-0.497829\pi\)
0.00682098 + 0.999977i \(0.497829\pi\)
\(264\) 2601.09 0.606385
\(265\) −1216.12 −0.281909
\(266\) −13379.1 −3.08393
\(267\) 6779.85 1.55401
\(268\) −1600.56 −0.364811
\(269\) 1957.16 0.443606 0.221803 0.975091i \(-0.428806\pi\)
0.221803 + 0.975091i \(0.428806\pi\)
\(270\) 5480.81 1.23537
\(271\) 6184.03 1.38617 0.693087 0.720854i \(-0.256250\pi\)
0.693087 + 0.720854i \(0.256250\pi\)
\(272\) −4443.30 −0.990495
\(273\) 2581.21 0.572242
\(274\) −5091.99 −1.12269
\(275\) −1776.99 −0.389661
\(276\) 4012.74 0.875139
\(277\) 7534.40 1.63429 0.817145 0.576432i \(-0.195555\pi\)
0.817145 + 0.576432i \(0.195555\pi\)
\(278\) 4243.50 0.915496
\(279\) −9973.34 −2.14010
\(280\) −2411.99 −0.514799
\(281\) −6800.85 −1.44379 −0.721894 0.692003i \(-0.756728\pi\)
−0.721894 + 0.692003i \(0.756728\pi\)
\(282\) 4629.45 0.977588
\(283\) −4368.04 −0.917501 −0.458750 0.888565i \(-0.651703\pi\)
−0.458750 + 0.888565i \(0.651703\pi\)
\(284\) 1171.31 0.244733
\(285\) −7411.31 −1.54038
\(286\) −673.517 −0.139251
\(287\) −9234.47 −1.89928
\(288\) 9000.17 1.84146
\(289\) −1824.81 −0.371425
\(290\) 0 0
\(291\) −7775.37 −1.56632
\(292\) −3942.02 −0.790031
\(293\) 5707.24 1.13795 0.568977 0.822354i \(-0.307339\pi\)
0.568977 + 0.822354i \(0.307339\pi\)
\(294\) −14424.8 −2.86148
\(295\) −346.532 −0.0683928
\(296\) 167.198 0.0328318
\(297\) 5331.70 1.04167
\(298\) −3312.63 −0.643945
\(299\) 1153.29 0.223064
\(300\) −3130.24 −0.602415
\(301\) 3756.62 0.719362
\(302\) −323.856 −0.0617079
\(303\) −11110.0 −2.10645
\(304\) −10997.8 −2.07490
\(305\) 2095.47 0.393398
\(306\) −10805.0 −2.01856
\(307\) 1288.73 0.239582 0.119791 0.992799i \(-0.461778\pi\)
0.119791 + 0.992799i \(0.461778\pi\)
\(308\) 2113.95 0.391082
\(309\) 17625.6 3.24494
\(310\) −3563.86 −0.652947
\(311\) −8939.77 −1.62999 −0.814996 0.579466i \(-0.803261\pi\)
−0.814996 + 0.579466i \(0.803261\pi\)
\(312\) 1316.87 0.238952
\(313\) 3896.68 0.703685 0.351843 0.936059i \(-0.385555\pi\)
0.351843 + 0.936059i \(0.385555\pi\)
\(314\) 4480.39 0.805232
\(315\) −9450.51 −1.69040
\(316\) −1412.40 −0.251435
\(317\) −1290.77 −0.228697 −0.114348 0.993441i \(-0.536478\pi\)
−0.114348 + 0.993441i \(0.536478\pi\)
\(318\) −6481.02 −1.14288
\(319\) 0 0
\(320\) −552.880 −0.0965841
\(321\) −9316.55 −1.61994
\(322\) −11257.3 −1.94828
\(323\) 7643.72 1.31674
\(324\) 3595.44 0.616502
\(325\) −899.650 −0.153550
\(326\) −3132.16 −0.532130
\(327\) 4158.07 0.703186
\(328\) −4711.19 −0.793085
\(329\) −4176.10 −0.699805
\(330\) 3641.79 0.607497
\(331\) −5596.52 −0.929343 −0.464671 0.885483i \(-0.653828\pi\)
−0.464671 + 0.885483i \(0.653828\pi\)
\(332\) 2246.33 0.371335
\(333\) 655.107 0.107807
\(334\) −12972.0 −2.12514
\(335\) 2487.33 0.405663
\(336\) −20711.1 −3.36274
\(337\) 6821.81 1.10269 0.551347 0.834276i \(-0.314114\pi\)
0.551347 + 0.834276i \(0.314114\pi\)
\(338\) 7203.26 1.15919
\(339\) 2116.90 0.339157
\(340\) −1241.51 −0.198031
\(341\) −3466.90 −0.550567
\(342\) −26743.9 −4.22850
\(343\) 3296.38 0.518915
\(344\) 1916.53 0.300385
\(345\) −6235.96 −0.973138
\(346\) 3943.53 0.612732
\(347\) 11277.8 1.74473 0.872366 0.488854i \(-0.162585\pi\)
0.872366 + 0.488854i \(0.162585\pi\)
\(348\) 0 0
\(349\) −8979.20 −1.37721 −0.688604 0.725138i \(-0.741776\pi\)
−0.688604 + 0.725138i \(0.741776\pi\)
\(350\) 8781.57 1.34113
\(351\) 2699.31 0.410480
\(352\) 3128.61 0.473737
\(353\) 10858.5 1.63722 0.818611 0.574348i \(-0.194744\pi\)
