Properties

Label 840.2.z.d.811.12
Level $840$
Weight $2$
Character 840.811
Analytic conductor $6.707$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(811,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.811"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.z (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,2,0,-2,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.12
Character \(\chi\) \(=\) 840.811
Dual form 840.2.z.d.811.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.135580 + 1.40770i) q^{2} -1.00000i q^{3} +(-1.96324 - 0.381712i) q^{4} +1.00000 q^{5} +(1.40770 + 0.135580i) q^{6} +(-2.43116 + 1.04376i) q^{7} +(0.803512 - 2.71189i) q^{8} -1.00000 q^{9} +(-0.135580 + 1.40770i) q^{10} +5.54165 q^{11} +(-0.381712 + 1.96324i) q^{12} -1.67913 q^{13} +(-1.13969 - 3.56386i) q^{14} -1.00000i q^{15} +(3.70859 + 1.49878i) q^{16} -5.50143i q^{17} +(0.135580 - 1.40770i) q^{18} -1.73478i q^{19} +(-1.96324 - 0.381712i) q^{20} +(1.04376 + 2.43116i) q^{21} +(-0.751337 + 7.80098i) q^{22} -3.54807i q^{23} +(-2.71189 - 0.803512i) q^{24} +1.00000 q^{25} +(0.227657 - 2.36371i) q^{26} +1.00000i q^{27} +(5.17137 - 1.12115i) q^{28} +8.46101i q^{29} +(1.40770 + 0.135580i) q^{30} +7.31172 q^{31} +(-2.61265 + 5.01738i) q^{32} -5.54165i q^{33} +(7.74436 + 0.745885i) q^{34} +(-2.43116 + 1.04376i) q^{35} +(1.96324 + 0.381712i) q^{36} -11.2477i q^{37} +(2.44204 + 0.235201i) q^{38} +1.67913i q^{39} +(0.803512 - 2.71189i) q^{40} +0.0892775i q^{41} +(-3.56386 + 1.13969i) q^{42} +8.68405 q^{43} +(-10.8796 - 2.11531i) q^{44} -1.00000 q^{45} +(4.99461 + 0.481048i) q^{46} +12.7949 q^{47} +(1.49878 - 3.70859i) q^{48} +(4.82112 - 5.07512i) q^{49} +(-0.135580 + 1.40770i) q^{50} -5.50143 q^{51} +(3.29653 + 0.640944i) q^{52} +1.26667i q^{53} +(-1.40770 - 0.135580i) q^{54} +5.54165 q^{55} +(0.877106 + 7.43173i) q^{56} -1.73478 q^{57} +(-11.9106 - 1.14714i) q^{58} -13.0188i q^{59} +(-0.381712 + 1.96324i) q^{60} -2.49724 q^{61} +(-0.991324 + 10.2927i) q^{62} +(2.43116 - 1.04376i) q^{63} +(-6.70874 - 4.35808i) q^{64} -1.67913 q^{65} +(7.80098 + 0.751337i) q^{66} +7.26352 q^{67} +(-2.09996 + 10.8006i) q^{68} -3.54807 q^{69} +(-1.13969 - 3.56386i) q^{70} +6.75026i q^{71} +(-0.803512 + 2.71189i) q^{72} +7.34731i q^{73} +(15.8334 + 1.52497i) q^{74} -1.00000i q^{75} +(-0.662185 + 3.40578i) q^{76} +(-13.4727 + 5.78417i) q^{77} +(-2.36371 - 0.227657i) q^{78} +1.15000i q^{79} +(3.70859 + 1.49878i) q^{80} +1.00000 q^{81} +(-0.125676 - 0.0121043i) q^{82} -9.14169i q^{83} +(-1.12115 - 5.17137i) q^{84} -5.50143i q^{85} +(-1.17738 + 12.2245i) q^{86} +8.46101 q^{87} +(4.45278 - 15.0284i) q^{88} +4.16614i q^{89} +(0.135580 - 1.40770i) q^{90} +(4.08224 - 1.75261i) q^{91} +(-1.35434 + 6.96569i) q^{92} -7.31172i q^{93} +(-1.73474 + 18.0114i) q^{94} -1.73478i q^{95} +(5.01738 + 2.61265i) q^{96} -4.20427i q^{97} +(6.49060 + 7.47477i) q^{98} -5.54165 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 2 q^{2} - 2 q^{4} + 28 q^{5} + 4 q^{6} + 4 q^{7} - 10 q^{8} - 28 q^{9} + 2 q^{10} - 8 q^{12} - 8 q^{13} + 2 q^{14} + 6 q^{16} - 2 q^{18} - 2 q^{20} - 4 q^{24} + 28 q^{25} + 16 q^{26} + 10 q^{28}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.135580 + 1.40770i −0.0958696 + 0.995394i
\(3\) 1.00000i 0.577350i
\(4\) −1.96324 0.381712i −0.981618 0.190856i
\(5\) 1.00000 0.447214
\(6\) 1.40770 + 0.135580i 0.574691 + 0.0553504i
\(7\) −2.43116 + 1.04376i −0.918894 + 0.394505i
\(8\) 0.803512 2.71189i 0.284084 0.958799i
\(9\) −1.00000 −0.333333
\(10\) −0.135580 + 1.40770i −0.0428742 + 0.445154i
\(11\) 5.54165 1.67087 0.835435 0.549589i \(-0.185216\pi\)
0.835435 + 0.549589i \(0.185216\pi\)
\(12\) −0.381712 + 1.96324i −0.110191 + 0.566737i
\(13\) −1.67913 −0.465707 −0.232853 0.972512i \(-0.574806\pi\)
−0.232853 + 0.972512i \(0.574806\pi\)
\(14\) −1.13969 3.56386i −0.304594 0.952482i
\(15\) 1.00000i 0.258199i
\(16\) 3.70859 + 1.49878i 0.927148 + 0.374696i
\(17\) 5.50143i 1.33429i −0.744926 0.667147i \(-0.767515\pi\)
0.744926 0.667147i \(-0.232485\pi\)
\(18\) 0.135580 1.40770i 0.0319565 0.331798i
\(19\) 1.73478i 0.397985i −0.980001 0.198992i \(-0.936233\pi\)
0.980001 0.198992i \(-0.0637669\pi\)
\(20\) −1.96324 0.381712i −0.438993 0.0853535i
\(21\) 1.04376 + 2.43116i 0.227768 + 0.530523i
\(22\) −0.751337 + 7.80098i −0.160186 + 1.66317i
\(23\) 3.54807i 0.739823i −0.929067 0.369912i \(-0.879388\pi\)
0.929067 0.369912i \(-0.120612\pi\)
\(24\) −2.71189 0.803512i −0.553563 0.164016i
\(25\) 1.00000 0.200000
\(26\) 0.227657 2.36371i 0.0446471 0.463562i
\(27\) 1.00000i 0.192450i
\(28\) 5.17137 1.12115i 0.977296 0.211877i
\(29\) 8.46101i 1.57117i 0.618754 + 0.785585i \(0.287638\pi\)
−0.618754 + 0.785585i \(0.712362\pi\)
\(30\) 1.40770 + 0.135580i 0.257010 + 0.0247534i
\(31\) 7.31172 1.31322 0.656612 0.754229i \(-0.271989\pi\)
0.656612 + 0.754229i \(0.271989\pi\)
\(32\) −2.61265 + 5.01738i −0.461855 + 0.886955i
\(33\) 5.54165i 0.964677i
\(34\) 7.74436 + 0.745885i 1.32815 + 0.127918i
\(35\) −2.43116 + 1.04376i −0.410942 + 0.176428i
\(36\) 1.96324 + 0.381712i 0.327206 + 0.0636187i
\(37\) 11.2477i 1.84912i −0.381039 0.924559i \(-0.624433\pi\)
0.381039 0.924559i \(-0.375567\pi\)
\(38\) 2.44204 + 0.235201i 0.396152 + 0.0381547i
\(39\) 1.67913i 0.268876i
\(40\) 0.803512 2.71189i 0.127046 0.428788i
\(41\) 0.0892775i 0.0139428i 0.999976 + 0.00697140i \(0.00221908\pi\)
−0.999976 + 0.00697140i \(0.997781\pi\)
\(42\) −3.56386 + 1.13969i −0.549916 + 0.175858i
\(43\) 8.68405 1.32430 0.662152 0.749369i \(-0.269643\pi\)
0.662152 + 0.749369i \(0.269643\pi\)
\(44\) −10.8796 2.11531i −1.64016 0.318896i
\(45\) −1.00000 −0.149071
\(46\) 4.99461 + 0.481048i 0.736416 + 0.0709266i
\(47\) 12.7949 1.86633 0.933164 0.359450i \(-0.117036\pi\)
0.933164 + 0.359450i \(0.117036\pi\)
\(48\) 1.49878 3.70859i 0.216331 0.535289i
\(49\) 4.82112 5.07512i 0.688731 0.725017i
\(50\) −0.135580 + 1.40770i −0.0191739 + 0.199079i
\(51\) −5.50143 −0.770355
\(52\) 3.29653 + 0.640944i 0.457146 + 0.0888830i
\(53\) 1.26667i 0.173991i 0.996209 + 0.0869955i \(0.0277266\pi\)
−0.996209 + 0.0869955i \(0.972273\pi\)
\(54\) −1.40770 0.135580i −0.191564 0.0184501i
\(55\) 5.54165 0.747236
\(56\) 0.877106 + 7.43173i 0.117208 + 0.993107i
\(57\) −1.73478 −0.229777
\(58\) −11.9106 1.14714i −1.56393 0.150628i
\(59\) 13.0188i 1.69490i −0.530874 0.847451i \(-0.678136\pi\)
0.530874 0.847451i \(-0.321864\pi\)
\(60\) −0.381712 + 1.96324i −0.0492788 + 0.253453i
\(61\) −2.49724 −0.319739 −0.159869 0.987138i \(-0.551107\pi\)
−0.159869 + 0.987138i \(0.551107\pi\)
\(62\) −0.991324 + 10.2927i −0.125898 + 1.30717i
\(63\) 2.43116 1.04376i 0.306298 0.131502i
\(64\) −6.70874 4.35808i −0.838592 0.544760i
\(65\) −1.67913 −0.208270
\(66\) 7.80098 + 0.751337i 0.960234 + 0.0924833i
\(67\) 7.26352 0.887381 0.443690 0.896180i \(-0.353669\pi\)
0.443690 + 0.896180i \(0.353669\pi\)
\(68\) −2.09996 + 10.8006i −0.254658 + 1.30977i
