Properties

Label 840.2.z.c.811.11
Level $840$
Weight $2$
Character 840.811
Analytic conductor $6.707$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(811,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.811"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.z (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,2,0,-2,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.11
Character \(\chi\) \(=\) 840.811
Dual form 840.2.z.c.811.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.135580 - 1.40770i) q^{2} -1.00000i q^{3} +(-1.96324 + 0.381712i) q^{4} -1.00000 q^{5} +(-1.40770 + 0.135580i) q^{6} +(2.43116 - 1.04376i) q^{7} +(0.803512 + 2.71189i) q^{8} -1.00000 q^{9} +(0.135580 + 1.40770i) q^{10} +5.54165 q^{11} +(0.381712 + 1.96324i) q^{12} +1.67913 q^{13} +(-1.79892 - 3.28083i) q^{14} +1.00000i q^{15} +(3.70859 - 1.49878i) q^{16} -5.50143i q^{17} +(0.135580 + 1.40770i) q^{18} -1.73478i q^{19} +(1.96324 - 0.381712i) q^{20} +(-1.04376 - 2.43116i) q^{21} +(-0.751337 - 7.80098i) q^{22} +3.54807i q^{23} +(2.71189 - 0.803512i) q^{24} +1.00000 q^{25} +(-0.227657 - 2.36371i) q^{26} +1.00000i q^{27} +(-4.37453 + 2.97716i) q^{28} -8.46101i q^{29} +(1.40770 - 0.135580i) q^{30} -7.31172 q^{31} +(-2.61265 - 5.01738i) q^{32} -5.54165i q^{33} +(-7.74436 + 0.745885i) q^{34} +(-2.43116 + 1.04376i) q^{35} +(1.96324 - 0.381712i) q^{36} +11.2477i q^{37} +(-2.44204 + 0.235201i) q^{38} -1.67913i q^{39} +(-0.803512 - 2.71189i) q^{40} +0.0892775i q^{41} +(-3.28083 + 1.79892i) q^{42} +8.68405 q^{43} +(-10.8796 + 2.11531i) q^{44} +1.00000 q^{45} +(4.99461 - 0.481048i) q^{46} -12.7949 q^{47} +(-1.49878 - 3.70859i) q^{48} +(4.82112 - 5.07512i) q^{49} +(-0.135580 - 1.40770i) q^{50} -5.50143 q^{51} +(-3.29653 + 0.640944i) q^{52} -1.26667i q^{53} +(1.40770 - 0.135580i) q^{54} -5.54165 q^{55} +(4.78404 + 5.75438i) q^{56} -1.73478 q^{57} +(-11.9106 + 1.14714i) q^{58} -13.0188i q^{59} +(-0.381712 - 1.96324i) q^{60} +2.49724 q^{61} +(0.991324 + 10.2927i) q^{62} +(-2.43116 + 1.04376i) q^{63} +(-6.70874 + 4.35808i) q^{64} -1.67913 q^{65} +(-7.80098 + 0.751337i) q^{66} +7.26352 q^{67} +(2.09996 + 10.8006i) q^{68} +3.54807 q^{69} +(1.79892 + 3.28083i) q^{70} -6.75026i q^{71} +(-0.803512 - 2.71189i) q^{72} +7.34731i q^{73} +(15.8334 - 1.52497i) q^{74} -1.00000i q^{75} +(0.662185 + 3.40578i) q^{76} +(13.4727 - 5.78417i) q^{77} +(-2.36371 + 0.227657i) q^{78} -1.15000i q^{79} +(-3.70859 + 1.49878i) q^{80} +1.00000 q^{81} +(0.125676 - 0.0121043i) q^{82} -9.14169i q^{83} +(2.97716 + 4.37453i) q^{84} +5.50143i q^{85} +(-1.17738 - 12.2245i) q^{86} -8.46101 q^{87} +(4.45278 + 15.0284i) q^{88} +4.16614i q^{89} +(-0.135580 - 1.40770i) q^{90} +(4.08224 - 1.75261i) q^{91} +(-1.35434 - 6.96569i) q^{92} +7.31172i q^{93} +(1.73474 + 18.0114i) q^{94} +1.73478i q^{95} +(-5.01738 + 2.61265i) q^{96} -4.20427i q^{97} +(-7.79789 - 6.09860i) q^{98} -5.54165 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 2 q^{2} - 2 q^{4} - 28 q^{5} - 4 q^{6} - 4 q^{7} - 10 q^{8} - 28 q^{9} - 2 q^{10} + 8 q^{12} + 8 q^{13} + 6 q^{14} + 6 q^{16} - 2 q^{18} + 2 q^{20} + 4 q^{24} + 28 q^{25} - 16 q^{26} - 18 q^{28}+ \cdots - 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.135580 1.40770i −0.0958696 0.995394i
\(3\) 1.00000i 0.577350i
\(4\) −1.96324 + 0.381712i −0.981618 + 0.190856i
\(5\) −1.00000 −0.447214
\(6\) −1.40770 + 0.135580i −0.574691 + 0.0553504i
\(7\) 2.43116 1.04376i 0.918894 0.394505i
\(8\) 0.803512 + 2.71189i 0.284084 + 0.958799i
\(9\) −1.00000 −0.333333
\(10\) 0.135580 + 1.40770i 0.0428742 + 0.445154i
\(11\) 5.54165 1.67087 0.835435 0.549589i \(-0.185216\pi\)
0.835435 + 0.549589i \(0.185216\pi\)
\(12\) 0.381712 + 1.96324i 0.110191 + 0.566737i
\(13\) 1.67913 0.465707 0.232853 0.972512i \(-0.425194\pi\)
0.232853 + 0.972512i \(0.425194\pi\)
\(14\) −1.79892 3.28083i −0.480782 0.876840i
\(15\) 1.00000i 0.258199i
\(16\) 3.70859 1.49878i 0.927148 0.374696i
\(17\) 5.50143i 1.33429i −0.744926 0.667147i \(-0.767515\pi\)
0.744926 0.667147i \(-0.232485\pi\)
\(18\) 0.135580 + 1.40770i 0.0319565 + 0.331798i
\(19\) 1.73478i 0.397985i −0.980001 0.198992i \(-0.936233\pi\)
0.980001 0.198992i \(-0.0637669\pi\)
\(20\) 1.96324 0.381712i 0.438993 0.0853535i
\(21\) −1.04376 2.43116i −0.227768 0.530523i
\(22\) −0.751337 7.80098i −0.160186 1.66317i
\(23\) 3.54807i 0.739823i 0.929067 + 0.369912i \(0.120612\pi\)
−0.929067 + 0.369912i \(0.879388\pi\)
\(24\) 2.71189 0.803512i 0.553563 0.164016i
\(25\) 1.00000 0.200000
\(26\) −0.227657 2.36371i −0.0446471 0.463562i
\(27\) 1.00000i 0.192450i
\(28\) −4.37453 + 2.97716i −0.826709 + 0.562630i
\(29\) 8.46101i 1.57117i −0.618754 0.785585i \(-0.712362\pi\)
0.618754 0.785585i \(-0.287638\pi\)
\(30\) 1.40770 0.135580i 0.257010 0.0247534i
\(31\) −7.31172 −1.31322 −0.656612 0.754229i \(-0.728011\pi\)
−0.656612 + 0.754229i \(0.728011\pi\)
\(32\) −2.61265 5.01738i −0.461855 0.886955i
\(33\) 5.54165i 0.964677i
\(34\) −7.74436 + 0.745885i −1.32815 + 0.127918i
\(35\) −2.43116 + 1.04376i −0.410942 + 0.176428i
\(36\) 1.96324 0.381712i 0.327206 0.0636187i
\(37\) 11.2477i 1.84912i 0.381039 + 0.924559i \(0.375567\pi\)
−0.381039 + 0.924559i \(0.624433\pi\)
\(38\) −2.44204 + 0.235201i −0.396152 + 0.0381547i
\(39\) 1.67913i 0.268876i
\(40\) −0.803512 2.71189i −0.127046 0.428788i
\(41\) 0.0892775i 0.0139428i 0.999976 + 0.00697140i \(0.00221908\pi\)
−0.999976 + 0.00697140i \(0.997781\pi\)
\(42\) −3.28083 + 1.79892i −0.506244 + 0.277580i
\(43\) 8.68405 1.32430 0.662152 0.749369i \(-0.269643\pi\)
0.662152 + 0.749369i \(0.269643\pi\)
\(44\) −10.8796 + 2.11531i −1.64016 + 0.318896i
\(45\) 1.00000 0.149071
\(46\) 4.99461 0.481048i 0.736416 0.0709266i
\(47\) −12.7949 −1.86633 −0.933164 0.359450i \(-0.882964\pi\)
−0.933164 + 0.359450i \(0.882964\pi\)