0.818611 + 0.574348i \(0.194744\pi\)
\(354\) −1846.75 −0.277271
\(355\) −1820.26 −0.272138
\(356\) 2811.11 0.418507
\(357\) 14394.6 2.13402
\(358\) −6355.16 −0.938214
\(359\) −9053.50 −1.33099 −0.665495 0.746402i \(-0.731780\pi\)
−0.665495 + 0.746402i \(0.731780\pi\)
\(360\) −4821.41 −0.705862
\(361\) 12060.4 1.75832
\(362\) 884.461 0.128415
\(363\) −8628.64 −1.24762
\(364\) 1070.24 0.154110
\(365\) 6126.05 0.878499
\(366\) 11167.3 1.59487
\(367\) −3972.57 −0.565031 −0.282516 0.959263i \(-0.591169\pi\)
−0.282516 + 0.959263i \(0.591169\pi\)
\(368\) −9253.70 −1.31082
\(369\) −18459.1 −2.60418
\(370\) 234.095 0.0328920
\(371\) 5846.35 0.818133
\(372\) −6107.08 −0.851175
\(373\) 3915.58 0.543541 0.271771 0.962362i \(-0.412391\pi\)
0.271771 + 0.962362i \(0.412391\pi\)
\(374\) −3755.99 −0.519299
\(375\) 11599.7 1.59735
\(376\) −2130.54 −0.292218
\(377\) 0 0
\(378\) −26348.2 −3.58520
\(379\) −13509.4 −1.83096 −0.915479 0.402365i \(-0.868188\pi\)
−0.915479 + 0.402365i \(0.868188\pi\)
\(380\) −3072.93 −0.414837
\(381\) −232.413 −0.0312516
\(382\) −999.266 −0.133840
\(383\) −11893.5 −1.58676 −0.793381 0.608725i \(-0.791681\pi\)
−0.793381 + 0.608725i \(0.791681\pi\)
\(384\) −14574.7 −1.93688
\(385\) −3285.16 −0.434876
\(386\) 3453.83 0.455428
\(387\) 7509.23 0.986346
\(388\) −3223.88 −0.421824
\(389\) −4540.73 −0.591836 −0.295918 0.955213i \(-0.595625\pi\)
−0.295918 + 0.955213i \(0.595625\pi\)
\(390\) 1843.75 0.239390
\(391\) 6431.52 0.831856
\(392\) 6638.52 0.855346
\(393\) −5717.28 −0.733839
\(394\) −4872.24 −0.622995
\(395\) 2194.92 0.279591
\(396\) 4225.64 0.536228
\(397\) 7642.39 0.966147 0.483073 0.875580i \(-0.339520\pi\)
0.483073 + 0.875580i \(0.339520\pi\)
\(398\) −8620.98 −1.08576
\(399\) 35628.9 4.47036
\(400\) 7218.59 0.902324
\(401\) −4834.08 −0.602001 −0.301000 0.953624i \(-0.597321\pi\)
−0.301000 + 0.953624i \(0.597321\pi\)
\(402\) 13255.6 1.64460
\(403\) −1755.21 −0.216956
\(404\) −4606.52 −0.567285
\(405\) −5587.46 −0.685538
\(406\) 0 0
\(407\) 227.726 0.0277346
\(408\) 7343.77 0.891104
\(409\) −10510.8 −1.27072 −0.635362 0.772215i \(-0.719149\pi\)
−0.635362 + 0.772215i \(0.719149\pi\)
\(410\) −6596.15 −0.794539
\(411\) 13560.1 1.62742
\(412\) 7308.06 0.873889
\(413\) 1665.91 0.198484
\(414\) −22502.7 −2.67137
\(415\) −3490.88 −0.412917
\(416\) 1583.94 0.186681
\(417\) −11300.5 −1.32707
\(418\) −9296.65 −1.08783
\(419\) −10935.5 −1.27502 −0.637509 0.770443i \(-0.720035\pi\)
−0.637509 + 0.770443i \(0.720035\pi\)
\(420\) −5786.93 −0.672317
\(421\) 1379.57 0.159706 0.0798531 0.996807i \(-0.474555\pi\)
0.0798531 + 0.996807i \(0.474555\pi\)
\(422\) 8135.24 0.938429
\(423\) −8347.76 −0.959531
\(424\) 2982.65 0.341629
\(425\) −5017.07 −0.572620
\(426\) −9700.59 −1.10327
\(427\) −10073.7 −1.14169
\(428\) −3862.90 −0.436262
\(429\) 1793.59 0.201854
\(430\) 2683.34 0.300935
\(431\) 1861.59 0.208051 0.104025 0.994575i \(-0.466828\pi\)
0.104025 + 0.994575i \(0.466828\pi\)
\(432\) −21658.7 −2.41216
\(433\) 7954.51 0.882840 0.441420 0.897301i \(-0.354475\pi\)
0.441420 + 0.897301i \(0.354475\pi\)
\(434\) 17132.8 1.89493
\(435\) 0 0
\(436\) 1724.05 0.189374
\(437\) 15919.0 1.74258
\(438\) 32647.2 3.56152
\(439\) −10283.9 −1.11805 −0.559027 0.829149i \(-0.688825\pi\)
−0.559027 + 0.829149i \(0.688825\pi\)
\(440\) −1676.00 −0.181592
\(441\) 26010.7 2.80862
\(442\) −1901.57 −0.204635
\(443\) −4700.61 −0.504137 −0.252069 0.967709i \(-0.581111\pi\)
−0.252069 + 0.967709i \(0.581111\pi\)