\(69\) −3.54807 −0.427137
\(70\) −1.13969 3.56386i −0.136219 0.425963i
\(71\) 6.75026i 0.801108i 0.916273 + 0.400554i \(0.131182\pi\)
−0.916273 + 0.400554i \(0.868818\pi\)
\(72\) −0.803512 + 2.71189i −0.0946948 + 0.319600i
\(73\) 7.34731i 0.859938i 0.902844 + 0.429969i \(0.141475\pi\)
−0.902844 + 0.429969i \(0.858525\pi\)
\(74\) 15.8334 + 1.52497i 1.84060 + 0.177274i
\(75\) 1.00000i 0.115470i
\(76\) −0.662185 + 3.40578i −0.0759579 + 0.390669i
\(77\) −13.4727 + 5.78417i −1.53535 + 0.659167i
\(78\) −2.36371 0.227657i −0.267637 0.0257770i
\(79\) 1.15000i 0.129386i 0.997905 + 0.0646928i \(0.0206067\pi\)
−0.997905 + 0.0646928i \(0.979393\pi\)
\(80\) 3.70859 + 1.49878i 0.414633 + 0.167569i
\(81\) 1.00000 0.111111
\(82\) −0.125676 0.0121043i −0.0138786 0.00133669i
\(83\) 9.14169i 1.00343i −0.865033 0.501715i \(-0.832703\pi\)
0.865033 0.501715i \(-0.167297\pi\)
\(84\) −1.12115 5.17137i −0.122327 0.564242i
\(85\) 5.50143i 0.596714i
\(86\) −1.17738 + 12.2245i −0.126961 + 1.31820i
\(87\) 8.46101 0.907115
\(88\) 4.45278 15.0284i 0.474668 1.60203i
\(89\) 4.16614i 0.441610i 0.975318 + 0.220805i \(0.0708685\pi\)
−0.975318 + 0.220805i \(0.929132\pi\)
\(90\) 0.135580 1.40770i 0.0142914 0.148385i
\(91\) 4.08224 1.75261i 0.427935 0.183724i
\(92\) −1.35434 + 6.96569i −0.141200 + 0.726224i
\(93\) 7.31172i 0.758190i
\(94\) −1.73474 + 18.0114i −0.178924 + 1.85773i
\(95\) 1.73478i 0.177984i
\(96\) 5.01738 + 2.61265i 0.512084 + 0.266652i
\(97\) 4.20427i 0.426878i −0.976956 0.213439i \(-0.931533\pi\)
0.976956 0.213439i \(-0.0684665\pi\)
\(98\) 6.49060 + 7.47477i 0.655649 + 0.755066i
\(99\) −5.54165 −0.556957
\(100\) −1.96324 0.381712i −0.196324 0.0381712i
\(101\) −15.0071 −1.49326 −0.746629 0.665240i \(-0.768329\pi\)
−0.746629 + 0.665240i \(0.768329\pi\)
\(102\) 0.745885 7.74436i 0.0738536 0.766806i
\(103\) −1.31225 −0.129300 −0.0646501 0.997908i \(-0.520593\pi\)
−0.0646501 + 0.997908i \(0.520593\pi\)
\(104\) −1.34920 + 4.55362i −0.132300 + 0.446519i
\(105\) 1.04376 + 2.43116i 0.101861 + 0.237257i
\(106\) −1.78310 0.171736i −0.173190 0.0166805i
\(107\) −16.7713 −1.62134 −0.810672 0.585501i \(-0.800898\pi\)
−0.810672 + 0.585501i \(0.800898\pi\)
\(108\) 0.381712 1.96324i 0.0367303 0.188912i
\(109\) 2.48432i 0.237955i −0.992897 0.118978i \(-0.962038\pi\)
0.992897 0.118978i \(-0.0379616\pi\)
\(110\) −0.751337 + 7.80098i −0.0716372 + 0.743794i
\(111\) −11.2477 −1.06759
\(112\) −10.5806 + 0.227106i −0.999770 + 0.0214595i
\(113\) −10.7975 −1.01575 −0.507873 0.861432i \(-0.669568\pi\)
−0.507873 + 0.861432i \(0.669568\pi\)
\(114\) 0.235201 2.44204i 0.0220286 0.228718i
\(115\) 3.54807i 0.330859i
\(116\) 3.22967 16.6110i 0.299867 1.54229i
\(117\) 1.67913 0.155236
\(118\) 18.3265 + 1.76509i 1.68709 + 0.162490i
\(119\) 5.74219 + 13.3749i 0.526386 + 1.22607i
\(120\) −2.71189 0.803512i −0.247561 0.0733503i
\(121\) 19.7099 1.79181
\(122\) 0.338576 3.51536i 0.0306532 0.318266i
\(123\) 0.0892775 0.00804988
\(124\) −14.3546 2.79097i −1.28908 0.250637i
\(125\) 1.00000 0.0894427
\(126\) 1.13969 + 3.56386i 0.101531 + 0.317494i
\(127\) 0.926602i 0.0822226i −0.999155 0.0411113i \(-0.986910\pi\)
0.999155 0.0411113i \(-0.0130898\pi\)
\(128\) 7.04444 8.85302i 0.622646 0.782504i
\(129\) 8.68405i 0.764588i
\(130\) 0.227657 2.36371i 0.0199668 0.207311i
\(131\) 12.4963i 1.09181i 0.837847 + 0.545905i \(0.183814\pi\)
−0.837847 + 0.545905i \(0.816186\pi\)
\(132\) −2.11531 + 10.8796i −0.184115 + 0.946944i
\(133\) 1.81070 + 4.21753i 0.157007 + 0.365706i
\(134\) −0.984790 + 10.2249i −0.0850729 + 0.883293i
\(135\) 1.00000i 0.0860663i
\(136\) −14.9193 4.42047i −1.27932 0.379052i
\(137\) 3.53259 0.301810 0.150905 0.988548i \(-0.451781\pi\)
0.150905 + 0.988548i \(0.451781\pi\)
\(138\) 0.481048 4.99461i 0.0409495 0.425170i
\(139\) 12.1022i 1.02650i 0.858240 + 0.513249i \(0.171558\pi\)
−0.858240 + 0.513249i \(0.828442\pi\)
\(140\) 5.17137 1.12115i 0.437060 0.0947544i
\(141\) 12.7949i 1.07753i
\(142\) −9.50233 0.915201i −0.797418 0.0768019i
\(143\) −9.30514 −0.778135
\(144\) −3.70859 1.49878i −0.309049 0.124899i
\(145\) 8.46101i 0.702649i
\(146\) −10.3428 0.996150i −0.855977 0.0824419i
\(147\) −5.07512 4.82112i −0.418589 0.397639i
\(148\) −4.29340 + 22.0820i −0.352916 + 1.81513i
\(149\) 11.1107i 0.910221i 0.890435 + 0.455110i \(0.150400\pi\)
−0.890435 + 0.455110i \(0.849600\pi\)
\(150\) 1.40770 + 0.135580i 0.114938 + 0.0110701i
\(151\) 3.03195i 0.246737i −0.992361 0.123368i \(-0.960630\pi\)
0.992361 0.123368i \(-0.0393696\pi\)
\(152\) −4.70453 1.39391i −0.381588 0.113061i
\(153\) 5.50143i 0.444764i
\(154\) −6.31575 19.7497i −0.508937 1.59147i
\(155\) 7.31172 0.587292
\(156\) 0.640944 3.29653i 0.0513166 0.263933i
\(157\) −5.57251 −0.444735 −0.222367 0.974963i \(-0.571378\pi\)
−0.222367 + 0.974963i \(0.571378\pi\)
\(158\) −1.61886 0.155918i −0.128790 0.0124041i
\(159\) 1.26667 0.100454
\(160\) −2.61265 + 5.01738i −0.206548 + 0.396659i
\(161\) 3.70334 + 8.62593i 0.291864 + 0.679819i
\(162\) −0.135580 + 1.40770i −0.0106522 + 0.110599i
\(163\) −20.9634 −1.64198 −0.820989 0.570944i \(-0.806577\pi\)
−0.820989 + 0.570944i \(0.806577\pi\)
\(164\) 0.0340783 0.175273i 0.00266107 0.0136865i
\(165\) 5.54165i 0.431417i
\(166\) 12.8687 + 1.23943i 0.998808 + 0.0961985i
\(167\) −5.73739 −0.443973 −0.221986 0.975050i \(-0.571254\pi\)
−0.221986 + 0.975050i \(0.571254\pi\)
\(168\) 7.43173 0.877106i 0.573371 0.0676702i
\(169\) −10.1805 −0.783117
\(170\) 7.74436 + 0.745885i 0.593966 + 0.0572068i
\(171\) 1.73478i 0.132662i
\(172\) −17.0488 3.31481i −1.29996 0.252752i
\(173\) −17.1231 −1.30185 −0.650923 0.759144i \(-0.725618\pi\)
−0.650923 + 0.759144i \(0.725618\pi\)
\(174\) −1.14714 + 11.9106i −0.0869648 + 0.902937i
\(175\) −2.43116 + 1.04376i −0.183779 + 0.0789011i
\(176\) 20.5517 + 8.30572i 1.54914 + 0.626068i
\(177\) −13.0188 −0.978552
\(178\) −5.86468 0.564846i −0.439576 0.0423370i
\(179\) 14.4927 1.08324 0.541618 0.840625i \(-0.317812\pi\)
0.541618 + 0.840625i \(0.317812\pi\)
\(180\) 1.96324 + 0.381712i 0.146331 + 0.0284512i
\(181\) −1.28496 −0.0955104 −0.0477552 0.998859i \(-0.515207\pi\)
−0.0477552 + 0.998859i \(0.515207\pi\)
\(182\) 1.91368 + 5.98419i 0.141852 + 0.443577i
\(183\) 2.49724i 0.184601i
\(184\) −9.62198 2.85092i −0.709342 0.210172i
\(185\) 11.2477i 0.826951i
\(186\) 10.2927 + 0.991324i 0.754698 + 0.0726874i
\(187\) 30.4870i 2.22943i
\(188\) −25.1194 4.88397i −1.83202 0.356200i
\(189\) −1.04376 2.43116i −0.0759226 0.176841i
\(190\) 2.44204 + 0.235201i 0.177164 + 0.0170633i
\(191\) 9.06371i 0.655827i −0.944708 0.327914i \(-0.893655\pi\)
0.944708 0.327914i \(-0.106345\pi\)
\(192\) −4.35808 + 6.70874i −0.314517 + 0.484161i
\(193\) 17.5065 1.26014 0.630072 0.776536i \(-0.283025\pi\)
0.630072 + 0.776536i \(0.283025\pi\)
\(194\) 5.91834 + 0.570015i 0.424912 + 0.0409247i
\(195\) 1.67913i 0.120245i
\(196\) −11.4022 + 8.12338i −0.814445 + 0.580241i