\(48\) −1.49878 3.70859i −0.216331 0.535289i
\(49\) 4.82112 5.07512i 0.688731 0.725017i
\(50\) −0.135580 1.40770i −0.0191739 0.199079i
\(51\) −5.50143 −0.770355
\(52\) −3.29653 + 0.640944i −0.457146 + 0.0888830i
\(53\) 1.26667i 0.173991i −0.996209 0.0869955i \(-0.972273\pi\)
0.996209 0.0869955i \(-0.0277266\pi\)
\(54\) 1.40770 0.135580i 0.191564 0.0184501i
\(55\) −5.54165 −0.747236
\(56\) 4.78404 + 5.75438i 0.639295 + 0.768962i
\(57\) −1.73478 −0.229777
\(58\) −11.9106 + 1.14714i −1.56393 + 0.150628i
\(59\) 13.0188i 1.69490i −0.530874 0.847451i \(-0.678136\pi\)
0.530874 0.847451i \(-0.321864\pi\)
\(60\) −0.381712 1.96324i −0.0492788 0.253453i
\(61\) 2.49724 0.319739 0.159869 0.987138i \(-0.448893\pi\)
0.159869 + 0.987138i \(0.448893\pi\)
\(62\) 0.991324 + 10.2927i 0.125898 + 1.30717i
\(63\) −2.43116 + 1.04376i −0.306298 + 0.131502i
\(64\) −6.70874 + 4.35808i −0.838592 + 0.544760i
\(65\) −1.67913 −0.208270
\(66\) −7.80098 + 0.751337i −0.960234 + 0.0924833i
\(67\) 7.26352 0.887381 0.443690 0.896180i \(-0.353669\pi\)
0.443690 + 0.896180i \(0.353669\pi\)
\(68\) 2.09996 + 10.8006i 0.254658 + 1.30977i
\(69\) 3.54807 0.427137
\(70\) 1.79892 + 3.28083i 0.215012 + 0.392135i
\(71\) 6.75026i 0.801108i −0.916273 0.400554i \(-0.868818\pi\)
0.916273 0.400554i \(-0.131182\pi\)
\(72\) −0.803512 2.71189i −0.0946948 0.319600i
\(73\) 7.34731i 0.859938i 0.902844 + 0.429969i \(0.141475\pi\)
−0.902844 + 0.429969i \(0.858525\pi\)
\(74\) 15.8334 1.52497i 1.84060 0.177274i
\(75\) 1.00000i 0.115470i
\(76\) 0.662185 + 3.40578i 0.0759579 + 0.390669i
\(77\) 13.4727 5.78417i 1.53535 0.659167i
\(78\) −2.36371 + 0.227657i −0.267637 + 0.0257770i
\(79\) 1.15000i 0.129386i −0.997905 0.0646928i \(-0.979393\pi\)
0.997905 0.0646928i \(-0.0206067\pi\)
\(80\) −3.70859 + 1.49878i −0.414633 + 0.167569i
\(81\) 1.00000 0.111111
\(82\) 0.125676 0.0121043i 0.0138786 0.00133669i
\(83\) 9.14169i 1.00343i −0.865033 0.501715i \(-0.832703\pi\)
0.865033 0.501715i \(-0.167297\pi\)
\(84\) 2.97716 + 4.37453i 0.324835 + 0.477301i
\(85\) 5.50143i 0.596714i
\(86\) −1.17738 12.2245i −0.126961 1.31820i
\(87\) −8.46101 −0.907115
\(88\) 4.45278 + 15.0284i 0.474668 + 1.60203i
\(89\) 4.16614i 0.441610i 0.975318 + 0.220805i \(0.0708685\pi\)
−0.975318 + 0.220805i \(0.929132\pi\)
\(90\) −0.135580 1.40770i −0.0142914 0.148385i
\(91\) 4.08224 1.75261i 0.427935 0.183724i
\(92\) −1.35434 6.96569i −0.141200 0.726224i
\(93\) 7.31172i 0.758190i
\(94\) 1.73474 + 18.0114i 0.178924 + 1.85773i
\(95\) 1.73478i 0.177984i
\(96\) −5.01738 + 2.61265i −0.512084 + 0.266652i
\(97\) 4.20427i 0.426878i −0.976956 0.213439i \(-0.931533\pi\)
0.976956 0.213439i \(-0.0684665\pi\)
\(98\) −7.79789 6.09860i −0.787706 0.616051i
\(99\) −5.54165 −0.556957
\(100\) −1.96324 + 0.381712i −0.196324 + 0.0381712i
\(101\) 15.0071 1.49326 0.746629 0.665240i \(-0.231671\pi\)
0.746629 + 0.665240i \(0.231671\pi\)
\(102\) 0.745885 + 7.74436i 0.0738536 + 0.766806i
\(103\) 1.31225 0.129300 0.0646501 0.997908i \(-0.479407\pi\)
0.0646501 + 0.997908i \(0.479407\pi\)
\(104\) 1.34920 + 4.55362i 0.132300 + 0.446519i
\(105\) 1.04376 + 2.43116i 0.101861 + 0.237257i
\(106\) −1.78310 + 0.171736i −0.173190 + 0.0166805i
\(107\) −16.7713 −1.62134 −0.810672 0.585501i \(-0.800898\pi\)
−0.810672 + 0.585501i \(0.800898\pi\)
\(108\) −0.381712 1.96324i −0.0367303 0.188912i
\(109\) 2.48432i 0.237955i 0.992897 + 0.118978i \(0.0379616\pi\)
−0.992897 + 0.118978i \(0.962038\pi\)
\(110\) 0.751337 + 7.80098i 0.0716372 + 0.743794i
\(111\) 11.2477 1.06759
\(112\) 7.45182 7.51468i 0.704131 0.710070i
\(113\) −10.7975 −1.01575 −0.507873 0.861432i \(-0.669568\pi\)
−0.507873 + 0.861432i \(0.669568\pi\)
\(114\) 0.235201 + 2.44204i 0.0220286 + 0.228718i
\(115\) 3.54807i 0.330859i
\(116\) 3.22967 + 16.6110i 0.299867 + 1.54229i
\(117\) −1.67913 −0.155236
\(118\) −18.3265 + 1.76509i −1.68709 + 0.162490i
\(119\) −5.74219 13.3749i −0.526386 1.22607i
\(120\) −2.71189 + 0.803512i −0.247561 + 0.0733503i
\(121\) 19.7099 1.79181
\(122\) −0.338576 3.51536i −0.0306532 0.318266i
\(123\) 0.0892775 0.00804988
\(124\) 14.3546 2.79097i 1.28908 0.250637i
\(125\) −1.00000 −0.0894427
\(126\) 1.79892 + 3.28083i 0.160261 + 0.292280i
\(127\) 0.926602i 0.0822226i 0.999155 + 0.0411113i \(0.0130898\pi\)
−0.999155 + 0.0411113i \(0.986910\pi\)
\(128\) 7.04444 + 8.85302i 0.622646 + 0.782504i
\(129\) 8.68405i 0.764588i
\(130\) 0.227657 + 2.36371i 0.0199668 + 0.207311i
\(131\) 12.4963i 1.09181i 0.837847 + 0.545905i \(0.183814\pi\)
−0.837847 + 0.545905i \(0.816186\pi\)
\(132\) 2.11531 + 10.8796i 0.184115 + 0.946944i
\(133\) −1.81070 4.21753i −0.157007 0.365706i
\(134\) −0.984790 10.2249i −0.0850729 0.883293i
\(135\) 1.00000i 0.0860663i
\(136\) 14.9193 4.42047i 1.27932 0.379052i
\(137\) 3.53259 0.301810 0.150905 0.988548i \(-0.451781\pi\)
0.150905 + 0.988548i \(0.451781\pi\)
\(138\) −0.481048 4.99461i −0.0409495 0.425170i
\(139\) 12.1022i 1.02650i 0.858240 + 0.513249i \(0.171558\pi\)
−0.858240 + 0.513249i \(0.828442\pi\)
\(140\) 4.37453 2.97716i 0.369715 0.251616i
\(141\) 12.7949i 1.07753i
\(142\) −9.50233 + 0.915201i −0.797418 + 0.0768019i
\(143\) 9.30514 0.778135
\(144\) −3.70859 + 1.49878i −0.309049 + 0.124899i
\(145\) 8.46101i 0.702649i
\(146\) 10.3428 0.996150i 0.855977 0.0824419i
\(147\) −5.07512 4.82112i −0.418589 0.397639i
\(148\) −4.29340 22.0820i −0.352916 1.81513i
\(149\) 11.1107i 0.910221i −0.890435 0.455110i \(-0.849600\pi\)
0.890435 0.455110i \(-0.150400\pi\)
\(150\) −1.40770 + 0.135580i −0.114938 + 0.0110701i
\(151\) 3.03195i 0.246737i 0.992361 + 0.123368i \(0.0393696\pi\)
−0.992361 + 0.123368i \(0.960630\pi\)
\(152\) 4.70453 1.39391i 0.381588 0.113061i
\(153\) 5.50143i 0.444764i
\(154\) −9.96900 18.1812i −0.803325 1.46509i
\(155\) 7.31172 0.587292