\(444\) 401.148 0.0428776
\(445\) −4368.58 −0.465372
\(446\) −1668.11 −0.177101
\(447\) 8821.61 0.933440
\(448\) 2657.90 0.280299
\(449\) 11839.3 1.24439 0.622193 0.782864i \(-0.286242\pi\)
0.622193 + 0.782864i \(0.286242\pi\)
\(450\) 17553.8 1.83887
\(451\) −6416.70 −0.669957
\(452\) 877.725 0.0913379
\(453\) 862.435 0.0894497
\(454\) −15523.3 −1.60472
\(455\) −1663.20 −0.171367
\(456\) 18176.9 1.86669
\(457\) −18534.6 −1.89719 −0.948593 0.316498i \(-0.897493\pi\)
−0.948593 + 0.316498i \(0.897493\pi\)
\(458\) −16537.2 −1.68719
\(459\) 15053.2 1.53077
\(460\) −2585.60 −0.262074
\(461\) 5810.52 0.587035 0.293517 0.955954i \(-0.405174\pi\)
0.293517 + 0.955954i \(0.405174\pi\)
\(462\) −17507.4 −1.76303
\(463\) −16949.4 −1.70131 −0.850655 0.525725i \(-0.823794\pi\)
−0.850655 + 0.525725i \(0.823794\pi\)
\(464\) 0 0
\(465\) 9490.65 0.946491
\(466\) −17063.2 −1.69622
\(467\) −12229.5 −1.21181 −0.605903 0.795539i \(-0.707188\pi\)
−0.605903 + 0.795539i \(0.707188\pi\)
\(468\) 2139.34 0.211306
\(469\) −11957.5 −1.17728
\(470\) −2982.98 −0.292754
\(471\) −11931.4 −1.16724
\(472\) 849.902 0.0828811
\(473\) 2610.34 0.253749
\(474\) 11697.3 1.13349
\(475\) −12418.0 −1.19953
\(476\) 5968.40 0.574709
\(477\) 11686.5 1.12177
\(478\) 5285.93 0.505801
\(479\) −18960.5 −1.80862 −0.904311 0.426875i \(-0.859614\pi\)
−0.904311 + 0.426875i \(0.859614\pi\)
\(480\) −8564.57 −0.814412
\(481\) 115.293 0.0109291
\(482\) 17204.0 1.62577
\(483\) 29978.5 2.82416
\(484\) −3577.67 −0.335994
\(485\) 5010.04 0.469060
\(486\) −4662.26 −0.435153
\(487\) 1025.75 0.0954438 0.0477219 0.998861i \(-0.484804\pi\)
0.0477219 + 0.998861i \(0.484804\pi\)
\(488\) −5139.34 −0.476735
\(489\) 8341.01 0.771357
\(490\) 9294.61 0.856914
\(491\) 11448.9 1.05231 0.526154 0.850389i \(-0.323633\pi\)
0.526154 + 0.850389i \(0.323633\pi\)
\(492\) −11303.3 −1.03575
\(493\) 0 0
\(494\) −4706.67 −0.428671
\(495\) −6566.82 −0.596276
\(496\) 14083.4 1.27493
\(497\) 8750.63 0.789778
\(498\) −18603.8 −1.67400
\(499\) 4178.52 0.374862 0.187431 0.982278i \(-0.439984\pi\)
0.187431 + 0.982278i \(0.439984\pi\)
\(500\) 4809.57 0.430181
\(501\) 34544.8 3.08054
\(502\) 5775.36 0.513480
\(503\) −15795.2 −1.40014 −0.700072 0.714072i \(-0.746849\pi\)
−0.700072 + 0.714072i \(0.746849\pi\)
\(504\) 23178.3 2.04850
\(505\) 7158.72 0.630810
\(506\) −7822.31 −0.687241
\(507\) −19182.5 −1.68032
\(508\) −96.3647 −0.00841632
\(509\) −1938.84 −0.168837 −0.0844183 0.996430i \(-0.526903\pi\)
−0.0844183 + 0.996430i \(0.526903\pi\)
\(510\) 10282.0 0.892738
\(511\) −29450.2 −2.54951
\(512\) −3465.41 −0.299123
\(513\) 37259.0 3.20667
\(514\) 4304.37 0.369372
\(515\) −11357.0 −0.971747
\(516\) 4598.21 0.392296
\(517\) −2901.82 −0.246851
\(518\) −1125.38 −0.0954564
\(519\) −10501.7 −0.888196
\(520\) −848.521 −0.0715579
\(521\) 1479.09 0.124377 0.0621884 0.998064i \(-0.480192\pi\)
0.0621884 + 0.998064i \(0.480192\pi\)
\(522\) 0 0
\(523\) 2891.84 0.241781 0.120891 0.992666i \(-0.461425\pi\)
0.120891 + 0.992666i \(0.461425\pi\)
\(524\) −2370.54 −0.197629
\(525\) −23385.5 −1.94405
\(526\) −199.800 −0.0165622
\(527\) −9788.27 −0.809077
\(528\) −14391.4 −1.18618
\(529\) 1227.40 0.100879
\(530\) 4176.03 0.342255
\(531\) 3330.04 0.272149
\(532\) 14772.7 1.20390
\(533\) −3248.62 −0.264003
\(534\) −23281.2 −1.88666
\(535\) 6003.10 0.485115
\(536\) −6100.40 −0.491599
\(537\) 16923.9 1.36000
\(538\) −6720.66 −0.538565
\(539\) 9041.74 0.722552