\(197\) 13.1628i 0.937808i −0.883249 0.468904i \(-0.844649\pi\)
0.883249 0.468904i \(-0.155351\pi\)
\(198\) 0.751337 7.80098i 0.0533952 0.554391i
\(199\) −0.276416 −0.0195946 −0.00979732 0.999952i \(-0.503119\pi\)
−0.00979732 + 0.999952i \(0.503119\pi\)
\(200\) 0.803512 2.71189i 0.0568169 0.191760i
\(201\) 7.26352i 0.512329i
\(202\) 2.03466 21.1254i 0.143158 1.48638i
\(203\) −8.83129 20.5701i −0.619835 1.44374i
\(204\) 10.8006 + 2.09996i 0.756194 + 0.147027i
\(205\) 0.0892775i 0.00623541i
\(206\) 0.177916 1.84726i 0.0123960 0.128705i
\(207\) 3.54807i 0.246608i
\(208\) −6.22721 2.51665i −0.431779 0.174498i
\(209\) 9.61352i 0.664981i
\(210\) −3.56386 + 1.13969i −0.245930 + 0.0786459i
\(211\) 12.0851 0.831973 0.415986 0.909371i \(-0.363436\pi\)
0.415986 + 0.909371i \(0.363436\pi\)
\(212\) 0.483505 2.48678i 0.0332072 0.170793i
\(213\) 6.75026 0.462520
\(214\) 2.27386 23.6090i 0.155438 1.61388i
\(215\) 8.68405 0.592247
\(216\) 2.71189 + 0.803512i 0.184521 + 0.0546721i
\(217\) −17.7760 + 7.63171i −1.20671 + 0.518074i
\(218\) 3.49718 + 0.336825i 0.236859 + 0.0228127i
\(219\) 7.34731 0.496485
\(220\) −10.8796 2.11531i −0.733500 0.142614i
\(221\) 9.23762i 0.621389i
\(222\) 1.52497 15.8334i 0.102349 1.06267i
\(223\) 17.8291 1.19393 0.596963 0.802268i \(-0.296374\pi\)
0.596963 + 0.802268i \(0.296374\pi\)
\(224\) 1.11482 14.9251i 0.0744869 0.997222i
\(225\) −1.00000 −0.0666667
\(226\) 1.46393 15.1997i 0.0973793 1.01107i
\(227\) 27.5789i 1.83048i 0.402911 + 0.915239i \(0.367999\pi\)
−0.402911 + 0.915239i \(0.632001\pi\)
\(228\) 3.40578 + 0.662185i 0.225553 + 0.0438543i
\(229\) −3.43380 −0.226912 −0.113456 0.993543i \(-0.536192\pi\)
−0.113456 + 0.993543i \(0.536192\pi\)
\(230\) 4.99461 + 0.481048i 0.329335 + 0.0317193i
\(231\) 5.78417 + 13.4727i 0.380570 + 0.886436i
\(232\) 22.9454 + 6.79852i 1.50644 + 0.446345i
\(233\) 8.12381 0.532209 0.266104 0.963944i \(-0.414263\pi\)
0.266104 + 0.963944i \(0.414263\pi\)
\(234\) −0.227657 + 2.36371i −0.0148824 + 0.154521i
\(235\) 12.7949 0.834648
\(236\) −4.96943 + 25.5589i −0.323482 + 1.66375i
\(237\) 1.15000 0.0747008
\(238\) −19.6063 + 6.26991i −1.27089 + 0.406418i
\(239\) 23.7708i 1.53761i −0.639484 0.768804i \(-0.720852\pi\)
0.639484 0.768804i \(-0.279148\pi\)
\(240\) 1.49878 3.70859i 0.0967460 0.239389i
\(241\) 13.8075i 0.889417i −0.895675 0.444708i \(-0.853307\pi\)
0.895675 0.444708i \(-0.146693\pi\)
\(242\) −2.67227 + 27.7456i −0.171780 + 1.78355i
\(243\) 1.00000i 0.0641500i
\(244\) 4.90267 + 0.953227i 0.313861 + 0.0610241i
\(245\) 4.82112 5.07512i 0.308010 0.324238i
\(246\) −0.0121043 + 0.125676i −0.000771739 + 0.00801280i
\(247\) 2.91291i 0.185344i
\(248\) 5.87506 19.8286i 0.373066 1.25912i
\(249\) −9.14169 −0.579331
\(250\) −0.135580 + 1.40770i −0.00857484 + 0.0890307i
\(251\) 2.78833i 0.175998i 0.996121 + 0.0879990i \(0.0280472\pi\)
−0.996121 + 0.0879990i \(0.971953\pi\)
\(252\) −5.17137 + 1.12115i −0.325765 + 0.0706257i
\(253\) 19.6621i 1.23615i
\(254\) 1.30438 + 0.125629i 0.0818439 + 0.00788265i
\(255\) −5.50143 −0.344513
\(256\) 11.5073 + 11.1167i 0.719206 + 0.694796i
\(257\) 3.21699i 0.200670i 0.994954 + 0.100335i \(0.0319915\pi\)
−0.994954 + 0.100335i \(0.968009\pi\)
\(258\) 12.2245 + 1.17738i 0.761066 + 0.0733007i
\(259\) 11.7400 + 27.3451i 0.729487 + 1.69914i
\(260\) 3.29653 + 0.640944i 0.204442 + 0.0397497i
\(261\) 8.46101i 0.523723i
\(262\) −17.5911 1.69426i −1.08678 0.104671i
\(263\) 3.61223i 0.222740i 0.993779 + 0.111370i \(0.0355238\pi\)
−0.993779 + 0.111370i \(0.964476\pi\)
\(264\) −15.0284 4.45278i −0.924932 0.274050i
\(265\) 1.26667i 0.0778111i
\(266\) −6.18250 + 1.97710i −0.379074 + 0.121224i
\(267\) 4.16614 0.254964
\(268\) −14.2600 2.77258i −0.871069 0.169362i
\(269\) −8.64776 −0.527263 −0.263632 0.964623i \(-0.584920\pi\)
−0.263632 + 0.964623i \(0.584920\pi\)
\(270\) −1.40770 0.135580i −0.0856699 0.00825115i
\(271\) 3.09276 0.187872 0.0939358 0.995578i \(-0.470055\pi\)
0.0939358 + 0.995578i \(0.470055\pi\)
\(272\) 8.24545 20.4026i 0.499954 1.23709i
\(273\) −1.75261 4.08224i −0.106073 0.247068i
\(274\) −0.478950 + 4.97283i −0.0289344 + 0.300420i
\(275\) 5.54165 0.334174
\(276\) 6.96569 + 1.35434i 0.419286 + 0.0815217i
\(277\) 21.5406i 1.29425i −0.762384 0.647125i \(-0.775971\pi\)
0.762384 0.647125i \(-0.224029\pi\)
\(278\) −17.0363 1.64082i −1.02177 0.0984100i
\(279\) −7.31172 −0.437741
\(280\) 0.877106 + 7.43173i 0.0524171 + 0.444131i
\(281\) 17.0871 1.01933 0.509664 0.860373i \(-0.329770\pi\)
0.509664 + 0.860373i \(0.329770\pi\)
\(282\) 18.0114 + 1.73474i 1.07256 + 0.103302i
\(283\) 25.9118i 1.54030i 0.637865 + 0.770148i \(0.279818\pi\)
−0.637865 + 0.770148i \(0.720182\pi\)
\(284\) 2.57666 13.2523i 0.152896 0.786382i
\(285\) −1.73478 −0.102759
\(286\) 1.26159 13.0988i 0.0745996 0.774551i
\(287\) −0.0931846 0.217048i −0.00550051 0.0128120i
\(288\) 2.61265 5.01738i 0.153952 0.295652i
\(289\) −13.2658 −0.780339
\(290\) −11.9106 1.14714i −0.699412 0.0673627i
\(291\) −4.20427 −0.246458
\(292\) 2.80456 14.4245i 0.164124 0.844130i
\(293\) −27.3161 −1.59583 −0.797913 0.602773i \(-0.794063\pi\)
−0.797913 + 0.602773i \(0.794063\pi\)
\(294\) 7.47477 6.49060i 0.435937 0.378539i
\(295\) 13.0188i 0.757983i
\(296\) −30.5027 9.03770i −1.77293 0.525306i
\(297\) 5.54165i 0.321559i
\(298\) −15.6405 1.50638i −0.906028 0.0872625i
\(299\) 5.95767i 0.344541i
\(300\) −0.381712 + 1.96324i −0.0220382 + 0.113347i
\(301\) −21.1123 + 9.06409i −1.21690 + 0.522445i
\(302\) 4.26807 + 0.411072i 0.245600 + 0.0236545i
\(303\) 15.0071i 0.862133i
\(304\) 2.60005 6.43358i 0.149123 0.368991i
\(305\) −2.49724 −0.142991
\(306\) −7.74436 0.745885i −0.442716 0.0426394i
\(307\) 2.39283i 0.136566i 0.997666 + 0.0682831i \(0.0217521\pi\)
−0.997666 + 0.0682831i \(0.978248\pi\)
\(308\) 28.6579 6.21301i 1.63293 0.354019i
\(309\) 1.31225i 0.0746515i
\(310\) −0.991324 + 10.2927i −0.0563034 + 0.584586i
\(311\) 24.3201 1.37907 0.689533 0.724255i \(-0.257816\pi\)
0.689533 + 0.724255i \(0.257816\pi\)
\(312\) 4.55362 + 1.34920i 0.257798 + 0.0763834i
\(313\) 30.3185i 1.71370i 0.515562 + 0.856852i \(0.327583\pi\)
−0.515562 + 0.856852i \(0.672417\pi\)
\(314\) 0.755522 7.84442i 0.0426366 0.442686i
\(315\) 2.43116 1.04376i 0.136981 0.0588094i
\(316\) 0.438970 2.25773i 0.0246940 0.127007i
\(317\) 7.93499i 0.445673i −0.974856 0.222837i \(-0.928468\pi\)
0.974856 0.222837i \(-0.0715317\pi\)
\(318\) −0.171736 + 1.78310i −0.00963047 + 0.0999910i
\(319\) 46.8879i 2.62522i
\(320\) −6.70874 4.35808i −0.375030 0.243624i
\(321\) 16.7713i 0.936083i
\(322\) −12.6448 + 4.04369i −0.704669 + 0.225346i
\(323\) −9.54375 −0.531029
\(324\) −1.96324 0.381712i −0.109069 0.0212062i
\(325\) −1.67913 −0.0931413
\(326\) 2.84222 29.5101i 0.157416 1.63441i
\(327\) −2.48432 −0.137383
\(328\) 0.242111 + 0.0717355i 0.0133683 + 0.00396093i
\(329\) −31.1065 + 13.3549i −1.71496 + 0.736277i
\(330\) 7.80098 + 0.751337i 0.429430 + 0.0413598i