\(156\) 0.640944 + 3.29653i 0.0513166 + 0.263933i
\(157\) 5.57251 0.444735 0.222367 0.974963i \(-0.428622\pi\)
0.222367 + 0.974963i \(0.428622\pi\)
\(158\) −1.61886 + 0.155918i −0.128790 + 0.0124041i
\(159\) −1.26667 −0.100454
\(160\) 2.61265 + 5.01738i 0.206548 + 0.396659i
\(161\) 3.70334 + 8.62593i 0.291864 + 0.679819i
\(162\) −0.135580 1.40770i −0.0106522 0.110599i
\(163\) −20.9634 −1.64198 −0.820989 0.570944i \(-0.806577\pi\)
−0.820989 + 0.570944i \(0.806577\pi\)
\(164\) −0.0340783 0.175273i −0.00266107 0.0136865i
\(165\) 5.54165i 0.431417i
\(166\) −12.8687 + 1.23943i −0.998808 + 0.0961985i
\(167\) 5.73739 0.443973 0.221986 0.975050i \(-0.428746\pi\)
0.221986 + 0.975050i \(0.428746\pi\)
\(168\) 5.75438 4.78404i 0.443960 0.369097i
\(169\) −10.1805 −0.783117
\(170\) 7.74436 0.745885i 0.593966 0.0572068i
\(171\) 1.73478i 0.132662i
\(172\) −17.0488 + 3.31481i −1.29996 + 0.252752i
\(173\) 17.1231 1.30185 0.650923 0.759144i \(-0.274382\pi\)
0.650923 + 0.759144i \(0.274382\pi\)
\(174\) 1.14714 + 11.9106i 0.0869648 + 0.902937i
\(175\) 2.43116 1.04376i 0.183779 0.0789011i
\(176\) 20.5517 8.30572i 1.54914 0.626068i
\(177\) −13.0188 −0.978552
\(178\) 5.86468 0.564846i 0.439576 0.0423370i
\(179\) 14.4927 1.08324 0.541618 0.840625i \(-0.317812\pi\)
0.541618 + 0.840625i \(0.317812\pi\)
\(180\) −1.96324 + 0.381712i −0.146331 + 0.0284512i
\(181\) 1.28496 0.0955104 0.0477552 0.998859i \(-0.484793\pi\)
0.0477552 + 0.998859i \(0.484793\pi\)
\(182\) −3.02062 5.50895i −0.223904 0.408350i
\(183\) 2.49724i 0.184601i
\(184\) −9.62198 + 2.85092i −0.709342 + 0.210172i
\(185\) 11.2477i 0.826951i
\(186\) 10.2927 0.991324i 0.754698 0.0726874i
\(187\) 30.4870i 2.22943i
\(188\) 25.1194 4.88397i 1.83202 0.356200i
\(189\) 1.04376 + 2.43116i 0.0759226 + 0.176841i
\(190\) 2.44204 0.235201i 0.177164 0.0170633i
\(191\) 9.06371i 0.655827i 0.944708 + 0.327914i \(0.106345\pi\)
−0.944708 + 0.327914i \(0.893655\pi\)
\(192\) 4.35808 + 6.70874i 0.314517 + 0.484161i
\(193\) 17.5065 1.26014 0.630072 0.776536i \(-0.283025\pi\)
0.630072 + 0.776536i \(0.283025\pi\)
\(194\) −5.91834 + 0.570015i −0.424912 + 0.0409247i
\(195\) 1.67913i 0.120245i
\(196\) −7.52775 + 11.8039i −0.537697 + 0.843138i
\(197\) 13.1628i 0.937808i 0.883249 + 0.468904i \(0.155351\pi\)
−0.883249 + 0.468904i \(0.844649\pi\)
\(198\) 0.751337 + 7.80098i 0.0533952 + 0.554391i
\(199\) 0.276416 0.0195946 0.00979732 0.999952i \(-0.496881\pi\)
0.00979732 + 0.999952i \(0.496881\pi\)
\(200\) 0.803512 + 2.71189i 0.0568169 + 0.191760i
\(201\) 7.26352i 0.512329i
\(202\) −2.03466 21.1254i −0.143158 1.48638i
\(203\) −8.83129 20.5701i −0.619835 1.44374i
\(204\) 10.8006 2.09996i 0.756194 0.147027i
\(205\) 0.0892775i 0.00623541i
\(206\) −0.177916 1.84726i −0.0123960 0.128705i
\(207\) 3.54807i 0.246608i
\(208\) 6.22721 2.51665i 0.431779 0.174498i
\(209\) 9.61352i 0.664981i
\(210\) 3.28083 1.79892i 0.226399 0.124137i
\(211\) 12.0851 0.831973 0.415986 0.909371i \(-0.363436\pi\)
0.415986 + 0.909371i \(0.363436\pi\)
\(212\) 0.483505 + 2.48678i 0.0332072 + 0.170793i
\(213\) −6.75026 −0.462520
\(214\) 2.27386 + 23.6090i 0.155438 + 1.61388i
\(215\) −8.68405 −0.592247
\(216\) −2.71189 + 0.803512i −0.184521 + 0.0546721i
\(217\) −17.7760 + 7.63171i −1.20671 + 0.518074i
\(218\) 3.49718 0.336825i 0.236859 0.0228127i
\(219\) 7.34731 0.496485
\(220\) 10.8796 2.11531i 0.733500 0.142614i
\(221\) 9.23762i 0.621389i
\(222\) −1.52497 15.8334i −0.102349 1.06267i
\(223\) −17.8291 −1.19393 −0.596963 0.802268i \(-0.703626\pi\)
−0.596963 + 0.802268i \(0.703626\pi\)
\(224\) −11.5887 9.47108i −0.774304 0.632813i
\(225\) −1.00000 −0.0666667
\(226\) 1.46393 + 15.1997i 0.0973793 + 1.01107i
\(227\) 27.5789i 1.83048i 0.402911 + 0.915239i \(0.367999\pi\)
−0.402911 + 0.915239i \(0.632001\pi\)
\(228\) 3.40578 0.662185i 0.225553 0.0438543i
\(229\) 3.43380 0.226912 0.113456 0.993543i \(-0.463808\pi\)
0.113456 + 0.993543i \(0.463808\pi\)
\(230\) −4.99461 + 0.481048i −0.329335 + 0.0317193i
\(231\) −5.78417 13.4727i −0.380570 0.886436i
\(232\) 22.9454 6.79852i 1.50644 0.446345i
\(233\) 8.12381 0.532209 0.266104 0.963944i \(-0.414263\pi\)
0.266104 + 0.963944i \(0.414263\pi\)
\(234\) 0.227657 + 2.36371i 0.0148824 + 0.154521i
\(235\) 12.7949 0.834648
\(236\) 4.96943 + 25.5589i 0.323482 + 1.66375i
\(237\) −1.15000 −0.0747008
\(238\) −18.0493 + 9.89665i −1.16996 + 0.641505i
\(239\) 23.7708i 1.53761i 0.639484 + 0.768804i \(0.279148\pi\)
−0.639484 + 0.768804i \(0.720852\pi\)
\(240\) 1.49878 + 3.70859i 0.0967460 + 0.239389i
\(241\) 13.8075i 0.889417i −0.895675 0.444708i \(-0.853307\pi\)
0.895675 0.444708i \(-0.146693\pi\)
\(242\) −2.67227 27.7456i −0.171780 1.78355i
\(243\) 1.00000i 0.0641500i
\(244\) −4.90267 + 0.953227i −0.313861 + 0.0610241i
\(245\) −4.82112 + 5.07512i −0.308010 + 0.324238i
\(246\) −0.0121043 0.125676i −0.000771739 0.00801280i
\(247\) 2.91291i 0.185344i
\(248\) −5.87506 19.8286i −0.373066 1.25912i
\(249\) −9.14169 −0.579331
\(250\) 0.135580 + 1.40770i 0.00857484 + 0.0890307i
\(251\) 2.78833i 0.175998i 0.996121 + 0.0879990i \(0.0280472\pi\)
−0.996121 + 0.0879990i \(0.971953\pi\)
\(252\) 4.37453 2.97716i 0.275570 0.187543i
\(253\) 19.6621i 1.23615i
\(254\) 1.30438 0.125629i 0.0818439 0.00788265i
\(255\) 5.50143 0.344513
\(256\) 11.5073 11.1167i 0.719206 0.694796i
\(257\) 3.21699i 0.200670i 0.994954 + 0.100335i \(0.0319915\pi\)
−0.994954 + 0.100335i \(0.968009\pi\)
\(258\) −12.2245 + 1.17738i −0.761066 + 0.0733007i
\(259\) 11.7400 + 27.3451i 0.729487 + 1.69914i
\(260\) 3.29653 0.640944i 0.204442 0.0397497i
\(261\) 8.46101i 0.523723i
\(262\) 17.5911 1.69426i 1.08678 0.104671i
\(263\) 3.61223i 0.222740i −0.993779 0.111370i \(-0.964476\pi\)
0.993779 0.111370i \(-0.0355238\pi\)
\(264\) 15.0284 4.45278i 0.924932 0.274050i