\(540\) −6051.70 −0.482266
\(541\) −18063.0 −1.43547 −0.717735 0.696316i \(-0.754821\pi\)
−0.717735 + 0.696316i \(0.754821\pi\)
\(542\) −21235.2 −1.68290
\(543\) −2355.34 −0.186146
\(544\) 8833.16 0.696174
\(545\) −2679.24 −0.210580
\(546\) −8863.59 −0.694737
\(547\) −23720.3 −1.85413 −0.927063 0.374906i \(-0.877675\pi\)
−0.927063 + 0.374906i \(0.877675\pi\)
\(548\) 5622.38 0.438278
\(549\) −20136.7 −1.56541
\(550\) 6101.99 0.473072
\(551\) 0 0
\(552\) 15294.3 1.17929
\(553\) −10551.8 −0.811405
\(554\) −25872.3 −1.98413
\(555\) −623.401 −0.0476791
\(556\) −4685.51 −0.357392
\(557\) −6055.38 −0.460637 −0.230319 0.973115i \(-0.573977\pi\)
−0.230319 + 0.973115i \(0.573977\pi\)
\(558\) 34247.3 2.59822
\(559\) 1321.55 0.0999923
\(560\) 13345.1 1.00703
\(561\) 10002.3 0.752759
\(562\) 23353.3 1.75285
\(563\) 16045.1 1.20110 0.600550 0.799587i \(-0.294948\pi\)
0.600550 + 0.799587i \(0.294948\pi\)
\(564\) −5111.66 −0.381631
\(565\) −1364.02 −0.101566
\(566\) 14999.3 1.11390
\(567\) 26860.9 1.98951
\(568\) 4464.35 0.329788
\(569\) −22591.5 −1.66447 −0.832237 0.554420i \(-0.812940\pi\)
−0.832237 + 0.554420i \(0.812940\pi\)
\(570\) 25449.6 1.87011
\(571\) −1965.79 −0.144073 −0.0720365 0.997402i \(-0.522950\pi\)
−0.0720365 + 0.997402i \(0.522950\pi\)
\(572\) 743.672 0.0543610
\(573\) 2661.07 0.194010
\(574\) 31710.1 2.30584
\(575\) −10448.6 −0.757806
\(576\) 5312.96 0.384329
\(577\) 17428.7 1.25748 0.628741 0.777614i \(-0.283570\pi\)
0.628741 + 0.777614i \(0.283570\pi\)
\(578\) 6266.20 0.450933
\(579\) −9197.62 −0.660173
\(580\) 0 0
\(581\) 16781.9 1.19833
\(582\) 26699.7 1.90161
\(583\) 4062.41 0.288590
\(584\) −15024.7 −1.06460
\(585\) −3324.63 −0.234968
\(586\) −19598.0 −1.38155
\(587\) 13435.1 0.944680 0.472340 0.881416i \(-0.343409\pi\)
0.472340 + 0.881416i \(0.343409\pi\)
\(588\) 15927.4 1.11706
\(589\) −24227.4 −1.69486
\(590\) 1189.95 0.0830330
\(591\) 12974.9 0.903073
\(592\) −925.081 −0.0642240
\(593\) −445.800 −0.0308715 −0.0154358 0.999881i \(-0.504914\pi\)
−0.0154358 + 0.999881i \(0.504914\pi\)
\(594\) −18308.4 −1.26465
\(595\) −9275.14 −0.639065
\(596\) 3657.68 0.251383
\(597\) 22957.9 1.57388
\(598\) −3960.25 −0.270814
\(599\) 1118.95 0.0763260 0.0381630 0.999272i \(-0.487849\pi\)
0.0381630 + 0.999272i \(0.487849\pi\)
\(600\) −11930.7 −0.811781
\(601\) −5612.21 −0.380910 −0.190455 0.981696i \(-0.560996\pi\)
−0.190455 + 0.981696i \(0.560996\pi\)
\(602\) −12899.8 −0.873349
\(603\) −23902.2 −1.61422
\(604\) 357.589 0.0240896
\(605\) 5559.84 0.373619
\(606\) 38150.6 2.55736
\(607\) 25588.5 1.71105 0.855524 0.517763i \(-0.173235\pi\)
0.855524 + 0.517763i \(0.173235\pi\)
\(608\) 21863.4 1.45835
\(609\) 0 0
\(610\) −7195.60 −0.477609
\(611\) −1469.12 −0.0972739
\(612\) 11930.5 0.788006
\(613\) 6647.94 0.438023 0.219011 0.975722i \(-0.429717\pi\)
0.219011 + 0.975722i \(0.429717\pi\)
\(614\) −4425.35 −0.290867
\(615\) 17565.7 1.15174
\(616\) 8057.16 0.527000
\(617\) 9549.74 0.623109 0.311554 0.950228i \(-0.399150\pi\)
0.311554 + 0.950228i \(0.399150\pi\)
\(618\) −60524.3 −3.93955
\(619\) −5672.19 −0.368311 −0.184156 0.982897i \(-0.558955\pi\)
−0.184156 + 0.982897i \(0.558955\pi\)
\(620\) 3935.08 0.254898
\(621\) 31350.1 2.02583
\(622\) 30698.1 1.97891
\(623\) 21001.3 1.35056
\(624\) −7286.02 −0.467426
\(625\) 3810.92 0.243899
\(626\) −13380.8 −0.854317
\(627\) 24757.2 1.57689
\(628\) −4947.07 −0.314347
\(629\) 642.951 0.0407569
\(630\) 32452.0 2.05225