\(331\) −14.2122 −0.781172 −0.390586 0.920566i \(-0.627728\pi\)
−0.390586 + 0.920566i \(0.627728\pi\)
\(332\) −3.48949 + 17.9473i −0.191511 + 0.984985i
\(333\) 11.2477i 0.616373i
\(334\) 0.777876 8.07652i 0.0425635 0.441928i
\(335\) 7.26352 0.396849
\(336\) 0.227106 + 10.5806i 0.0123897 + 0.577217i
\(337\) 2.94854 0.160617 0.0803085 0.996770i \(-0.474409\pi\)
0.0803085 + 0.996770i \(0.474409\pi\)
\(338\) 1.38028 14.3311i 0.0750772 0.779510i
\(339\) 10.7975i 0.586442i
\(340\) −2.09996 + 10.8006i −0.113887 + 0.585745i
\(341\) 40.5190 2.19423
\(342\) −2.44204 0.235201i −0.132051 0.0127182i
\(343\) −6.42370 + 17.3706i −0.346847 + 0.937922i
\(344\) 6.97774 23.5502i 0.376214 1.26974i
\(345\) −3.54807 −0.191022
\(346\) 2.32155 24.1042i 0.124808 1.29585i
\(347\) −30.9749 −1.66282 −0.831410 0.555659i \(-0.812466\pi\)
−0.831410 + 0.555659i \(0.812466\pi\)
\(348\) −16.6110 3.22967i −0.890441 0.173129i
\(349\) 4.43452 0.237374 0.118687 0.992932i \(-0.462131\pi\)
0.118687 + 0.992932i \(0.462131\pi\)
\(350\) −1.13969 3.56386i −0.0609189 0.190496i
\(351\) 1.67913i 0.0896253i
\(352\) −14.4784 + 27.8045i −0.771700 + 1.48199i
\(353\) 25.5750i 1.36122i 0.732647 + 0.680609i \(0.238285\pi\)
−0.732647 + 0.680609i \(0.761715\pi\)
\(354\) 1.76509 18.3265i 0.0938134 0.974044i
\(355\) 6.75026i 0.358266i
\(356\) 1.59027 8.17912i 0.0842840 0.433493i
\(357\) 13.3749 5.74219i 0.707874 0.303909i
\(358\) −1.96492 + 20.4014i −0.103849 + 1.07825i
\(359\) 15.8598i 0.837049i 0.908206 + 0.418525i \(0.137453\pi\)
−0.908206 + 0.418525i \(0.862547\pi\)
\(360\) −0.803512 + 2.71189i −0.0423488 + 0.142929i
\(361\) 15.9906 0.841608
\(362\) 0.174215 1.80884i 0.00915655 0.0950705i
\(363\) 19.7099i 1.03450i
\(364\) −8.68339 + 1.88255i −0.455133 + 0.0986727i
\(365\) 7.34731i 0.384576i
\(366\) −3.51536 0.338576i −0.183751 0.0176977i
\(367\) 20.7390 1.08257 0.541284 0.840840i \(-0.317938\pi\)
0.541284 + 0.840840i \(0.317938\pi\)
\(368\) 5.31778 13.1583i 0.277209 0.685926i
\(369\) 0.0892775i 0.00464760i
\(370\) 15.8334 + 1.52497i 0.823142 + 0.0792795i
\(371\) −1.32211 3.07949i −0.0686404 0.159879i
\(372\) −2.79097 + 14.3546i −0.144705 + 0.744253i
\(373\) 14.5992i 0.755920i 0.925822 + 0.377960i \(0.123374\pi\)
−0.925822 + 0.377960i \(0.876626\pi\)
\(374\) 42.9165 + 4.13343i 2.21916 + 0.213735i
\(375\) 1.00000i 0.0516398i
\(376\) 10.2809 34.6984i 0.530195 1.78943i
\(377\) 14.2071i 0.731704i
\(378\) 3.56386 1.13969i 0.183305 0.0586192i
\(379\) 35.0992 1.80292 0.901462 0.432859i \(-0.142495\pi\)
0.901462 + 0.432859i \(0.142495\pi\)
\(380\) −0.662185 + 3.40578i −0.0339694 + 0.174713i
\(381\) −0.926602 −0.0474713
\(382\) 12.7590 + 1.22886i 0.652806 + 0.0628739i
\(383\) −2.93845 −0.150148 −0.0750739 0.997178i \(-0.523919\pi\)
−0.0750739 + 0.997178i \(0.523919\pi\)
\(384\) −8.85302 7.04444i −0.451779 0.359485i
\(385\) −13.4727 + 5.78417i −0.686630 + 0.294789i
\(386\) −2.37353 + 24.6439i −0.120810 + 1.25434i
\(387\) −8.68405 −0.441435
\(388\) −1.60482 + 8.25396i −0.0814724 + 0.419032i
\(389\) 29.8030i 1.51107i 0.655106 + 0.755537i \(0.272624\pi\)
−0.655106 + 0.755537i \(0.727376\pi\)
\(390\) −2.36371 0.227657i −0.119691 0.0115278i
\(391\) −19.5195 −0.987141
\(392\) −9.88936 17.1523i −0.499488 0.866321i
\(393\) 12.4963 0.630357
\(394\) 18.5292 + 1.78461i 0.933488 + 0.0899073i
\(395\) 1.15000i 0.0578630i
\(396\) 10.8796 + 2.11531i 0.546719 + 0.106299i
\(397\) 20.3840 1.02304 0.511521 0.859271i \(-0.329082\pi\)
0.511521 + 0.859271i \(0.329082\pi\)
\(398\) 0.0374766 0.389111i 0.00187853 0.0195044i
\(399\) 4.21753 1.81070i 0.211140 0.0906482i
\(400\) 3.70859 + 1.49878i 0.185430 + 0.0749391i
\(401\) −4.24845 −0.212157 −0.106079 0.994358i \(-0.533830\pi\)
−0.106079 + 0.994358i \(0.533830\pi\)
\(402\) 10.2249 + 0.984790i 0.509970 + 0.0491168i
\(403\) −12.2773 −0.611577
\(404\) 29.4624 + 5.72838i 1.46581 + 0.284998i
\(405\) 1.00000 0.0496904
\(406\) 30.1539 9.64291i 1.49651 0.478569i
\(407\) 62.3311i 3.08964i
\(408\) −4.42047 + 14.9193i −0.218846 + 0.738615i
\(409\) 16.3835i 0.810113i −0.914292 0.405057i \(-0.867252\pi\)
0.914292 0.405057i \(-0.132748\pi\)
\(410\) −0.125676 0.0121043i −0.00620669 0.000597787i
\(411\) 3.53259i 0.174250i
\(412\) 2.57626 + 0.500903i 0.126923 + 0.0246777i
\(413\) 13.5885 + 31.6508i 0.668648 + 1.55743i
\(414\) −4.99461 0.481048i −0.245472 0.0236422i
\(415\) 9.14169i 0.448748i
\(416\) 4.38697 8.42483i 0.215089 0.413061i
\(417\) 12.1022 0.592649
\(418\) 13.5329 + 1.30340i 0.661918 + 0.0637515i
\(419\) 19.2720i 0.941497i 0.882268 + 0.470748i \(0.156016\pi\)
−0.882268 + 0.470748i \(0.843984\pi\)
\(420\) −1.12115 5.17137i −0.0547065 0.252337i
\(421\) 14.8800i 0.725206i −0.931944 0.362603i \(-0.881888\pi\)
0.931944 0.362603i \(-0.118112\pi\)
\(422\) −1.63850 + 17.0122i −0.0797609 + 0.828141i
\(423\) −12.7949 −0.622110
\(424\) 3.43508 + 1.01779i 0.166822 + 0.0494281i
\(425\) 5.50143i 0.266859i
\(426\) −0.915201 + 9.50233i −0.0443416 + 0.460389i
\(427\) 6.07120 2.60653i 0.293806 0.126139i
\(428\) 32.9260 + 6.40181i 1.59154 + 0.309443i
\(429\) 9.30514i 0.449257i
\(430\) −1.17738 + 12.2245i −0.0567785 + 0.589519i
\(431\) 0.281619i 0.0135651i −0.999977 0.00678255i \(-0.997841\pi\)
0.999977 0.00678255i \(-0.00215897\pi\)
\(432\) −1.49878 + 3.70859i −0.0721102 + 0.178430i
\(433\) 4.06965i 0.195575i 0.995207 + 0.0977874i \(0.0311765\pi\)
−0.995207 + 0.0977874i \(0.968823\pi\)
\(434\) −8.33308 26.0580i −0.400001 1.25082i
\(435\) 8.46101 0.405674
\(436\) −0.948297 + 4.87731i −0.0454152 + 0.233581i
\(437\) −6.15510 −0.294439
\(438\) −0.996150 + 10.3428i −0.0475979 + 0.494198i
\(439\) −18.3292 −0.874804 −0.437402 0.899266i \(-0.644101\pi\)
−0.437402 + 0.899266i \(0.644101\pi\)
\(440\) 4.45278 15.0284i 0.212278 0.716449i
\(441\) −4.82112 + 5.07512i −0.229577 + 0.241672i
\(442\) −13.0038 1.25244i −0.618527 0.0595724i
\(443\) −16.2913 −0.774023 −0.387012 0.922075i \(-0.626493\pi\)
−0.387012 + 0.922075i \(0.626493\pi\)
\(444\) 22.0820 + 4.29340i 1.04796 + 0.203756i
\(445\) 4.16614i 0.197494i
\(446\) −2.41728 + 25.0981i −0.114461 + 1.18843i
\(447\) 11.1107 0.525516
\(448\) 20.8588 + 3.59287i 0.985488 + 0.169747i
\(449\) −36.2809 −1.71220 −0.856101 0.516809i \(-0.827120\pi\)
−0.856101 + 0.516809i \(0.827120\pi\)
\(450\) 0.135580 1.40770i 0.00639131 0.0663596i
\(451\) 0.494744i 0.0232966i
\(452\) 21.1981 + 4.12155i 0.997075 + 0.193861i
\(453\) −3.03195 −0.142453
\(454\) −38.8229 3.73916i −1.82205 0.175487i
\(455\) 4.08224 1.75261i 0.191378 0.0821638i
\(456\) −1.39391 + 4.70453i −0.0652760 + 0.220310i
\(457\) 21.7531 1.01757 0.508783 0.860895i \(-0.330096\pi\)
0.508783 + 0.860895i \(0.330096\pi\)
\(458\) 0.465555 4.83375i 0.0217539 0.225867i
\(459\) 5.50143 0.256785
\(460\) −1.35434 + 6.96569i −0.0631465 + 0.324777i
\(461\) 17.9992 0.838305 0.419153 0.907916i \(-0.362327\pi\)
0.419153 + 0.907916i \(0.362327\pi\)
\(462\) −19.7497 + 6.31575i −0.918838 + 0.293835i