\(265\) 1.26667i 0.0778111i
\(266\) −5.69151 + 3.12073i −0.348969 + 0.191344i
\(267\) 4.16614 0.254964
\(268\) −14.2600 + 2.77258i −0.871069 + 0.169362i
\(269\) 8.64776 0.527263 0.263632 0.964623i \(-0.415080\pi\)
0.263632 + 0.964623i \(0.415080\pi\)
\(270\) −1.40770 + 0.135580i −0.0856699 + 0.00825115i
\(271\) −3.09276 −0.187872 −0.0939358 0.995578i \(-0.529945\pi\)
−0.0939358 + 0.995578i \(0.529945\pi\)
\(272\) −8.24545 20.4026i −0.499954 1.23709i
\(273\) −1.75261 4.08224i −0.106073 0.247068i
\(274\) −0.478950 4.97283i −0.0289344 0.300420i
\(275\) 5.54165 0.334174
\(276\) −6.96569 + 1.35434i −0.419286 + 0.0815217i
\(277\) 21.5406i 1.29425i 0.762384 + 0.647125i \(0.224029\pi\)
−0.762384 + 0.647125i \(0.775971\pi\)
\(278\) 17.0363 1.64082i 1.02177 0.0984100i
\(279\) 7.31172 0.437741
\(280\) −4.78404 5.75438i −0.285901 0.343890i
\(281\) 17.0871 1.01933 0.509664 0.860373i \(-0.329770\pi\)
0.509664 + 0.860373i \(0.329770\pi\)
\(282\) 18.0114 1.73474i 1.07256 0.103302i
\(283\) 25.9118i 1.54030i 0.637865 + 0.770148i \(0.279818\pi\)
−0.637865 + 0.770148i \(0.720182\pi\)
\(284\) 2.57666 + 13.2523i 0.152896 + 0.786382i
\(285\) 1.73478 0.102759
\(286\) −1.26159 13.0988i −0.0745996 0.774551i
\(287\) 0.0931846 + 0.217048i 0.00550051 + 0.0128120i
\(288\) 2.61265 + 5.01738i 0.153952 + 0.295652i
\(289\) −13.2658 −0.780339
\(290\) 11.9106 1.14714i 0.699412 0.0673627i
\(291\) −4.20427 −0.246458
\(292\) −2.80456 14.4245i −0.164124 0.844130i
\(293\) 27.3161 1.59583 0.797913 0.602773i \(-0.205937\pi\)
0.797913 + 0.602773i \(0.205937\pi\)
\(294\) −6.09860 + 7.79789i −0.355677 + 0.454782i
\(295\) 13.0188i 0.757983i
\(296\) −30.5027 + 9.03770i −1.77293 + 0.525306i
\(297\) 5.54165i 0.321559i
\(298\) −15.6405 + 1.50638i −0.906028 + 0.0872625i
\(299\) 5.95767i 0.344541i
\(300\) 0.381712 + 1.96324i 0.0220382 + 0.113347i
\(301\) 21.1123 9.06409i 1.21690 0.522445i
\(302\) 4.26807 0.411072i 0.245600 0.0236545i
\(303\) 15.0071i 0.862133i
\(304\) −2.60005 6.43358i −0.149123 0.368991i
\(305\) −2.49724 −0.142991
\(306\) 7.74436 0.745885i 0.442716 0.0426394i
\(307\) 2.39283i 0.136566i 0.997666 + 0.0682831i \(0.0217521\pi\)
−0.997666 + 0.0682831i \(0.978248\pi\)
\(308\) −24.2421 + 16.4984i −1.38132 + 0.940082i
\(309\) 1.31225i 0.0746515i
\(310\) −0.991324 10.2927i −0.0563034 0.584586i
\(311\) −24.3201 −1.37907 −0.689533 0.724255i \(-0.742184\pi\)
−0.689533 + 0.724255i \(0.742184\pi\)
\(312\) 4.55362 1.34920i 0.257798 0.0763834i
\(313\) 30.3185i 1.71370i 0.515562 + 0.856852i \(0.327583\pi\)
−0.515562 + 0.856852i \(0.672417\pi\)
\(314\) −0.755522 7.84442i −0.0426366 0.442686i
\(315\) 2.43116 1.04376i 0.136981 0.0588094i
\(316\) 0.438970 + 2.25773i 0.0246940 + 0.127007i
\(317\) 7.93499i 0.445673i 0.974856 + 0.222837i \(0.0715317\pi\)
−0.974856 + 0.222837i \(0.928468\pi\)
\(318\) 0.171736 + 1.78310i 0.00963047 + 0.0999910i
\(319\) 46.8879i 2.62522i
\(320\) 6.70874 4.35808i 0.375030 0.243624i
\(321\) 16.7713i 0.936083i
\(322\) 11.6406 6.38270i 0.648707 0.355694i
\(323\) −9.54375 −0.531029
\(324\) −1.96324 + 0.381712i −0.109069 + 0.0212062i
\(325\) 1.67913 0.0931413
\(326\) 2.84222 + 29.5101i 0.157416 + 1.63441i
\(327\) 2.48432 0.137383
\(328\) −0.242111 + 0.0717355i −0.0133683 + 0.00396093i
\(329\) −31.1065 + 13.3549i −1.71496 + 0.736277i
\(330\) 7.80098 0.751337i 0.429430 0.0413598i
\(331\) −14.2122 −0.781172 −0.390586 0.920566i \(-0.627728\pi\)
−0.390586 + 0.920566i \(0.627728\pi\)
\(332\) 3.48949 + 17.9473i 0.191511 + 0.984985i
\(333\) 11.2477i 0.616373i
\(334\) −0.777876 8.07652i −0.0425635 0.441928i
\(335\) −7.26352 −0.396849
\(336\) −7.51468 7.45182i −0.409959 0.406530i
\(337\) 2.94854 0.160617 0.0803085 0.996770i \(-0.474409\pi\)
0.0803085 + 0.996770i \(0.474409\pi\)
\(338\) 1.38028 + 14.3311i 0.0750772 + 0.779510i
\(339\) 10.7975i 0.586442i
\(340\) −2.09996 10.8006i −0.113887 0.585745i
\(341\) −40.5190 −2.19423
\(342\) 2.44204 0.235201i 0.132051 0.0127182i
\(343\) 6.42370 17.3706i 0.346847 0.937922i
\(344\) 6.97774 + 23.5502i 0.376214 + 1.26974i
\(345\) −3.54807 −0.191022
\(346\) −2.32155 24.1042i −0.124808 1.29585i
\(347\) −30.9749 −1.66282 −0.831410 0.555659i \(-0.812466\pi\)
−0.831410 + 0.555659i \(0.812466\pi\)
\(348\) 16.6110 3.22967i 0.890441 0.173129i
\(349\) −4.43452 −0.237374 −0.118687 0.992932i \(-0.537869\pi\)
−0.118687 + 0.992932i \(0.537869\pi\)
\(350\) −1.79892 3.28083i −0.0961565 0.175368i
\(351\) 1.67913i 0.0896253i
\(352\) −14.4784 27.8045i −0.771700 1.48199i
\(353\) 25.5750i 1.36122i 0.732647 + 0.680609i \(0.238285\pi\)
−0.732647 + 0.680609i \(0.761715\pi\)
\(354\) 1.76509 + 18.3265i 0.0938134 + 0.974044i
\(355\) 6.75026i 0.358266i
\(356\) −1.59027 8.17912i −0.0842840 0.433493i
\(357\) −13.3749 + 5.74219i −0.707874 + 0.303909i
\(358\) −1.96492 20.4014i −0.103849 1.07825i
\(359\) 15.8598i 0.837049i −0.908206 0.418525i \(-0.862547\pi\)
0.908206 0.418525i \(-0.137453\pi\)
\(360\) 0.803512 + 2.71189i 0.0423488 + 0.142929i
\(361\) 15.9906 0.841608
\(362\) −0.174215 1.80884i −0.00915655 0.0950705i
\(363\) 19.7099i 1.03450i
\(364\) −7.34540 + 4.99904i −0.385004 + 0.262021i
\(365\) 7.34731i 0.384576i
\(366\) −3.51536 + 0.338576i −0.183751 + 0.0176977i
\(367\) −20.7390 −1.08257 −0.541284 0.840840i \(-0.682062\pi\)
−0.541284 + 0.840840i \(0.682062\pi\)
\(368\) 5.31778 + 13.1583i 0.277209 + 0.685926i
\(369\) 0.0892775i 0.00464760i
\(370\) −15.8334 + 1.52497i −0.823142 + 0.0792795i
\(371\) −1.32211 3.07949i −0.0686404 0.159879i
\(372\) −2.79097 14.3546i −0.144705 0.744253i
\(373\) 14.5992i 0.755920i −0.925822 0.377960i \(-0.876626\pi\)
0.925822 0.377960i \(-0.123374\pi\)
\(374\) −42.9165 + 4.13343i −2.21916 + 0.213735i
\(375\) 1.00000i 0.0516398i
\(376\) −10.2809 34.6984i −0.530195 1.78943i
\(377\) 14.2071i 0.731704i