\(631\) −25006.0 −1.57761 −0.788805 0.614644i \(-0.789300\pi\)
−0.788805 + 0.614644i \(0.789300\pi\)
\(632\) −5383.24 −0.338819
\(633\) −21664.3 −1.36032
\(634\) 4432.35 0.277652
\(635\) 149.755 0.00935879
\(636\) 7156.09 0.446160
\(637\) 4577.62 0.284728
\(638\) 0 0
\(639\) 17491.9 1.08290
\(640\) 9391.17 0.580029
\(641\) −11884.0 −0.732275 −0.366138 0.930561i \(-0.619320\pi\)
−0.366138 + 0.930561i \(0.619320\pi\)
\(642\) 31992.0 1.96670
\(643\) 2994.14 0.183635 0.0918175 0.995776i \(-0.470732\pi\)
0.0918175 + 0.995776i \(0.470732\pi\)
\(644\) 12429.9 0.760570
\(645\) −7145.80 −0.436226
\(646\) −26247.7 −1.59861
\(647\) 7641.25 0.464310 0.232155 0.972679i \(-0.425422\pi\)
0.232155 + 0.972679i \(0.425422\pi\)
\(648\) 13703.8 0.830763
\(649\) 1157.58 0.0700137
\(650\) 3089.30 0.186419
\(651\) −45625.0 −2.74683
\(652\) 3458.41 0.207733
\(653\) 30822.9 1.84716 0.923578 0.383411i \(-0.125251\pi\)
0.923578 + 0.383411i \(0.125251\pi\)
\(654\) −14278.3 −0.853712
\(655\) 3683.92 0.219760
\(656\) 26066.2 1.55140
\(657\) −58869.0 −3.49573
\(658\) 14340.3 0.849607
\(659\) 27525.0 1.62704 0.813521 0.581535i \(-0.197548\pi\)
0.813521 + 0.581535i \(0.197548\pi\)
\(660\) −4021.13 −0.237155
\(661\) 6548.53 0.385338 0.192669 0.981264i \(-0.438286\pi\)
0.192669 + 0.981264i \(0.438286\pi\)
\(662\) 19217.8 1.12828
\(663\) 5063.93 0.296632
\(664\) 8561.71 0.500390
\(665\) −22957.4 −1.33872
\(666\) −2249.56 −0.130884
\(667\) 0 0
\(668\) 14323.2 0.829614
\(669\) 4442.21 0.256720
\(670\) −8541.20 −0.492500
\(671\) −6999.84 −0.402721
\(672\) 41173.0 2.36352
\(673\) −14112.1 −0.808291 −0.404145 0.914695i \(-0.632431\pi\)
−0.404145 + 0.914695i \(0.632431\pi\)
\(674\) −23425.3 −1.33874
\(675\) −24455.5 −1.39451
\(676\) −7953.57 −0.452524
\(677\) 9323.80 0.529310 0.264655 0.964343i \(-0.414742\pi\)
0.264655 + 0.964343i \(0.414742\pi\)
\(678\) −7269.20 −0.411758
\(679\) −24085.1 −1.36127
\(680\) −4731.94 −0.266855
\(681\) 41338.8 2.32615
\(682\) 11904.9 0.668422
\(683\) −4863.66 −0.272478 −0.136239 0.990676i \(-0.543502\pi\)
−0.136239 + 0.990676i \(0.543502\pi\)
\(684\) 29529.6 1.65072
\(685\) −8737.41 −0.487357
\(686\) −11319.4 −0.629995
\(687\) 44039.0 2.44569
\(688\) −10603.8 −0.587598
\(689\) 2056.70 0.113722
\(690\) 21413.6 1.18145
\(691\) 8256.67 0.454557 0.227278 0.973830i \(-0.427017\pi\)
0.227278 + 0.973830i \(0.427017\pi\)
\(692\) −4354.29 −0.239198
\(693\) 31569.1 1.73046
\(694\) −38726.5 −2.11821
\(695\) 7281.47 0.397413
\(696\) 0 0
\(697\) −18116.6 −0.984525
\(698\) 30833.5 1.67201
\(699\) 45439.7 2.45878
\(700\) −9696.28 −0.523550
\(701\) 17710.8 0.954250 0.477125 0.878835i \(-0.341679\pi\)
0.477125 + 0.878835i \(0.341679\pi\)
\(702\) −9269.13 −0.498349
\(703\) 1591.40 0.0853780
\(704\) 1846.87 0.0988732
\(705\) 7943.73 0.424366
\(706\) −37286.8 −1.98769
\(707\) −34414.6 −1.83068
\(708\) 2039.11 0.108241
\(709\) −11407.4 −0.604252 −0.302126 0.953268i \(-0.597696\pi\)
−0.302126 + 0.953268i \(0.597696\pi\)
\(710\) 6250.55 0.330393
\(711\) −21092.3 −1.11255
\(712\) 10714.3 0.563957
\(713\) −20385.2 −1.07073
\(714\) −49429.5 −2.59083
\(715\) −1155.70 −0.0604484
\(716\) 7017.13 0.366260
\(717\) −14076.6 −0.733192
\(718\) 31088.7 1.61590
\(719\) 24212.7 1.25589 0.627943 0.778259i \(-0.283897\pi\)
0.627943 + 0.778259i \(0.283897\pi\)
\(720\) 26676.0 1.38077
\(721\) 54597.3 2.82013
\(722\) −41413.9 −2.13471
\(723\) −45814.6 −2.35666
\(724\) −976.588 −0.0501307
\(725\) 0 0
\(726\) 29629.8 1.51469