\(463\) 22.6300i 1.05170i 0.850576 + 0.525852i \(0.176254\pi\)
−0.850576 + 0.525852i \(0.823746\pi\)
\(464\) −12.6812 + 31.3784i −0.588710 + 1.45671i
\(465\) 7.31172i 0.339073i
\(466\) −1.10143 + 11.4359i −0.0510227 + 0.529757i
\(467\) 11.6927i 0.541072i 0.962710 + 0.270536i \(0.0872009\pi\)
−0.962710 + 0.270536i \(0.912799\pi\)
\(468\) −3.29653 0.640944i −0.152382 0.0296277i
\(469\) −17.6588 + 7.58140i −0.815408 + 0.350077i
\(470\) −1.73474 + 18.0114i −0.0800174 + 0.830803i
\(471\) 5.57251i 0.256768i
\(472\) −35.3056 10.4607i −1.62507 0.481495i
\(473\) 48.1239 2.21274
\(474\) −0.155918 + 1.61886i −0.00716153 + 0.0743567i
\(475\) 1.73478i 0.0795970i
\(476\) −6.16792 28.4499i −0.282706 1.30400i
\(477\) 1.26667i 0.0579970i
\(478\) 33.4622 + 3.22286i 1.53053 + 0.147410i
\(479\) 26.6487 1.21761 0.608805 0.793320i \(-0.291649\pi\)
0.608805 + 0.793320i \(0.291649\pi\)
\(480\) 5.01738 + 2.61265i 0.229011 + 0.119250i
\(481\) 18.8864i 0.861147i
\(482\) 19.4368 + 1.87202i 0.885320 + 0.0852681i
\(483\) 8.62593 3.70334i 0.392494 0.168508i
\(484\) −38.6951 7.52350i −1.75887 0.341977i
\(485\) 4.20427i 0.190906i
\(486\) 1.40770 + 0.135580i 0.0638545 + 0.00615004i
\(487\) 9.67576i 0.438450i −0.975674 0.219225i \(-0.929647\pi\)
0.975674 0.219225i \(-0.0703530\pi\)
\(488\) −2.00656 + 6.77225i −0.0908328 + 0.306565i
\(489\) 20.9634i 0.947996i
\(490\) 6.49060 + 7.47477i 0.293215 + 0.337676i
\(491\) −21.3834 −0.965021 −0.482511 0.875890i \(-0.660275\pi\)
−0.482511 + 0.875890i \(0.660275\pi\)
\(492\) −0.175273 0.0340783i −0.00790191 0.00153637i
\(493\) 46.5477 2.09640
\(494\) −4.10051 0.394933i −0.184491 0.0177689i
\(495\) −5.54165 −0.249079
\(496\) 27.1162 + 10.9587i 1.21755 + 0.492059i
\(497\) −7.04567 16.4110i −0.316041 0.736133i
\(498\) 1.23943 12.8687i 0.0555402 0.576662i
\(499\) −12.1520 −0.543997 −0.271998 0.962298i \(-0.587685\pi\)
−0.271998 + 0.962298i \(0.587685\pi\)
\(500\) −1.96324 0.381712i −0.0877986 0.0170707i
\(501\) 5.73739i 0.256328i
\(502\) −3.92513 0.378042i −0.175187 0.0168729i
\(503\) 5.68562 0.253509 0.126755 0.991934i \(-0.459544\pi\)
0.126755 + 0.991934i \(0.459544\pi\)
\(504\) −0.877106 7.43173i −0.0390694 0.331036i
\(505\) −15.0071 −0.667806
\(506\) 27.6784 + 2.66580i 1.23045 + 0.118509i
\(507\) 10.1805i 0.452133i
\(508\) −0.353695 + 1.81914i −0.0156927 + 0.0807112i
\(509\) 2.01211 0.0891852 0.0445926 0.999005i \(-0.485801\pi\)
0.0445926 + 0.999005i \(0.485801\pi\)
\(510\) 0.745885 7.74436i 0.0330283 0.342926i
\(511\) −7.66886 17.8625i −0.339250 0.790191i
\(512\) −17.2092 + 14.6916i −0.760546 + 0.649284i
\(513\) 1.73478 0.0765922
\(514\) −4.52855 0.436160i −0.199746 0.0192382i
\(515\) −1.31225 −0.0578248
\(516\) −3.31481 + 17.0488i −0.145926 + 0.750533i
\(517\) 70.9049 3.11839
\(518\) −40.0854 + 12.8189i −1.76125 + 0.563231i
\(519\) 17.1231i 0.751621i
\(520\) −1.34920 + 4.55362i −0.0591664 + 0.199689i
\(521\) 4.06826i 0.178234i −0.996021 0.0891168i \(-0.971596\pi\)
0.996021 0.0891168i \(-0.0284045\pi\)
\(522\) 11.9106 + 1.14714i 0.521311 + 0.0502092i
\(523\) 23.4857i 1.02696i −0.858102 0.513479i \(-0.828356\pi\)
0.858102 0.513479i \(-0.171644\pi\)
\(524\) 4.77001 24.5333i 0.208379 1.07174i
\(525\) 1.04376 + 2.43116i 0.0455536 + 0.106105i
\(526\) −5.08494 0.489747i −0.221714 0.0213540i
\(527\) 40.2249i 1.75223i
\(528\) 8.30572 20.5517i 0.361460 0.894398i
\(529\) 10.4112 0.452661
\(530\) −1.78310 0.171736i −0.0774527 0.00745973i
\(531\) 13.0188i 0.564967i
\(532\) −1.94494 8.97116i −0.0843239 0.388949i
\(533\) 0.149908i 0.00649326i
\(534\) −0.564846 + 5.86468i −0.0244433 + 0.253789i
\(535\) −16.7713 −0.725087
\(536\) 5.83633 19.6979i 0.252091 0.850820i
\(537\) 14.4927i 0.625407i
\(538\) 1.17247 12.1735i 0.0505486 0.524835i
\(539\) 26.7169 28.1245i 1.15078 1.21141i
\(540\) 0.381712 1.96324i 0.0164263 0.0844842i
\(541\) 28.2718i 1.21550i −0.794129 0.607749i \(-0.792072\pi\)
0.794129 0.607749i \(-0.207928\pi\)
\(542\) −0.419317 + 4.35367i −0.0180112 + 0.187006i
\(543\) 1.28496i 0.0551430i
\(544\) 27.6028 + 14.3733i 1.18346 + 0.616250i
\(545\) 2.48432i 0.106417i
\(546\) 5.98419 1.91368i 0.256100 0.0818981i
\(547\) −29.7498 −1.27201 −0.636004 0.771685i \(-0.719414\pi\)
−0.636004 + 0.771685i \(0.719414\pi\)
\(548\) −6.93532 1.34843i −0.296262 0.0576023i
\(549\) 2.49724 0.106580
\(550\) −0.751337 + 7.80098i −0.0320371 + 0.332635i
\(551\) 14.6780 0.625302
\(552\) −2.85092 + 9.62198i −0.121343 + 0.409539i
\(553\) −1.20033 2.79585i −0.0510433 0.118892i
\(554\) 30.3227 + 2.92048i 1.28829 + 0.124079i
\(555\) −11.2477 −0.477440
\(556\) 4.61957 23.7595i 0.195914 1.00763i
\(557\) 16.5286i 0.700340i 0.936686 + 0.350170i \(0.113876\pi\)
−0.936686 + 0.350170i \(0.886124\pi\)
\(558\) 0.991324 10.2927i 0.0419661 0.435725i
\(559\) −14.5816 −0.616738
\(560\) −10.5806 + 0.227106i −0.447111 + 0.00959699i
\(561\) −30.4870 −1.28716
\(562\) −2.31667 + 24.0535i −0.0977227 + 1.01463i
\(563\) 15.9112i 0.670578i −0.942115 0.335289i \(-0.891166\pi\)
0.942115 0.335289i \(-0.108834\pi\)
\(564\) −4.88397 + 25.1194i −0.205652 + 1.05772i
\(565\) −10.7975 −0.454256
\(566\) −36.4760 3.51313i −1.53320 0.147668i
\(567\) −2.43116 + 1.04376i −0.102099 + 0.0438339i
\(568\) 18.3060 + 5.42391i 0.768102 + 0.227582i
\(569\) 13.2684 0.556239 0.278120 0.960546i \(-0.410289\pi\)
0.278120 + 0.960546i \(0.410289\pi\)
\(570\) 0.235201 2.44204i 0.00985149 0.102286i
\(571\) −8.34007 −0.349021 −0.174511 0.984655i \(-0.555834\pi\)
−0.174511 + 0.984655i \(0.555834\pi\)
\(572\) 18.2682 + 3.55189i 0.763832 + 0.148512i
\(573\) −9.06371 −0.378642
\(574\) 0.318173 0.101748i 0.0132803 0.00424690i
\(575\) 3.54807i 0.147965i
\(576\) 6.70874 + 4.35808i 0.279531 + 0.181587i
\(577\) 23.6242i 0.983487i 0.870740 + 0.491743i \(0.163640\pi\)
−0.870740 + 0.491743i \(0.836360\pi\)
\(578\) 1.79857 18.6742i 0.0748108 0.776744i
\(579\) 17.5065i 0.727545i
\(580\) 3.22967 16.6110i 0.134105 0.689732i
\(581\) 9.54176 + 22.2249i 0.395859 + 0.922046i
\(582\) 0.570015 5.91834i 0.0236279 0.245323i
\(583\) 7.01946i 0.290716i
\(584\) 19.9251 + 5.90365i 0.824508 + 0.244295i
\(585\) 1.67913 0.0694235
\(586\) 3.70353 38.4529i 0.152991 1.58848i
\(587\) 6.67124i 0.275351i −0.990477 0.137676i \(-0.956037\pi\)
0.990477 0.137676i \(-0.0439632\pi\)
\(588\) 8.12338 + 11.4022i 0.335003 + 0.470220i
\(589\) 12.6842i 0.522643i
\(590\) 18.3265 + 1.76509i 0.754491 + 0.0726675i
\(591\) −13.1628 −0.541444
\(592\) 16.8579 41.7133i 0.692857 1.71441i
\(593\) 25.3635i 1.04155i 0.853693 + 0.520776i \(0.174358\pi\)
−0.853693 + 0.520776i \(0.825642\pi\)
\(594\) −7.80098 0.751337i −0.320078 0.0308278i
\(595\) 5.74219 + 13.3749i 0.235407 + 0.548317i
\(596\) 4.24107 21.8128i 0.173721 0.893489i
\(597\) 0.276416i 0.0113130i
\(598\) −8.38660 0.807741i −0.342954 0.0330310i
\(599\) 32.0409i 1.30915i −0.755995 0.654577i \(-0.772847\pi\)
0.755995 0.654577i \(-0.227153\pi\)
\(600\) −2.71189 0.803512i −0.110713 0.0328032i