\(378\) 3.28083 1.79892i 0.168748 0.0925266i
\(379\) 35.0992 1.80292 0.901462 0.432859i \(-0.142495\pi\)
0.901462 + 0.432859i \(0.142495\pi\)
\(380\) −0.662185 3.40578i −0.0339694 0.174713i
\(381\) 0.926602 0.0474713
\(382\) 12.7590 1.22886i 0.652806 0.0628739i
\(383\) 2.93845 0.150148 0.0750739 0.997178i \(-0.476081\pi\)
0.0750739 + 0.997178i \(0.476081\pi\)
\(384\) 8.85302 7.04444i 0.451779 0.359485i
\(385\) −13.4727 + 5.78417i −0.686630 + 0.294789i
\(386\) −2.37353 24.6439i −0.120810 1.25434i
\(387\) −8.68405 −0.441435
\(388\) 1.60482 + 8.25396i 0.0814724 + 0.419032i
\(389\) 29.8030i 1.51107i −0.655106 0.755537i \(-0.727376\pi\)
0.655106 0.755537i \(-0.272624\pi\)
\(390\) 2.36371 0.227657i 0.119691 0.0115278i
\(391\) 19.5195 0.987141
\(392\) 17.6370 + 8.99644i 0.890804 + 0.454389i
\(393\) 12.4963 0.630357
\(394\) 18.5292 1.78461i 0.933488 0.0899073i
\(395\) 1.15000i 0.0578630i
\(396\) 10.8796 2.11531i 0.546719 0.106299i
\(397\) −20.3840 −1.02304 −0.511521 0.859271i \(-0.670918\pi\)
−0.511521 + 0.859271i \(0.670918\pi\)
\(398\) −0.0374766 0.389111i −0.00187853 0.0195044i
\(399\) −4.21753 + 1.81070i −0.211140 + 0.0906482i
\(400\) 3.70859 1.49878i 0.185430 0.0749391i
\(401\) −4.24845 −0.212157 −0.106079 0.994358i \(-0.533830\pi\)
−0.106079 + 0.994358i \(0.533830\pi\)
\(402\) −10.2249 + 0.984790i −0.509970 + 0.0491168i
\(403\) −12.2773 −0.611577
\(404\) −29.4624 + 5.72838i −1.46581 + 0.284998i
\(405\) −1.00000 −0.0496904
\(406\) −27.7592 + 15.2207i −1.37766 + 0.755391i
\(407\) 62.3311i 3.08964i
\(408\) −4.42047 14.9193i −0.218846 0.738615i
\(409\) 16.3835i 0.810113i −0.914292 0.405057i \(-0.867252\pi\)
0.914292 0.405057i \(-0.132748\pi\)
\(410\) −0.125676 + 0.0121043i −0.00620669 + 0.000597787i
\(411\) 3.53259i 0.174250i
\(412\) −2.57626 + 0.500903i −0.126923 + 0.0246777i
\(413\) −13.5885 31.6508i −0.668648 1.55743i
\(414\) −4.99461 + 0.481048i −0.245472 + 0.0236422i
\(415\) 9.14169i 0.448748i
\(416\) −4.38697 8.42483i −0.215089 0.413061i
\(417\) 12.1022 0.592649
\(418\) −13.5329 + 1.30340i −0.661918 + 0.0637515i
\(419\) 19.2720i 0.941497i 0.882268 + 0.470748i \(0.156016\pi\)
−0.882268 + 0.470748i \(0.843984\pi\)
\(420\) −2.97716 4.37453i −0.145270 0.213455i
\(421\) 14.8800i 0.725206i 0.931944 + 0.362603i \(0.118112\pi\)
−0.931944 + 0.362603i \(0.881888\pi\)
\(422\) −1.63850 17.0122i −0.0797609 0.828141i
\(423\) 12.7949 0.622110
\(424\) 3.43508 1.01779i 0.166822 0.0494281i
\(425\) 5.50143i 0.266859i
\(426\) 0.915201 + 9.50233i 0.0443416 + 0.460389i
\(427\) 6.07120 2.60653i 0.293806 0.126139i
\(428\) 32.9260 6.40181i 1.59154 0.309443i
\(429\) 9.30514i 0.449257i
\(430\) 1.17738 + 12.2245i 0.0567785 + 0.589519i
\(431\) 0.281619i 0.0135651i 0.999977 + 0.00678255i \(0.00215897\pi\)
−0.999977 + 0.00678255i \(0.997841\pi\)
\(432\) 1.49878 + 3.70859i 0.0721102 + 0.178430i
\(433\) 4.06965i 0.195575i 0.995207 + 0.0977874i \(0.0311765\pi\)
−0.995207 + 0.0977874i \(0.968823\pi\)
\(434\) 13.1532 + 23.9885i 0.631375 + 1.15149i
\(435\) 8.46101 0.405674
\(436\) −0.948297 4.87731i −0.0454152 0.233581i
\(437\) 6.15510 0.294439
\(438\) −0.996150 10.3428i −0.0475979 0.494198i
\(439\) 18.3292 0.874804 0.437402 0.899266i \(-0.355899\pi\)
0.437402 + 0.899266i \(0.355899\pi\)
\(440\) −4.45278 15.0284i −0.212278 0.716449i
\(441\) −4.82112 + 5.07512i −0.229577 + 0.241672i
\(442\) −13.0038 + 1.25244i −0.618527 + 0.0595724i
\(443\) −16.2913 −0.774023 −0.387012 0.922075i \(-0.626493\pi\)
−0.387012 + 0.922075i \(0.626493\pi\)
\(444\) −22.0820 + 4.29340i −1.04796 + 0.203756i
\(445\) 4.16614i 0.197494i
\(446\) 2.41728 + 25.0981i 0.114461 + 1.18843i
\(447\) −11.1107 −0.525516
\(448\) −11.7612 + 17.5975i −0.555666 + 0.831405i
\(449\) −36.2809 −1.71220 −0.856101 0.516809i \(-0.827120\pi\)
−0.856101 + 0.516809i \(0.827120\pi\)
\(450\) 0.135580 + 1.40770i 0.00639131 + 0.0663596i
\(451\) 0.494744i 0.0232966i
\(452\) 21.1981 4.12155i 0.997075 0.193861i
\(453\) 3.03195 0.142453
\(454\) 38.8229 3.73916i 1.82205 0.175487i
\(455\) −4.08224 + 1.75261i −0.191378 + 0.0821638i
\(456\) −1.39391 4.70453i −0.0652760 0.220310i
\(457\) 21.7531 1.01757 0.508783 0.860895i \(-0.330096\pi\)
0.508783 + 0.860895i \(0.330096\pi\)
\(458\) −0.465555 4.83375i −0.0217539 0.225867i
\(459\) 5.50143 0.256785
\(460\) 1.35434 + 6.96569i 0.0631465 + 0.324777i
\(461\) −17.9992 −0.838305 −0.419153 0.907916i \(-0.637673\pi\)
−0.419153 + 0.907916i \(0.637673\pi\)
\(462\) −18.1812 + 9.96900i −0.845867 + 0.463800i
\(463\) 22.6300i 1.05170i −0.850576 0.525852i \(-0.823746\pi\)
0.850576 0.525852i \(-0.176254\pi\)
\(464\) −12.6812 31.3784i −0.588710 1.45671i
\(465\) 7.31172i 0.339073i
\(466\) −1.10143 11.4359i −0.0510227 0.529757i
\(467\) 11.6927i 0.541072i 0.962710 + 0.270536i \(0.0872009\pi\)
−0.962710 + 0.270536i \(0.912799\pi\)
\(468\) 3.29653 0.640944i 0.152382 0.0296277i
\(469\) 17.6588 7.58140i 0.815408 0.350077i
\(470\) −1.73474 18.0114i −0.0800174 0.830803i
\(471\) 5.57251i 0.256768i
\(472\) 35.3056 10.4607i 1.62507 0.481495i
\(473\) 48.1239 2.21274
\(474\) 0.155918 + 1.61886i 0.00716153 + 0.0743567i
\(475\) 1.73478i 0.0795970i
\(476\) 16.3786 + 24.0662i 0.750714 + 1.10307i
\(477\) 1.26667i 0.0579970i
\(478\) 33.4622 3.22286i 1.53053 0.147410i
\(479\) −26.6487 −1.21761 −0.608805 0.793320i \(-0.708351\pi\)
−0.608805 + 0.793320i \(0.708351\pi\)
\(480\) 5.01738 2.61265i 0.229011 0.119250i
\(481\) 18.8864i 0.861147i
\(482\) −19.4368 + 1.87202i −0.885320 + 0.0852681i
\(483\) 8.62593 3.70334i 0.392494 0.168508i
\(484\) −38.6951 + 7.52350i −1.75887 + 0.341977i
\(485\) 4.20427i 0.190906i
\(486\) −1.40770 + 0.135580i −0.0638545 + 0.00615004i
\(487\) 9.67576i 0.438450i 0.975674 + 0.219225i \(0.0703530\pi\)
−0.975674 + 0.219225i \(0.929647\pi\)
\(488\) 2.00656 + 6.77225i 0.0908328 + 0.306565i