\(727\) −26557.9 −1.35485 −0.677425 0.735591i \(-0.736904\pi\)
−0.677425 + 0.735591i \(0.736904\pi\)
\(728\) 4079.15 0.207669
\(729\) −13187.7 −0.670002
\(730\) −21036.2 −1.06655
\(731\) 7369.89 0.372893
\(732\) −12330.5 −0.622606
\(733\) −15621.7 −0.787176 −0.393588 0.919287i \(-0.628766\pi\)
−0.393588 + 0.919287i \(0.628766\pi\)
\(734\) 13641.3 0.685983
\(735\) −24751.8 −1.24215
\(736\) 18396.1 0.921317
\(737\) −8308.83 −0.415277
\(738\) 63386.5 3.16164
\(739\) −30757.7 −1.53104 −0.765521 0.643411i \(-0.777519\pi\)
−0.765521 + 0.643411i \(0.777519\pi\)
\(740\) −258.479 −0.0128404
\(741\) 12534.0 0.621387
\(742\) −20075.7 −0.993263
\(743\) 19540.0 0.964810 0.482405 0.875948i \(-0.339763\pi\)
0.482405 + 0.875948i \(0.339763\pi\)
\(744\) −23276.7 −1.14700
\(745\) −5684.18 −0.279533
\(746\) −13445.6 −0.659893
\(747\) 33546.0 1.64308
\(748\) 4147.23 0.202724
\(749\) −28859.1 −1.40786
\(750\) −39832.2 −1.93929
\(751\) −12946.6 −0.629068 −0.314534 0.949246i \(-0.601848\pi\)
−0.314534 + 0.949246i \(0.601848\pi\)
\(752\) 11787.9 0.571624
\(753\) −15379.9 −0.744324
\(754\) 0 0
\(755\) −555.708 −0.0267871
\(756\) 29092.7 1.39959
\(757\) 15108.3 0.725393 0.362696 0.931907i \(-0.381856\pi\)
0.362696 + 0.931907i \(0.381856\pi\)
\(758\) 46389.9 2.22290
\(759\) 20831.0 0.996201
\(760\) −11712.2 −0.559010
\(761\) 15009.9 0.714990 0.357495 0.933915i \(-0.383631\pi\)
0.357495 + 0.933915i \(0.383631\pi\)
\(762\) 798.079 0.0379414
\(763\) 12880.1 0.611128
\(764\) 1103.35 0.0522485
\(765\) −18540.4 −0.876248
\(766\) 40840.9 1.92643
\(767\) 586.054 0.0275895
\(768\) 43183.5 2.02897
\(769\) 19787.6 0.927907 0.463953 0.885860i \(-0.346431\pi\)
0.463953 + 0.885860i \(0.346431\pi\)
\(770\) 11280.9 0.527966
\(771\) −11462.6 −0.535430
\(772\) −3813.58 −0.177790
\(773\) 2093.89 0.0974281 0.0487140 0.998813i \(-0.484488\pi\)
0.0487140 + 0.998813i \(0.484488\pi\)
\(774\) −25785.8 −1.19748
\(775\) 15902.0 0.737055
\(776\) −12287.6 −0.568426
\(777\) 2996.92 0.138370
\(778\) 15592.3 0.718525
\(779\) −44841.2 −2.06239
\(780\) −2035.80 −0.0934530
\(781\) 6080.50 0.278588
\(782\) −22085.1 −1.00992
\(783\) 0 0
\(784\) −36729.8 −1.67319
\(785\) 7687.95 0.349548
\(786\) 19632.5 0.890926
\(787\) 26192.6 1.18636 0.593180 0.805070i \(-0.297872\pi\)
0.593180 + 0.805070i \(0.297872\pi\)
\(788\) 5379.74 0.243205
\(789\) 532.073 0.0240080
\(790\) −7537.10 −0.339440
\(791\) 6557.34 0.294756
\(792\) 16105.7 0.722591
\(793\) −3543.85 −0.158696
\(794\) −26243.1 −1.17296
\(795\) −11120.9 −0.496121
\(796\) 9518.96 0.423858
\(797\) −43480.7 −1.93246 −0.966228 0.257690i \(-0.917039\pi\)
−0.966228 + 0.257690i \(0.917039\pi\)
\(798\) −122345. −5.42729
\(799\) −8192.85 −0.362756
\(800\) −14350.4 −0.634202
\(801\) 41980.3 1.85181
\(802\) 16599.7 0.730866
\(803\) −20463.8 −0.899319
\(804\) −14636.3 −0.642018
\(805\) −19316.6 −0.845739
\(806\) 6027.19 0.263398
\(807\) 17897.3 0.780686
\(808\) −17557.4 −0.764441
\(809\) 33975.7 1.47654 0.738272 0.674504i \(-0.235642\pi\)
0.738272 + 0.674504i \(0.235642\pi\)
\(810\) 19186.7 0.832286
\(811\) −3732.02 −0.161589 −0.0807947 0.996731i \(-0.525746\pi\)
−0.0807947 + 0.996731i \(0.525746\pi\)
\(812\) 0 0
\(813\) 56549.9 2.43948
\(814\) −781.986 −0.0336715
\(815\) −5374.51 −0.230995
\(816\) −40631.9 −1.74314
\(817\) 18241.6 0.781140
\(818\) 36092.9 1.54274
\(819\) 15982.7 0.681905
\(820\) 7283.22 0.310172
\(821\) 9169.96 0.389810 0.194905 0.980822i \(-0.437560\pi\)