\(601\) 27.2798i 1.11277i −0.830925 0.556384i \(-0.812188\pi\)
0.830925 0.556384i \(-0.187812\pi\)
\(602\) −9.89710 30.9487i −0.403376 1.26138i
\(603\) −7.26352 −0.295794
\(604\) −1.15733 + 5.95243i −0.0470912 + 0.242201i
\(605\) 19.7099 0.801320
\(606\) −21.1254 2.03466i −0.858162 0.0826524i
\(607\) −29.6611 −1.20391 −0.601953 0.798532i \(-0.705610\pi\)
−0.601953 + 0.798532i \(0.705610\pi\)
\(608\) 8.70403 + 4.53236i 0.352995 + 0.183811i
\(609\) −20.5701 + 8.83129i −0.833542 + 0.357862i
\(610\) 0.338576 3.51536i 0.0137085 0.142333i
\(611\) −21.4843 −0.869162
\(612\) 2.09996 10.8006i 0.0848860 0.436589i
\(613\) 17.5337i 0.708180i 0.935211 + 0.354090i \(0.115209\pi\)
−0.935211 + 0.354090i \(0.884791\pi\)
\(614\) −3.36839 0.324421i −0.135937 0.0130925i
\(615\) 0.0892775 0.00360002
\(616\) 4.86061 + 41.1841i 0.195840 + 1.65935i
\(617\) −19.9979 −0.805085 −0.402543 0.915401i \(-0.631873\pi\)
−0.402543 + 0.915401i \(0.631873\pi\)
\(618\) −1.84726 0.177916i −0.0743076 0.00715681i
\(619\) 10.3616i 0.416466i 0.978079 + 0.208233i \(0.0667713\pi\)
−0.978079 + 0.208233i \(0.933229\pi\)
\(620\) −14.3546 2.79097i −0.576496 0.112088i
\(621\) 3.54807 0.142379
\(622\) −3.29732 + 34.2354i −0.132210 + 1.37271i
\(623\) −4.34847 10.1286i −0.174218 0.405793i
\(624\) −2.51665 + 6.22721i −0.100747 + 0.249288i
\(625\) 1.00000 0.0400000
\(626\) −42.6794 4.11059i −1.70581 0.164292i
\(627\) −9.61352 −0.383927
\(628\) 10.9402 + 2.12710i 0.436560 + 0.0848804i
\(629\) −61.8787 −2.46727
\(630\) 1.13969 + 3.56386i 0.0454062 + 0.141988i
\(631\) 1.55276i 0.0618145i −0.999522 0.0309072i \(-0.990160\pi\)
0.999522 0.0309072i \(-0.00983964\pi\)
\(632\) 3.11869 + 0.924042i 0.124055 + 0.0367564i
\(633\) 12.0851i 0.480340i
\(634\) 11.1701 + 1.07583i 0.443621 + 0.0427265i
\(635\) 0.926602i 0.0367711i
\(636\) −2.48678 0.483505i −0.0986072 0.0191722i
\(637\) −8.09528 + 8.52178i −0.320747 + 0.337645i
\(638\) −66.0041 6.35707i −2.61313 0.251679i
\(639\) 6.75026i 0.267036i
\(640\) 7.04444 8.85302i 0.278456 0.349946i
\(641\) −13.3311 −0.526546 −0.263273 0.964721i \(-0.584802\pi\)
−0.263273 + 0.964721i \(0.584802\pi\)
\(642\) −23.6090 2.27386i −0.931771 0.0897419i
\(643\) 20.6034i 0.812520i 0.913758 + 0.406260i \(0.133167\pi\)
−0.913758 + 0.406260i \(0.866833\pi\)
\(644\) −3.97791 18.3484i −0.156752 0.723027i
\(645\) 8.68405i 0.341934i
\(646\) 1.29394 13.4347i 0.0509095 0.528583i
\(647\) −35.8391 −1.40898 −0.704490 0.709714i \(-0.748824\pi\)
−0.704490 + 0.709714i \(0.748824\pi\)
\(648\) 0.803512 2.71189i 0.0315649 0.106533i
\(649\) 72.1455i 2.83196i
\(650\) 0.227657 2.36371i 0.00892943 0.0927123i
\(651\) 7.63171 + 17.7760i 0.299110 + 0.696696i
\(652\) 41.1560 + 8.00197i 1.61179 + 0.313381i
\(653\) 2.28298i 0.0893398i −0.999002 0.0446699i \(-0.985776\pi\)
0.999002 0.0446699i \(-0.0142236\pi\)
\(654\) 0.336825 3.49718i 0.0131709 0.136751i
\(655\) 12.4963i 0.488272i
\(656\) −0.133808 + 0.331094i −0.00522431 + 0.0129270i
\(657\) 7.34731i 0.286646i
\(658\) −14.5822 45.5993i −0.568473 1.77765i
\(659\) 18.0400 0.702737 0.351369 0.936237i \(-0.385716\pi\)
0.351369 + 0.936237i \(0.385716\pi\)
\(660\) −2.11531 + 10.8796i −0.0823385 + 0.423486i
\(661\) −29.8230 −1.15998 −0.579991 0.814623i \(-0.696944\pi\)
−0.579991 + 0.814623i \(0.696944\pi\)
\(662\) 1.92689 20.0065i 0.0748907 0.777574i
\(663\) 9.23762 0.358759
\(664\) −24.7913 7.34545i −0.962088 0.285059i
\(665\) 1.81070 + 4.21753i 0.0702158 + 0.163549i
\(666\) −15.8334 1.52497i −0.613534 0.0590914i
\(667\) 30.0202 1.16239
\(668\) 11.2639 + 2.19003i 0.435811 + 0.0847349i
\(669\) 17.8291i 0.689314i
\(670\) −0.984790 + 10.2249i −0.0380457 + 0.395021i
\(671\) −13.8388 −0.534242
\(672\) −14.9251 1.11482i −0.575746 0.0430050i
\(673\) 29.2670 1.12816 0.564080 0.825720i \(-0.309231\pi\)
0.564080 + 0.825720i \(0.309231\pi\)
\(674\) −0.399763 + 4.15065i −0.0153983 + 0.159877i
\(675\) 1.00000i 0.0384900i
\(676\) 19.9868 + 3.88603i 0.768722 + 0.149463i
\(677\) −25.9210 −0.996226 −0.498113 0.867112i \(-0.665974\pi\)
−0.498113 + 0.867112i \(0.665974\pi\)
\(678\) −15.1997 1.46393i −0.583740 0.0562220i
\(679\) 4.38826 + 10.2213i 0.168406 + 0.392256i
\(680\) −14.9193 4.42047i −0.572129 0.169517i
\(681\) 27.5789 1.05683
\(682\) −5.49357 + 57.0386i −0.210360 + 2.18412i
\(683\) 22.5472 0.862745 0.431373 0.902174i \(-0.358029\pi\)
0.431373 + 0.902174i \(0.358029\pi\)
\(684\) 0.662185 3.40578i 0.0253193 0.130223i
\(685\) 3.53259 0.134973
\(686\) −23.5816 11.3977i −0.900349 0.435168i
\(687\) 3.43380i 0.131008i
\(688\) 32.2056 + 13.0155i 1.22783 + 0.496211i
\(689\) 2.12691i 0.0810288i
\(690\) 0.481048 4.99461i 0.0183132 0.190142i
\(691\) 8.74160i 0.332546i 0.986080 + 0.166273i \(0.0531733\pi\)
−0.986080 + 0.166273i \(0.946827\pi\)
\(692\) 33.6167 + 6.53610i 1.27792 + 0.248465i
\(693\) 13.4727 5.78417i 0.511784 0.219722i
\(694\) 4.19958 43.6034i 0.159414 1.65516i
\(695\) 12.1022i 0.459064i
\(696\) 6.79852 22.9454i 0.257697 0.869742i
\(697\) 0.491154 0.0186038
\(698\) −0.601233 + 6.24247i −0.0227570 + 0.236281i
\(699\) 8.12381i 0.307271i
\(700\) 5.17137 1.12115i 0.195459 0.0423754i
\(701\) 14.5041i 0.547811i −0.961757 0.273906i \(-0.911684\pi\)
0.961757 0.273906i \(-0.0883156\pi\)
\(702\) 2.36371 + 0.227657i 0.0892125 + 0.00859235i
\(703\) −19.5123 −0.735921
\(704\) −37.1775 24.1509i −1.40118 0.910223i
\(705\) 12.7949i 0.481884i
\(706\) −36.0019 3.46746i −1.35495 0.130500i
\(707\) 36.4846 15.6638i 1.37215 0.589099i
\(708\) 25.5589 + 4.96943i 0.960564 + 0.186763i
\(709\) 27.9863i 1.05105i 0.850779 + 0.525523i \(0.176130\pi\)
−0.850779 + 0.525523i \(0.823870\pi\)
\(710\) −9.50233 0.915201i −0.356616 0.0343469i
\(711\) 1.15000i 0.0431285i
\(712\) 11.2981 + 3.34755i 0.423416 + 0.125455i
\(713\) 25.9425i 0.971554i
\(714\) 6.26991 + 19.6063i 0.234646 + 0.733749i
\(715\) −9.30514 −0.347993
\(716\) −28.4526 5.53205i −1.06332 0.206742i
\(717\) −23.7708 −0.887739
\(718\) −22.3259 2.15028i −0.833193 0.0802476i
\(719\) −31.9104 −1.19006 −0.595029 0.803704i \(-0.702859\pi\)
−0.595029 + 0.803704i \(0.702859\pi\)
\(720\) −3.70859 1.49878i −0.138211 0.0558563i
\(721\) 3.19030 1.36968i 0.118813 0.0510096i
\(722\) −2.16800 + 22.5099i −0.0806847 + 0.837731i
\(723\) −13.8075 −0.513505
\(724\) 2.52268 + 0.490485i 0.0937547 + 0.0182287i
\(725\) 8.46101i 0.314234i
\(726\) 27.7456 + 2.67227i 1.02973 + 0.0991771i
\(727\) 37.3223 1.38421 0.692104 0.721798i \(-0.256684\pi\)
0.692104 + 0.721798i \(0.256684\pi\)
\(728\) −1.47277 12.4788i −0.0545847 0.462497i
\(729\) −1.00000 −0.0370370
\(730\) −10.3428 0.996150i −0.382804 0.0368692i
\(731\) 47.7747i 1.76701i
\(732\) 0.953227 4.90267i 0.0352323 0.181208i
\(733\) −31.5170 −1.16411 −0.582053 0.813151i \(-0.697750\pi\)
−0.582053 + 0.813151i \(0.697750\pi\)
\(734\) −2.81180 + 29.1943i −0.103785 + 1.07758i
\(735\) −5.07512 4.82112i −0.187199 0.177830i
\(736\) 17.8020 + 9.26985i 0.656190 + 0.341691i