\(489\) 20.9634i 0.947996i
\(490\) 7.79789 + 6.09860i 0.352273 + 0.275507i
\(491\) −21.3834 −0.965021 −0.482511 0.875890i \(-0.660275\pi\)
−0.482511 + 0.875890i \(0.660275\pi\)
\(492\) −0.175273 + 0.0340783i −0.00790191 + 0.00153637i
\(493\) −46.5477 −2.09640
\(494\) −4.10051 + 0.394933i −0.184491 + 0.0177689i
\(495\) 5.54165 0.249079
\(496\) −27.1162 + 10.9587i −1.21755 + 0.492059i
\(497\) −7.04567 16.4110i −0.316041 0.736133i
\(498\) 1.23943 + 12.8687i 0.0555402 + 0.576662i
\(499\) −12.1520 −0.543997 −0.271998 0.962298i \(-0.587685\pi\)
−0.271998 + 0.962298i \(0.587685\pi\)
\(500\) 1.96324 0.381712i 0.0877986 0.0170707i
\(501\) 5.73739i 0.256328i
\(502\) 3.92513 0.378042i 0.175187 0.0168729i
\(503\) −5.68562 −0.253509 −0.126755 0.991934i \(-0.540456\pi\)
−0.126755 + 0.991934i \(0.540456\pi\)
\(504\) −4.78404 5.75438i −0.213098 0.256321i
\(505\) −15.0071 −0.667806
\(506\) 27.6784 2.66580i 1.23045 0.118509i
\(507\) 10.1805i 0.452133i
\(508\) −0.353695 1.81914i −0.0156927 0.0807112i
\(509\) −2.01211 −0.0891852 −0.0445926 0.999005i \(-0.514199\pi\)
−0.0445926 + 0.999005i \(0.514199\pi\)
\(510\) −0.745885 7.74436i −0.0330283 0.342926i
\(511\) 7.66886 + 17.8625i 0.339250 + 0.790191i
\(512\) −17.2092 14.6916i −0.760546 0.649284i
\(513\) 1.73478 0.0765922
\(514\) 4.52855 0.436160i 0.199746 0.0192382i
\(515\) −1.31225 −0.0578248
\(516\) 3.31481 + 17.0488i 0.145926 + 0.750533i
\(517\) −70.9049 −3.11839
\(518\) 36.9020 20.2338i 1.62138 0.889023i
\(519\) 17.1231i 0.751621i
\(520\) −1.34920 4.55362i −0.0591664 0.199689i
\(521\) 4.06826i 0.178234i −0.996021 0.0891168i \(-0.971596\pi\)
0.996021 0.0891168i \(-0.0284045\pi\)
\(522\) 11.9106 1.14714i 0.521311 0.0502092i
\(523\) 23.4857i 1.02696i −0.858102 0.513479i \(-0.828356\pi\)
0.858102 0.513479i \(-0.171644\pi\)
\(524\) −4.77001 24.5333i −0.208379 1.07174i
\(525\) −1.04376 2.43116i −0.0455536 0.106105i
\(526\) −5.08494 + 0.489747i −0.221714 + 0.0213540i
\(527\) 40.2249i 1.75223i
\(528\) −8.30572 20.5517i −0.361460 0.894398i
\(529\) 10.4112 0.452661
\(530\) 1.78310 0.171736i 0.0774527 0.00745973i
\(531\) 13.0188i 0.564967i
\(532\) 5.16470 + 7.58883i 0.223918 + 0.329018i
\(533\) 0.149908i 0.00649326i
\(534\) −0.564846 5.86468i −0.0244433 0.253789i
\(535\) 16.7713 0.725087
\(536\) 5.83633 + 19.6979i 0.252091 + 0.850820i
\(537\) 14.4927i 0.625407i
\(538\) −1.17247 12.1735i −0.0505486 0.524835i
\(539\) 26.7169 28.1245i 1.15078 1.21141i
\(540\) 0.381712 + 1.96324i 0.0164263 + 0.0844842i
\(541\) 28.2718i 1.21550i 0.794129 + 0.607749i \(0.207928\pi\)
−0.794129 + 0.607749i \(0.792072\pi\)
\(542\) 0.419317 + 4.35367i 0.0180112 + 0.187006i
\(543\) 1.28496i 0.0551430i
\(544\) −27.6028 + 14.3733i −1.18346 + 0.616250i
\(545\) 2.48432i 0.106417i
\(546\) −5.50895 + 3.02062i −0.235761 + 0.129271i
\(547\) −29.7498 −1.27201 −0.636004 0.771685i \(-0.719414\pi\)
−0.636004 + 0.771685i \(0.719414\pi\)
\(548\) −6.93532 + 1.34843i −0.296262 + 0.0576023i
\(549\) −2.49724 −0.106580
\(550\) −0.751337 7.80098i −0.0320371 0.332635i
\(551\) −14.6780 −0.625302
\(552\) 2.85092 + 9.62198i 0.121343 + 0.409539i
\(553\) −1.20033 2.79585i −0.0510433 0.118892i
\(554\) 30.3227 2.92048i 1.28829 0.124079i
\(555\) −11.2477 −0.477440
\(556\) −4.61957 23.7595i −0.195914 1.00763i
\(557\) 16.5286i 0.700340i −0.936686 0.350170i \(-0.886124\pi\)
0.936686 0.350170i \(-0.113876\pi\)
\(558\) −0.991324 10.2927i −0.0419661 0.435725i
\(559\) 14.5816 0.616738
\(560\) −7.45182 + 7.51468i −0.314897 + 0.317553i
\(561\) −30.4870 −1.28716
\(562\) −2.31667 24.0535i −0.0977227 1.01463i
\(563\) 15.9112i 0.670578i −0.942115 0.335289i \(-0.891166\pi\)
0.942115 0.335289i \(-0.108834\pi\)
\(564\) −4.88397 25.1194i −0.205652 1.05772i
\(565\) 10.7975 0.454256
\(566\) 36.4760 3.51313i 1.53320 0.147668i
\(567\) 2.43116 1.04376i 0.102099 0.0438339i
\(568\) 18.3060 5.42391i 0.768102 0.227582i
\(569\) 13.2684 0.556239 0.278120 0.960546i \(-0.410289\pi\)
0.278120 + 0.960546i \(0.410289\pi\)
\(570\) −0.235201 2.44204i −0.00985149 0.102286i
\(571\) −8.34007 −0.349021 −0.174511 0.984655i \(-0.555834\pi\)
−0.174511 + 0.984655i \(0.555834\pi\)
\(572\) −18.2682 + 3.55189i −0.763832 + 0.148512i
\(573\) 9.06371 0.378642
\(574\) 0.292905 0.160603i 0.0122256 0.00670345i
\(575\) 3.54807i 0.147965i
\(576\) 6.70874 4.35808i 0.279531 0.181587i
\(577\) 23.6242i 0.983487i 0.870740 + 0.491743i \(0.163640\pi\)
−0.870740 + 0.491743i \(0.836360\pi\)
\(578\) 1.79857 + 18.6742i 0.0748108 + 0.776744i
\(579\) 17.5065i 0.727545i
\(580\) −3.22967 16.6110i −0.134105 0.689732i
\(581\) −9.54176 22.2249i −0.395859 0.922046i
\(582\) 0.570015 + 5.91834i 0.0236279 + 0.245323i
\(583\) 7.01946i 0.290716i
\(584\) −19.9251 + 5.90365i −0.824508 + 0.244295i
\(585\) 1.67913 0.0694235
\(586\) −3.70353 38.4529i −0.152991 1.58848i
\(587\) 6.67124i 0.275351i −0.990477 0.137676i \(-0.956037\pi\)
0.990477 0.137676i \(-0.0439632\pi\)
\(588\) 11.8039 + 7.52775i 0.486786 + 0.310439i
\(589\) 12.6842i 0.522643i
\(590\) 18.3265 1.76509i 0.754491 0.0726675i
\(591\) 13.1628 0.541444
\(592\) 16.8579 + 41.7133i 0.692857 + 1.71441i
\(593\) 25.3635i 1.04155i 0.853693 + 0.520776i \(0.174358\pi\)
−0.853693 + 0.520776i \(0.825642\pi\)
\(594\) 7.80098 0.751337i 0.320078 0.0308278i
\(595\) 5.74219 + 13.3749i 0.235407 + 0.548317i
\(596\) 4.24107 + 21.8128i 0.173721 + 0.893489i
\(597\) 0.276416i 0.0113130i
\(598\) 8.38660 0.807741i 0.342954 0.0330310i
\(599\) 32.0409i 1.30915i 0.755995 + 0.654577i \(0.227153\pi\)
−0.755995 + 0.654577i \(0.772847\pi\)
\(600\) 2.71189 0.803512i 0.110713 0.0328032i
\(601\) 27.2798i 1.11277i −0.830925 0.556384i \(-0.812188\pi\)
0.830925 0.556384i \(-0.187812\pi\)
\(602\) −15.6219 28.4909i −0.636702 1.16120i
\(603\) −7.26352 −0.295794
\(604\) −1.15733 5.95243i −0.0470912 0.242201i