0.194905 + 0.980822i \(0.437560\pi\)
\(822\) −46563.8 −1.97579
\(823\) 35897.6 1.52043 0.760214 0.649673i \(-0.225094\pi\)
0.760214 + 0.649673i \(0.225094\pi\)
\(824\) 27854.1 1.17760
\(825\) −16249.8 −0.685750
\(826\) −5720.53 −0.240972
\(827\) −32487.3 −1.36601 −0.683007 0.730412i \(-0.739328\pi\)
−0.683007 + 0.730412i \(0.739328\pi\)
\(828\) 24846.6 1.04285
\(829\) 1759.23 0.0737040 0.0368520 0.999321i \(-0.488267\pi\)
0.0368520 + 0.999321i \(0.488267\pi\)
\(830\) 11987.3 0.501307
\(831\) 68898.5 2.87613
\(832\) 935.029 0.0389619
\(833\) 25528.0 1.06182
\(834\) 38804.7 1.61115
\(835\) −22258.9 −0.922514
\(836\) 10265.0 0.424668
\(837\) −47712.5 −1.97035
\(838\) 37551.1 1.54795
\(839\) −12137.9 −0.499462 −0.249731 0.968315i \(-0.580342\pi\)
−0.249731 + 0.968315i \(0.580342\pi\)
\(840\) −22056.5 −0.905976
\(841\) 0 0
\(842\) −4737.30 −0.193893
\(843\) −62190.5 −2.54087
\(844\) −8982.62 −0.366344
\(845\) 12360.2 0.503198
\(846\) 28665.2 1.16493
\(847\) −26728.2 −1.08429
\(848\) −16502.5 −0.668278
\(849\) −39943.6 −1.61468
\(850\) 17228.0 0.695197
\(851\) 1339.02 0.0539378
\(852\) 10711.0 0.430697
\(853\) 79.0685 0.00317380 0.00158690 0.999999i \(-0.499495\pi\)
0.00158690 + 0.999999i \(0.499495\pi\)
\(854\) 34591.9 1.38608
\(855\) −45890.3 −1.83557
\(856\) −14723.2 −0.587882
\(857\) 21292.0 0.848682 0.424341 0.905503i \(-0.360506\pi\)
0.424341 + 0.905503i \(0.360506\pi\)
\(858\) −6158.99 −0.245063
\(859\) −15943.1 −0.633259 −0.316630 0.948549i \(-0.602551\pi\)
−0.316630 + 0.948549i \(0.602551\pi\)
\(860\) −2962.84 −0.117479
\(861\) −84444.8 −3.34247
\(862\) −6392.50 −0.252586
\(863\) 3459.63 0.136462 0.0682312 0.997670i \(-0.478264\pi\)
0.0682312 + 0.997670i \(0.478264\pi\)
\(864\) 43056.8 1.69540
\(865\) 6766.74 0.265984
\(866\) −27314.9 −1.07182
\(867\) −16687.0 −0.653658
\(868\) −18917.4 −0.739743
\(869\) −7332.05 −0.286217
\(870\) 0 0
\(871\) −4206.56 −0.163644
\(872\) 6571.09 0.255190
\(873\) −48144.5 −1.86649
\(874\) −54663.9 −2.11560
\(875\) 35931.5 1.38824
\(876\) −36047.8 −1.39035
\(877\) −27923.1 −1.07514 −0.537569 0.843220i \(-0.680657\pi\)
−0.537569 + 0.843220i \(0.680657\pi\)
\(878\) 35313.9 1.35739
\(879\) 52189.9 2.00264
\(880\) 9273.05 0.355221
\(881\) −20958.0 −0.801468 −0.400734 0.916194i \(-0.631245\pi\)
−0.400734 + 0.916194i \(0.631245\pi\)
\(882\) −89317.6 −3.40984
\(883\) −33203.3 −1.26544 −0.632719 0.774382i \(-0.718061\pi\)
−0.632719 + 0.774382i \(0.718061\pi\)
\(884\) 2099.64 0.0798854
\(885\) −3168.87 −0.120362
\(886\) 16141.4 0.612054
\(887\) −8053.49 −0.304859 −0.152429 0.988314i \(-0.548710\pi\)
−0.152429 + 0.988314i \(0.548710\pi\)
\(888\) 1528.95 0.0577795
\(889\) −719.925 −0.0271603
\(890\) 15001.2 0.564990
\(891\) 18664.7 0.701785
\(892\) 1841.86 0.0691369
\(893\) −20278.5 −0.759904
\(894\) −30292.4 −1.13325
\(895\) −10904.9 −0.407274
\(896\) −45146.8 −1.68331
\(897\) 10546.2 0.392563
\(898\) −40654.7 −1.51076
\(899\) 0 0
\(900\) −19382.2 −0.717860
\(901\) 11469.6 0.424093
\(902\) 22034.2 0.813369
\(903\) 34352.5 1.26598
\(904\) 3345.39 0.123082
\(905\) 1517.66 0.0557444
\(906\) −2961.50 −0.108598
\(907\) −6295.01 −0.230455 −0.115227 0.993339i \(-0.536760\pi\)
−0.115227 + 0.993339i \(0.536760\pi\)
\(908\) 17140.2 0.626451
\(909\) −68792.5 −2.51013
\(910\) 5711.23 0.208050
\(911\) −36317.6 −1.32081 −0.660404 0.750910i \(-0.729615\pi\)
−0.660404 + 0.750910i \(0.729615\pi\)
\(912\) −100570. −3.65154
\(913\) 11661.2 0.422703