\(737\) 40.2519 1.48270
\(738\) 0.125676 + 0.0121043i 0.00462619 + 0.000445564i
\(739\) 4.86962 0.179132 0.0895659 0.995981i \(-0.471452\pi\)
0.0895659 + 0.995981i \(0.471452\pi\)
\(740\) −4.29340 + 22.0820i −0.157829 + 0.811750i
\(741\) 2.91291 0.107009
\(742\) 4.51425 1.44361i 0.165723 0.0529967i
\(743\) 24.0338i 0.881714i −0.897577 0.440857i \(-0.854675\pi\)
0.897577 0.440857i \(-0.145325\pi\)
\(744\) −19.8286 5.87506i −0.726952 0.215390i
\(745\) 11.1107i 0.407063i
\(746\) −20.5513 1.97937i −0.752438 0.0724698i
\(747\) 9.14169i 0.334477i
\(748\) −11.6373 + 59.8532i −0.425500 + 2.18845i
\(749\) 40.7738 17.5053i 1.48984 0.639629i
\(750\) 1.40770 + 0.135580i 0.0514019 + 0.00495069i
\(751\) 1.33007i 0.0485348i 0.999706 + 0.0242674i \(0.00772531\pi\)
−0.999706 + 0.0242674i \(0.992275\pi\)
\(752\) 47.4511 + 19.1768i 1.73036 + 0.699305i
\(753\) 2.78833 0.101612
\(754\) 19.9994 + 1.92620i 0.728334 + 0.0701482i
\(755\) 3.03195i 0.110344i
\(756\) 1.12115 + 5.17137i 0.0407758 + 0.188081i
\(757\) 12.9373i 0.470213i −0.971970 0.235106i \(-0.924456\pi\)
0.971970 0.235106i \(-0.0755439\pi\)
\(758\) −4.75875 + 49.4091i −0.172846 + 1.79462i
\(759\) −19.6621 −0.713691
\(760\) −4.70453 1.39391i −0.170651 0.0505626i
\(761\) 35.0635i 1.27105i 0.772079 + 0.635526i \(0.219217\pi\)
−0.772079 + 0.635526i \(0.780783\pi\)
\(762\) 0.125629 1.30438i 0.00455105 0.0472526i
\(763\) 2.59305 + 6.03980i 0.0938746 + 0.218655i
\(764\) −3.45973 + 17.7942i −0.125169 + 0.643772i
\(765\) 5.50143i 0.198905i
\(766\) 0.398395 4.13645i 0.0143946 0.149456i
\(767\) 21.8602i 0.789327i
\(768\) 11.1167 11.5073i 0.401141 0.415234i
\(769\) 18.6210i 0.671491i 0.941953 + 0.335746i \(0.108988\pi\)
−0.941953 + 0.335746i \(0.891012\pi\)
\(770\) −6.31575 19.7497i −0.227604 0.711729i
\(771\) 3.21699 0.115857
\(772\) −34.3694 6.68244i −1.23698 0.240506i
\(773\) 26.4130 0.950010 0.475005 0.879983i \(-0.342446\pi\)
0.475005 + 0.879983i \(0.342446\pi\)
\(774\) 1.17738 12.2245i 0.0423202 0.439402i
\(775\) 7.31172 0.262645
\(776\) −11.4015 3.37818i −0.409291 0.121270i
\(777\) 27.3451 11.7400i 0.981001 0.421170i
\(778\) −41.9537 4.04070i −1.50411 0.144866i
\(779\) 0.154876 0.00554903
\(780\) 0.640944 3.29653i 0.0229495 0.118035i
\(781\) 37.4075i 1.33855i
\(782\) 2.64645 27.4775i 0.0946369 0.982594i
\(783\) −8.46101 −0.302372
\(784\) 25.4861 11.5957i 0.910216 0.414134i
\(785\) −5.57251 −0.198892
\(786\) −1.69426 + 17.5911i −0.0604321 + 0.627453i
\(787\) 18.3513i 0.654153i −0.944998 0.327077i \(-0.893936\pi\)
0.944998 0.327077i \(-0.106064\pi\)
\(788\) −5.02439 + 25.8416i −0.178986 + 0.920569i
\(789\) 3.61223 0.128599
\(790\) −1.61886 0.155918i −0.0575964 0.00554730i
\(791\) 26.2506 11.2701i 0.933363 0.400718i
\(792\) −4.45278 + 15.0284i −0.158223 + 0.534010i
\(793\) 4.19319 0.148904
\(794\) −2.76366 + 28.6945i −0.0980786 + 1.01833i
\(795\) 1.26667 0.0449243
\(796\) 0.542671 + 0.105512i 0.0192344 + 0.00373976i
\(797\) 16.6258 0.588917 0.294458 0.955664i \(-0.404861\pi\)
0.294458 + 0.955664i \(0.404861\pi\)
\(798\) 1.97710 + 6.18250i 0.0699887 + 0.218858i
\(799\) 70.3903i 2.49023i
\(800\) −2.61265 + 5.01738i −0.0923710 + 0.177391i
\(801\) 4.16614i 0.147203i
\(802\) 0.576006 5.98054i 0.0203395 0.211180i
\(803\) 40.7162i 1.43684i
\(804\) −2.77258 + 14.2600i −0.0977812 + 0.502912i
\(805\) 3.70334 + 8.62593i 0.130526 + 0.304024i
\(806\) 1.66456 17.2828i 0.0586317 0.608760i
\(807\) 8.64776i 0.304416i
\(808\) −12.0584 + 40.6976i −0.424211 + 1.43174i
\(809\) 6.95098 0.244383 0.122192 0.992507i \(-0.461008\pi\)
0.122192 + 0.992507i \(0.461008\pi\)
\(810\) −0.135580 + 1.40770i −0.00476380 + 0.0494615i
\(811\) 49.6027i 1.74179i −0.491471 0.870894i \(-0.663541\pi\)
0.491471 0.870894i \(-0.336459\pi\)
\(812\) 9.48605 + 43.7550i 0.332895 + 1.53550i
\(813\) 3.09276i 0.108468i
\(814\) 87.7434 + 8.45085i 3.07540 + 0.296202i
\(815\) −20.9634 −0.734315
\(816\) −20.4026 8.24545i −0.714233 0.288648i
\(817\) 15.0649i 0.527053i
\(818\) 23.0631 + 2.22128i 0.806382 + 0.0776653i
\(819\) −4.08224 + 1.75261i −0.142645 + 0.0612413i
\(820\) 0.0340783 0.175273i 0.00119007 0.00612079i
\(821\) 46.2978i 1.61580i 0.589317 + 0.807902i \(0.299397\pi\)
−0.589317 + 0.807902i \(0.700603\pi\)
\(822\) 4.97283 + 0.478950i 0.173447 + 0.0167053i
\(823\) 5.51492i 0.192238i −0.995370 0.0961191i \(-0.969357\pi\)
0.995370 0.0961191i \(-0.0306430\pi\)
\(824\) −1.05441 + 3.55869i −0.0367322 + 0.123973i
\(825\) 5.54165i 0.192935i
\(826\) −46.3971 + 14.8373i −1.61436 + 0.516257i
\(827\) 56.0706 1.94976 0.974882 0.222720i \(-0.0714937\pi\)
0.974882 + 0.222720i \(0.0714937\pi\)
\(828\) 1.35434 6.96569i 0.0470666 0.242075i
\(829\) 44.7027 1.55259 0.776295 0.630370i \(-0.217097\pi\)
0.776295 + 0.630370i \(0.217097\pi\)
\(830\) 12.8687 + 1.23943i 0.446681 + 0.0430213i
\(831\) −21.5406 −0.747236
\(832\) 11.2648 + 7.31778i 0.390538 + 0.253698i
\(833\) −27.9204 26.5230i −0.967386 0.918969i
\(834\) −1.64082 + 17.0363i −0.0568171 + 0.589919i
\(835\) −5.73739 −0.198551
\(836\) −3.66960 + 18.8736i −0.126916 + 0.652757i
\(837\) 7.31172i 0.252730i
\(838\) −27.1291 2.61289i −0.937160 0.0902610i
\(839\) −44.8497 −1.54838 −0.774191 0.632952i \(-0.781843\pi\)
−0.774191 + 0.632952i \(0.781843\pi\)
\(840\) 7.43173 0.877106i 0.256419 0.0302630i
\(841\) −42.5887 −1.46857
\(842\) 20.9465 + 2.01743i 0.721865 + 0.0695252i
\(843\) 17.0871i 0.588510i
\(844\) −23.7259 4.61303i −0.816680 0.158787i
\(845\) −10.1805 −0.350221
\(846\) 1.73474 18.0114i 0.0596414 0.619244i
\(847\) −47.9179 + 20.5724i −1.64648 + 0.706877i
\(848\) −1.89847 + 4.69757i −0.0651937 + 0.161315i
\(849\) 25.9118 0.889290
\(850\) 7.74436 + 0.745885i 0.265629 + 0.0255836i
\(851\) −39.9078 −1.36802
\(852\) −13.2523 2.57666i −0.454018 0.0882747i
\(853\) −0.0388026 −0.00132858 −0.000664288 1.00000i \(-0.500211\pi\)
−0.000664288 1.00000i \(0.500211\pi\)
\(854\) 2.84607 + 8.89982i 0.0973906 + 0.304545i
\(855\) 1.73478i 0.0593281i
\(856\) −13.4759 + 45.4820i −0.460598 + 1.55454i
\(857\) 57.0186i 1.94772i 0.227154 + 0.973859i \(0.427058\pi\)
−0.227154 + 0.973859i \(0.572942\pi\)
\(858\) −13.0988 1.26159i −0.447187 0.0430701i
\(859\) 9.67639i 0.330154i −0.986281 0.165077i \(-0.947213\pi\)
0.986281 0.165077i \(-0.0527873\pi\)
\(860\) −17.0488 3.31481i −0.581360 0.113034i
\(861\) −0.217048 + 0.0931846i −0.00739698 + 0.00317572i
\(862\) 0.396435 + 0.0381819i 0.0135026 + 0.00130048i
\(863\) 35.9183i 1.22267i −0.791371 0.611337i \(-0.790632\pi\)
0.791371 0.611337i \(-0.209368\pi\)
\(864\) −5.01738 2.61265i −0.170695 0.0888840i
\(865\) −17.1231 −0.582203
\(866\) −5.72884 0.551763i −0.194674 0.0187497i
\(867\) 13.2658i 0.450529i
\(868\) 37.8116 8.19753i 1.28341 0.278242i
\(869\) 6.37291i 0.216186i
\(870\) −1.14714 + 11.9106i −0.0388919 + 0.403806i
\(871\) −12.1964 −0.413259
\(872\) −6.73722 1.99618i −0.228151 0.0675993i
\(873\) 4.20427i 0.142293i
\(874\) 0.834510 8.66454i 0.0282277 0.293082i