\(605\) −19.7099 −0.801320
\(606\) −21.1254 + 2.03466i −0.858162 + 0.0826524i
\(607\) 29.6611 1.20391 0.601953 0.798532i \(-0.294390\pi\)
0.601953 + 0.798532i \(0.294390\pi\)
\(608\) −8.70403 + 4.53236i −0.352995 + 0.183811i
\(609\) −20.5701 + 8.83129i −0.833542 + 0.357862i
\(610\) 0.338576 + 3.51536i 0.0137085 + 0.142333i
\(611\) −21.4843 −0.869162
\(612\) −2.09996 10.8006i −0.0848860 0.436589i
\(613\) 17.5337i 0.708180i −0.935211 0.354090i \(-0.884791\pi\)
0.935211 0.354090i \(-0.115209\pi\)
\(614\) 3.36839 0.324421i 0.135937 0.0130925i
\(615\) −0.0892775 −0.00360002
\(616\) 26.5115 + 31.8888i 1.06818 + 1.28483i
\(617\) −19.9979 −0.805085 −0.402543 0.915401i \(-0.631873\pi\)
−0.402543 + 0.915401i \(0.631873\pi\)
\(618\) −1.84726 + 0.177916i −0.0743076 + 0.00715681i
\(619\) 10.3616i 0.416466i 0.978079 + 0.208233i \(0.0667713\pi\)
−0.978079 + 0.208233i \(0.933229\pi\)
\(620\) −14.3546 + 2.79097i −0.576496 + 0.112088i
\(621\) −3.54807 −0.142379
\(622\) 3.29732 + 34.2354i 0.132210 + 1.37271i
\(623\) 4.34847 + 10.1286i 0.174218 + 0.405793i
\(624\) −2.51665 6.22721i −0.100747 0.249288i
\(625\) 1.00000 0.0400000
\(626\) 42.6794 4.11059i 1.70581 0.164292i
\(627\) −9.61352 −0.383927
\(628\) −10.9402 + 2.12710i −0.436560 + 0.0848804i
\(629\) 61.8787 2.46727
\(630\) −1.79892 3.28083i −0.0716708 0.130712i
\(631\) 1.55276i 0.0618145i 0.999522 + 0.0309072i \(0.00983964\pi\)
−0.999522 + 0.0309072i \(0.990160\pi\)
\(632\) 3.11869 0.924042i 0.124055 0.0367564i
\(633\) 12.0851i 0.480340i
\(634\) 11.1701 1.07583i 0.443621 0.0427265i
\(635\) 0.926602i 0.0367711i
\(636\) 2.48678 0.483505i 0.0986072 0.0191722i
\(637\) 8.09528 8.52178i 0.320747 0.337645i
\(638\) −66.0041 + 6.35707i −2.61313 + 0.251679i
\(639\) 6.75026i 0.267036i
\(640\) −7.04444 8.85302i −0.278456 0.349946i
\(641\) −13.3311 −0.526546 −0.263273 0.964721i \(-0.584802\pi\)
−0.263273 + 0.964721i \(0.584802\pi\)
\(642\) 23.6090 2.27386i 0.931771 0.0897419i
\(643\) 20.6034i 0.812520i 0.913758 + 0.406260i \(0.133167\pi\)
−0.913758 + 0.406260i \(0.866833\pi\)
\(644\) −10.5632 15.5211i −0.416247 0.611618i
\(645\) 8.68405i 0.341934i
\(646\) 1.29394 + 13.4347i 0.0509095 + 0.528583i
\(647\) 35.8391 1.40898 0.704490 0.709714i \(-0.251176\pi\)
0.704490 + 0.709714i \(0.251176\pi\)
\(648\) 0.803512 + 2.71189i 0.0315649 + 0.106533i
\(649\) 72.1455i 2.83196i
\(650\) −0.227657 2.36371i −0.00892943 0.0927123i
\(651\) 7.63171 + 17.7760i 0.299110 + 0.696696i
\(652\) 41.1560 8.00197i 1.61179 0.313381i
\(653\) 2.28298i 0.0893398i 0.999002 + 0.0446699i \(0.0142236\pi\)
−0.999002 + 0.0446699i \(0.985776\pi\)
\(654\) −0.336825 3.49718i −0.0131709 0.136751i
\(655\) 12.4963i 0.488272i
\(656\) 0.133808 + 0.331094i 0.00522431 + 0.0129270i
\(657\) 7.34731i 0.286646i
\(658\) 23.0170 + 41.9780i 0.897298 + 1.63647i
\(659\) 18.0400 0.702737 0.351369 0.936237i \(-0.385716\pi\)
0.351369 + 0.936237i \(0.385716\pi\)
\(660\) −2.11531 10.8796i −0.0823385 0.423486i
\(661\) 29.8230 1.15998 0.579991 0.814623i \(-0.303056\pi\)
0.579991 + 0.814623i \(0.303056\pi\)
\(662\) 1.92689 + 20.0065i 0.0748907 + 0.777574i
\(663\) −9.23762 −0.358759
\(664\) 24.7913 7.34545i 0.962088 0.285059i
\(665\) 1.81070 + 4.21753i 0.0702158 + 0.163549i
\(666\) −15.8334 + 1.52497i −0.613534 + 0.0590914i
\(667\) 30.0202 1.16239
\(668\) −11.2639 + 2.19003i −0.435811 + 0.0847349i
\(669\) 17.8291i 0.689314i
\(670\) 0.984790 + 10.2249i 0.0380457 + 0.395021i
\(671\) 13.8388 0.534242
\(672\) −9.47108 + 11.5887i −0.365355 + 0.447045i
\(673\) 29.2670 1.12816 0.564080 0.825720i \(-0.309231\pi\)
0.564080 + 0.825720i \(0.309231\pi\)
\(674\) −0.399763 4.15065i −0.0153983 0.159877i
\(675\) 1.00000i 0.0384900i
\(676\) 19.9868 3.88603i 0.768722 0.149463i
\(677\) 25.9210 0.996226 0.498113 0.867112i \(-0.334026\pi\)
0.498113 + 0.867112i \(0.334026\pi\)
\(678\) 15.1997 1.46393i 0.583740 0.0562220i
\(679\) −4.38826 10.2213i −0.168406 0.392256i
\(680\) −14.9193 + 4.42047i −0.572129 + 0.169517i
\(681\) 27.5789 1.05683
\(682\) 5.49357 + 57.0386i 0.210360 + 2.18412i
\(683\) 22.5472 0.862745 0.431373 0.902174i \(-0.358029\pi\)
0.431373 + 0.902174i \(0.358029\pi\)
\(684\) −0.662185 3.40578i −0.0253193 0.130223i
\(685\) −3.53259 −0.134973
\(686\) −25.3234 6.68754i −0.966854 0.255331i
\(687\) 3.43380i 0.131008i
\(688\) 32.2056 13.0155i 1.22783 0.496211i
\(689\) 2.12691i 0.0810288i
\(690\) 0.481048 + 4.99461i 0.0183132 + 0.190142i
\(691\) 8.74160i 0.332546i 0.986080 + 0.166273i \(0.0531733\pi\)
−0.986080 + 0.166273i \(0.946827\pi\)
\(692\) −33.6167 + 6.53610i −1.27792 + 0.248465i
\(693\) −13.4727 + 5.78417i −0.511784 + 0.219722i
\(694\) 4.19958 + 43.6034i 0.159414 + 1.65516i
\(695\) 12.1022i 0.459064i
\(696\) −6.79852 22.9454i −0.257697 0.869742i
\(697\) 0.491154 0.0186038
\(698\) 0.601233 + 6.24247i 0.0227570 + 0.236281i
\(699\) 8.12381i 0.307271i
\(700\) −4.37453 + 2.97716i −0.165342 + 0.112526i
\(701\) 14.5041i 0.547811i 0.961757 + 0.273906i \(0.0883156\pi\)
−0.961757 + 0.273906i \(0.911684\pi\)
\(702\) 2.36371 0.227657i 0.0892125 0.00859235i
\(703\) 19.5123 0.735921
\(704\) −37.1775 + 24.1509i −1.40118 + 0.910223i
\(705\) 12.7949i 0.481884i
\(706\) 36.0019 3.46746i 1.35495 0.130500i
\(707\) 36.4846 15.6638i 1.37215 0.589099i
\(708\) 25.5589 4.96943i 0.960564 0.186763i
\(709\) 27.9863i 1.05105i −0.850779 0.525523i \(-0.823870\pi\)
0.850779 0.525523i \(-0.176130\pi\)
\(710\) 9.50233 0.915201i 0.356616 0.0343469i
\(711\) 1.15000i 0.0431285i
\(712\) −11.2981 + 3.34755i −0.423416 + 0.125455i
\(713\) 25.9425i 0.971554i
\(714\) 9.89665 + 18.0493i 0.370373 + 0.675478i
\(715\) −9.30514 −0.347993
\(716\) −28.4526 + 5.53205i −1.06332 + 0.206742i
\(717\) 23.7708 0.887739
\(718\) −22.3259 + 2.15028i −0.833193 + 0.0802476i