\(914\) 63645.8 2.30330
\(915\) 19162.1 0.692326
\(916\) 18259.8 0.658646
\(917\) −17709.9 −0.637768
\(918\) −51691.1 −1.85845
\(919\) 42181.6 1.51408 0.757042 0.653366i \(-0.226644\pi\)
0.757042 + 0.653366i \(0.226644\pi\)
\(920\) −9854.82 −0.353156
\(921\) 11784.8 0.421632
\(922\) −19952.7 −0.712696
\(923\) 3078.41 0.109780
\(924\) 19331.0 0.688251
\(925\) −1044.54 −0.0371289
\(926\) 58202.4 2.06549
\(927\) 109136. 3.86679
\(928\) 0 0
\(929\) −48418.9 −1.70998 −0.854991 0.518643i \(-0.826437\pi\)
−0.854991 + 0.518643i \(0.826437\pi\)
\(930\) −32589.8 −1.14910
\(931\) 63185.6 2.22430
\(932\) 18840.5 0.662170
\(933\) −81749.8 −2.86856
\(934\) 41994.6 1.47121
\(935\) −6444.96 −0.225425
\(936\) 8153.95 0.284744
\(937\) −33006.0 −1.15076 −0.575379 0.817887i \(-0.695145\pi\)
−0.575379 + 0.817887i \(0.695145\pi\)
\(938\) 41060.6 1.42929
\(939\) 35633.3 1.23839
\(940\) 3293.69 0.114285
\(941\) 31165.6 1.07967 0.539834 0.841771i \(-0.318487\pi\)
0.539834 + 0.841771i \(0.318487\pi\)
\(942\) 40971.0 1.41710
\(943\) −37729.9 −1.30292
\(944\) −4702.37 −0.162128
\(945\) −45211.3 −1.55632
\(946\) −8963.60 −0.308067
\(947\) −41588.7 −1.42709 −0.713543 0.700612i \(-0.752911\pi\)
−0.713543 + 0.700612i \(0.752911\pi\)
\(948\) −12915.7 −0.442491
\(949\) −10360.4 −0.354385
\(950\) 42642.0 1.45630
\(951\) −11803.5 −0.402475
\(952\) 22748.1 0.774445
\(953\) 35938.4 1.22157 0.610786 0.791796i \(-0.290854\pi\)
0.610786 + 0.791796i \(0.290854\pi\)
\(954\) −40130.0 −1.36190
\(955\) −1714.65 −0.0580993
\(956\) −5836.52 −0.197455
\(957\) 0 0
\(958\) 65108.3 2.19578
\(959\) 42003.9 1.41437
\(960\) −5055.82 −0.169975
\(961\) 1233.76 0.0414137
\(962\) −395.901 −0.0132686
\(963\) −57687.4 −1.93038
\(964\) −18996.0 −0.634667
\(965\) 5926.46 0.197699
\(966\) −102943. −3.42871
\(967\) 2701.06 0.0898244 0.0449122 0.998991i \(-0.485699\pi\)
0.0449122 + 0.998991i \(0.485699\pi\)
\(968\) −13636.0 −0.452767
\(969\) 69898.1 2.31729
\(970\) −17203.9 −0.569468
\(971\) −18818.5 −0.621952 −0.310976 0.950418i \(-0.600656\pi\)
−0.310976 + 0.950418i \(0.600656\pi\)
\(972\) 5147.89 0.169875
\(973\) −35004.7 −1.15334
\(974\) −3522.31 −0.115875
\(975\) −8226.87 −0.270226
\(976\) 28435.1 0.932567
\(977\) 36036.9 1.18007 0.590033 0.807379i \(-0.299115\pi\)
0.590033 + 0.807379i \(0.299115\pi\)
\(978\) −28642.1 −0.936475
\(979\) 14593.1 0.476401
\(980\) −10262.8 −0.334522
\(981\) 25746.5 0.837943
\(982\) −39314.4 −1.27757
\(983\) −44246.6 −1.43565 −0.717826 0.696222i \(-0.754863\pi\)
−0.717826 + 0.696222i \(0.754863\pi\)
\(984\) −43081.5 −1.39572
\(985\) −8360.34 −0.270439
\(986\) 0 0
\(987\) −38188.4 −1.23156
\(988\) 5196.93 0.167345
\(989\) 15348.7 0.493488
\(990\) 22549.7 0.723915
\(991\) 48114.8 1.54230 0.771149 0.636654i \(-0.219682\pi\)
0.771149 + 0.636654i \(0.219682\pi\)
\(992\) −27997.4 −0.896089
\(993\) −51177.5 −1.63552
\(994\) −30048.7 −0.958839
\(995\) −14792.9 −0.471322
\(996\) 20541.6 0.653498
\(997\) 39263.2 1.24722 0.623609 0.781736i \(-0.285666\pi\)
0.623609 + 0.781736i \(0.285666\pi\)
\(998\) −14348.6 −0.455106
\(999\) 3134.03 0.0992557
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 841.4.a.i.1.5 21
29.5 even 14 29.4.d.a.25.2 yes 42
29.6 even 14 29.4.d.a.7.2 42
29.28 even 2 841.4.a.h.1.17 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.4.d.a.7.2 42 29.6 even 14
29.4.d.a.25.2 yes 42 29.5 even 14
841.4.a.h.1.17 21 29.28 even 2
841.4.a.i.1.5 21 1.1 even 1 trivial