\(875\) −2.43116 + 1.04376i −0.0821883 + 0.0352856i
\(876\) −14.4245 2.80456i −0.487359 0.0947573i
\(877\) 20.0801i 0.678057i 0.940776 + 0.339028i \(0.110098\pi\)
−0.940776 + 0.339028i \(0.889902\pi\)
\(878\) 2.48507 25.8020i 0.0838671 0.870774i
\(879\) 27.3161i 0.921350i
\(880\) 20.5517 + 8.30572i 0.692798 + 0.279986i
\(881\) 37.0514i 1.24829i −0.781307 0.624147i \(-0.785447\pi\)
0.781307 0.624147i \(-0.214553\pi\)
\(882\) −6.49060 7.47477i −0.218550 0.251689i
\(883\) −13.3489 −0.449225 −0.224613 0.974448i \(-0.572112\pi\)
−0.224613 + 0.974448i \(0.572112\pi\)
\(884\) 3.52611 18.1356i 0.118596 0.609967i
\(885\) −13.0188 −0.437622
\(886\) 2.20878 22.9333i 0.0742053 0.770458i
\(887\) 4.46449 0.149903 0.0749515 0.997187i \(-0.476120\pi\)
0.0749515 + 0.997187i \(0.476120\pi\)
\(888\) −9.03770 + 30.5027i −0.303285 + 1.02360i
\(889\) 0.967153 + 2.25272i 0.0324373 + 0.0755539i
\(890\) −5.86468 0.564846i −0.196584 0.0189337i
\(891\) 5.54165 0.185652
\(892\) −35.0028 6.80560i −1.17198 0.227868i
\(893\) 22.1963i 0.742771i
\(894\) −1.50638 + 15.6405i −0.0503810 + 0.523096i
\(895\) 14.4927 0.484438
\(896\) −7.88573 + 28.8759i −0.263444 + 0.964675i
\(897\) 5.95767 0.198921
\(898\) 4.91897 51.0726i 0.164148 1.70432i
\(899\) 61.8645i 2.06330i
\(900\) 1.96324 + 0.381712i 0.0654412 + 0.0127237i
\(901\) 6.96852 0.232155
\(902\) −0.696452 0.0670775i −0.0231893 0.00223344i
\(903\) 9.06409 + 21.1123i 0.301634 + 0.702575i
\(904\) −8.67595 + 29.2818i −0.288558 + 0.973897i
\(905\) −1.28496 −0.0427135
\(906\) 0.411072 4.26807i 0.0136570 0.141797i
\(907\) 17.0639 0.566598 0.283299 0.959032i \(-0.408571\pi\)
0.283299 + 0.959032i \(0.408571\pi\)
\(908\) 10.5272 54.1440i 0.349358 1.79683i
\(909\) 15.0071 0.497753
\(910\) 1.91368 + 5.98419i 0.0634380 + 0.198374i
\(911\) 0.534170i 0.0176978i −0.999961 0.00884891i \(-0.997183\pi\)
0.999961 0.00884891i \(-0.00281673\pi\)
\(912\) −6.43358 2.60005i −0.213037 0.0860963i
\(913\) 50.6600i 1.67660i
\(914\) −2.94928 + 30.6218i −0.0975536 + 1.01288i
\(915\) 2.49724i 0.0825562i
\(916\) 6.74135 + 1.31072i 0.222741 + 0.0433075i
\(917\) −13.0432 30.3806i −0.430725 1.00326i
\(918\) −0.745885 + 7.74436i −0.0246179 + 0.255602i
\(919\) 7.87145i 0.259655i 0.991537 + 0.129828i \(0.0414424\pi\)
−0.991537 + 0.129828i \(0.958558\pi\)
\(920\) −9.62198 2.85092i −0.317227 0.0939919i
\(921\) 2.39283 0.0788465
\(922\) −2.44033 + 25.3374i −0.0803680 + 0.834444i
\(923\) 11.3346i 0.373081i
\(924\) −6.21301 28.6579i −0.204393 0.942775i
\(925\) 11.2477i 0.369824i
\(926\) −31.8562 3.06818i −1.04686 0.100827i
\(927\) 1.31225 0.0431001
\(928\) −42.4521 22.1056i −1.39356 0.725653i
\(929\) 29.4442i 0.966034i −0.875611 0.483017i \(-0.839541\pi\)
0.875611 0.483017i \(-0.160459\pi\)
\(930\) 10.2927 + 0.991324i 0.337511 + 0.0325068i
\(931\) −8.80420 8.36356i −0.288546 0.274105i
\(932\) −15.9490 3.10096i −0.522426 0.101575i
\(933\) 24.3201i 0.796204i
\(934\) −16.4598 1.58529i −0.538580 0.0518724i
\(935\) 30.4870i 0.997032i
\(936\) 1.34920 4.55362i 0.0441000 0.148840i
\(937\) 47.0734i 1.53782i 0.639357 + 0.768910i \(0.279201\pi\)
−0.639357 + 0.768910i \(0.720799\pi\)
\(938\) −8.27815 25.8862i −0.270291 0.845214i
\(939\) 30.3185 0.989407
\(940\) −25.1194 4.88397i −0.819305 0.159298i
\(941\) 7.55709 0.246354 0.123177 0.992385i \(-0.460692\pi\)
0.123177 + 0.992385i \(0.460692\pi\)
\(942\) −7.84442 0.755522i −0.255585 0.0246162i
\(943\) 0.316763 0.0103152
\(944\) 19.5123 48.2813i 0.635072 1.57142i
\(945\) −1.04376 2.43116i −0.0339536 0.0790858i
\(946\) −6.52465 + 67.7440i −0.212135 + 2.20255i
\(947\) −35.7888 −1.16298 −0.581490 0.813554i \(-0.697530\pi\)
−0.581490 + 0.813554i \(0.697530\pi\)
\(948\) −2.25773 0.438970i −0.0733276 0.0142571i
\(949\) 12.3371i 0.400479i
\(950\) 2.44204 + 0.235201i 0.0792304 + 0.00763094i
\(951\) −7.93499 −0.257310
\(952\) 40.8852 4.82534i 1.32510 0.156390i
\(953\) −0.983354 −0.0318540 −0.0159270 0.999873i \(-0.505070\pi\)
−0.0159270 + 0.999873i \(0.505070\pi\)
\(954\) 1.78310 + 0.171736i 0.0577299 + 0.00556015i
\(955\) 9.06371i 0.293295i
\(956\) −9.07362 + 46.6678i −0.293462 + 1.50934i
\(957\) 46.8879 1.51567
\(958\) −3.61304 + 37.5134i −0.116732 + 1.21200i
\(959\) −8.58831 + 3.68719i −0.277331 + 0.119066i
\(960\) −4.35808 + 6.70874i −0.140656 + 0.216524i
\(961\) 22.4613 0.724557
\(962\) −26.5864 2.56062i −0.857180 0.0825578i
\(963\) 16.7713 0.540448
\(964\) −5.27048 + 27.1073i −0.169751 + 0.873067i
\(965\) 17.5065 0.563554
\(966\) 4.04369 + 12.6448i 0.130104 + 0.406841i
\(967\) 18.3924i 0.591459i −0.955272 0.295730i \(-0.904437\pi\)
0.955272 0.295730i \(-0.0955627\pi\)
\(968\) 15.8371 53.4511i 0.509024 1.71798i
\(969\) 9.54375i 0.306590i
\(970\) 5.91834 + 0.570015i 0.190027 + 0.0183021i
\(971\) 1.49104i 0.0478497i 0.999714 + 0.0239248i \(0.00761624\pi\)
−0.999714 + 0.0239248i \(0.992384\pi\)
\(972\) −0.381712 + 1.96324i −0.0122434 + 0.0629708i
\(973\) −12.6319 29.4225i −0.404959 0.943243i
\(974\) 13.6206 + 1.31184i 0.436431 + 0.0420341i
\(975\) 1.67913i 0.0537752i
\(976\) −9.26124 3.74282i −0.296445 0.119805i
\(977\) −24.8612 −0.795382 −0.397691 0.917519i \(-0.630188\pi\)
−0.397691 + 0.917519i \(0.630188\pi\)
\(978\) −29.5101 2.84222i −0.943630 0.0908841i
\(979\) 23.0873i 0.737873i
\(980\) −11.4022 + 8.12338i −0.364231 + 0.259492i
\(981\) 2.48432i 0.0793183i
\(982\) 2.89917 30.1015i 0.0925162 0.960576i
\(983\) −33.5242 −1.06925 −0.534627 0.845088i \(-0.679548\pi\)
−0.534627 + 0.845088i \(0.679548\pi\)
\(984\) 0.0717355 0.242111i 0.00228685 0.00771822i
\(985\) 13.1628i 0.419400i
\(986\) −6.31094 + 65.5251i −0.200981 + 2.08675i
\(987\) 13.3549 + 31.1065i 0.425090 + 0.990131i
\(988\) 1.11189 5.71874i 0.0353741 0.181937i
\(989\) 30.8116i 0.979751i
\(990\) 0.751337 7.80098i 0.0238791 0.247931i
\(991\) 32.3140i 1.02649i 0.858243 + 0.513244i \(0.171557\pi\)
−0.858243 + 0.513244i \(0.828443\pi\)
\(992\) −19.1029 + 36.6857i −0.606519 + 1.16477i
\(993\) 14.2122i 0.451010i
\(994\) 24.0570 7.69318i 0.763041 0.244013i
\(995\) −0.276416 −0.00876299
\(996\) 17.9473 + 3.48949i 0.568682 + 0.110569i
\(997\) −2.00398 −0.0634665 −0.0317333 0.999496i \(-0.510103\pi\)
−0.0317333 + 0.999496i \(0.510103\pi\)
\(998\) 1.64757 17.1063i 0.0521528 0.541491i
\(999\) 11.2477 0.355863
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.z.d.811.12 yes 28
4.3 odd 2 3360.2.z.d.1231.26 28
7.6 odd 2 840.2.z.c.811.12 yes 28
8.3 odd 2 840.2.z.c.811.11 28
8.5 even 2 3360.2.z.c.1231.4 28
28.27 even 2 3360.2.z.c.1231.3 28
56.13 odd 2 3360.2.z.d.1231.25 28
56.27 even 2 inner 840.2.z.d.811.11 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.z.c.811.11 28 8.3 odd 2
840.2.z.c.811.12 yes 28 7.6 odd 2
840.2.z.d.811.11 yes 28 56.27 even 2 inner
840.2.z.d.811.12 yes 28 1.1 even 1 trivial
3360.2.z.c.1231.3 28 28.27 even 2
3360.2.z.c.1231.4 28 8.5 even 2
3360.2.z.d.1231.25 28 56.13 odd 2
3360.2.z.d.1231.26 28 4.3 odd 2