\(719\) 31.9104 1.19006 0.595029 0.803704i \(-0.297141\pi\)
0.595029 + 0.803704i \(0.297141\pi\)
\(720\) 3.70859 1.49878i 0.138211 0.0558563i
\(721\) 3.19030 1.36968i 0.118813 0.0510096i
\(722\) −2.16800 22.5099i −0.0806847 0.837731i
\(723\) −13.8075 −0.513505
\(724\) −2.52268 + 0.490485i −0.0937547 + 0.0182287i
\(725\) 8.46101i 0.314234i
\(726\) −27.7456 + 2.67227i −1.02973 + 0.0991771i
\(727\) −37.3223 −1.38421 −0.692104 0.721798i \(-0.743316\pi\)
−0.692104 + 0.721798i \(0.743316\pi\)
\(728\) 8.03303 + 9.66235i 0.297724 + 0.358111i
\(729\) −1.00000 −0.0370370
\(730\) −10.3428 + 0.996150i −0.382804 + 0.0368692i
\(731\) 47.7747i 1.76701i
\(732\) 0.953227 + 4.90267i 0.0352323 + 0.181208i
\(733\) 31.5170 1.16411 0.582053 0.813151i \(-0.302250\pi\)
0.582053 + 0.813151i \(0.302250\pi\)
\(734\) 2.81180 + 29.1943i 0.103785 + 1.07758i
\(735\) 5.07512 + 4.82112i 0.187199 + 0.177830i
\(736\) 17.8020 9.26985i 0.656190 0.341691i
\(737\) 40.2519 1.48270
\(738\) −0.125676 + 0.0121043i −0.00462619 + 0.000445564i
\(739\) 4.86962 0.179132 0.0895659 0.995981i \(-0.471452\pi\)
0.0895659 + 0.995981i \(0.471452\pi\)
\(740\) 4.29340 + 22.0820i 0.157829 + 0.811750i
\(741\) −2.91291 −0.107009
\(742\) −4.15575 + 2.27865i −0.152562 + 0.0836518i
\(743\) 24.0338i 0.881714i 0.897577 + 0.440857i \(0.145325\pi\)
−0.897577 + 0.440857i \(0.854675\pi\)
\(744\) −19.8286 + 5.87506i −0.726952 + 0.215390i
\(745\) 11.1107i 0.407063i
\(746\) −20.5513 + 1.97937i −0.752438 + 0.0724698i
\(747\) 9.14169i 0.334477i
\(748\) 11.6373 + 59.8532i 0.425500 + 2.18845i
\(749\) −40.7738 + 17.5053i −1.48984 + 0.639629i
\(750\) 1.40770 0.135580i 0.0514019 0.00495069i
\(751\) 1.33007i 0.0485348i −0.999706 0.0242674i \(-0.992275\pi\)
0.999706 0.0242674i \(-0.00772531\pi\)
\(752\) −47.4511 + 19.1768i −1.73036 + 0.699305i
\(753\) 2.78833 0.101612
\(754\) −19.9994 + 1.92620i −0.728334 + 0.0701482i
\(755\) 3.03195i 0.110344i
\(756\) −2.97716 4.37453i −0.108278 0.159100i
\(757\) 12.9373i 0.470213i 0.971970 + 0.235106i \(0.0755439\pi\)
−0.971970 + 0.235106i \(0.924456\pi\)
\(758\) −4.75875 49.4091i −0.172846 1.79462i
\(759\) 19.6621 0.713691
\(760\) −4.70453 + 1.39391i −0.170651 + 0.0505626i
\(761\) 35.0635i 1.27105i 0.772079 + 0.635526i \(0.219217\pi\)
−0.772079 + 0.635526i \(0.780783\pi\)
\(762\) −0.125629 1.30438i −0.00455105 0.0472526i
\(763\) 2.59305 + 6.03980i 0.0938746 + 0.218655i
\(764\) −3.45973 17.7942i −0.125169 0.643772i
\(765\) 5.50143i 0.198905i
\(766\) −0.398395 4.13645i −0.0143946 0.149456i
\(767\) 21.8602i 0.789327i
\(768\) −11.1167 11.5073i −0.401141 0.415234i
\(769\) 18.6210i 0.671491i 0.941953 + 0.335746i \(0.108988\pi\)
−0.941953 + 0.335746i \(0.891012\pi\)
\(770\) 9.96900 + 18.1812i 0.359258 + 0.655206i
\(771\) 3.21699 0.115857
\(772\) −34.3694 + 6.68244i −1.23698 + 0.240506i
\(773\) −26.4130 −0.950010 −0.475005 0.879983i \(-0.657554\pi\)
−0.475005 + 0.879983i \(0.657554\pi\)
\(774\) 1.17738 + 12.2245i 0.0423202 + 0.439402i
\(775\) −7.31172 −0.262645
\(776\) 11.4015 3.37818i 0.409291 0.121270i
\(777\) 27.3451 11.7400i 0.981001 0.421170i
\(778\) −41.9537 + 4.04070i −1.50411 + 0.144866i
\(779\) 0.154876 0.00554903
\(780\) −0.640944 3.29653i −0.0229495 0.118035i
\(781\) 37.4075i 1.33855i
\(782\) −2.64645 27.4775i −0.0946369 0.982594i
\(783\) 8.46101 0.302372
\(784\) 10.2730 26.0474i 0.366895 0.930263i
\(785\) −5.57251 −0.198892
\(786\) −1.69426 17.5911i −0.0604321 0.627453i
\(787\) 18.3513i 0.654153i −0.944998 0.327077i \(-0.893936\pi\)
0.944998 0.327077i \(-0.106064\pi\)
\(788\) −5.02439 25.8416i −0.178986 0.920569i
\(789\) −3.61223 −0.128599
\(790\) 1.61886 0.155918i 0.0575964 0.00554730i
\(791\) −26.2506 + 11.2701i −0.933363 + 0.400718i
\(792\) −4.45278 15.0284i −0.158223 0.534010i
\(793\) 4.19319 0.148904
\(794\) 2.76366 + 28.6945i 0.0980786 + 1.01833i
\(795\) 1.26667 0.0449243
\(796\) −0.542671 + 0.105512i −0.0192344 + 0.00373976i
\(797\) −16.6258 −0.588917 −0.294458 0.955664i \(-0.595139\pi\)
−0.294458 + 0.955664i \(0.595139\pi\)
\(798\) 3.12073 + 5.69151i 0.110473 + 0.201477i
\(799\) 70.3903i 2.49023i
\(800\) −2.61265 5.01738i −0.0923710 0.177391i
\(801\) 4.16614i 0.147203i
\(802\) 0.576006 + 5.98054i 0.0203395 + 0.211180i
\(803\) 40.7162i 1.43684i
\(804\) 2.77258 + 14.2600i 0.0977812 + 0.502912i
\(805\) −3.70334 8.62593i −0.130526 0.304024i
\(806\) 1.66456 + 17.2828i 0.0586317 + 0.608760i
\(807\) 8.64776i 0.304416i
\(808\) 12.0584 + 40.6976i 0.424211 + 1.43174i
\(809\) 6.95098 0.244383 0.122192 0.992507i \(-0.461008\pi\)
0.122192 + 0.992507i \(0.461008\pi\)
\(810\) 0.135580 + 1.40770i 0.00476380 + 0.0494615i
\(811\) 49.6027i 1.74179i −0.491471 0.870894i \(-0.663541\pi\)
0.491471 0.870894i \(-0.336459\pi\)
\(812\) 25.1898 + 37.0129i 0.883988 + 1.29890i
\(813\) 3.09276i 0.108468i
\(814\) 87.7434 8.45085i 3.07540 0.296202i
\(815\) 20.9634 0.734315
\(816\) −20.4026 + 8.24545i −0.714233 + 0.288648i
\(817\) 15.0649i 0.527053i
\(818\) −23.0631 + 2.22128i −0.806382 + 0.0776653i
\(819\) −4.08224 + 1.75261i −0.142645 + 0.0612413i
\(820\) 0.0340783 + 0.175273i 0.00119007 + 0.00612079i
\(821\) 46.2978i 1.61580i −0.589317 0.807902i \(-0.700603\pi\)
0.589317 0.807902i \(-0.299397\pi\)
\(822\) −4.97283 + 0.478950i −0.173447 + 0.0167053i
\(823\) 5.51492i 0.192238i 0.995370 + 0.0961191i \(0.0306430\pi\)
−0.995370 + 0.0961191i \(0.969357\pi\)
\(824\) 1.05441 + 3.55869i 0.0367322 + 0.123973i
\(825\) 5.54165i 0.192935i
\(826\) −42.7125 + 23.4198i −1.48616 + 0.814879i
\(827\) 56.0706 1.94976 0.974882 0.222720i \(-0.0714937\pi\)
0.974882 + 0.222720i \(0.0714937\pi\)
\(828\) 1.35434 + 6.96569i 0.0470666 + 0.242075i
\(829\) −44.7027 −1.55259 −0.776295 0.630370i \(-0.782903\pi\)
−0.776295 + 0.630370i \(0.782903\pi\)
\(830\) 12.8687 1.23943i 0.446681 0.0430213i
\(831\) 21.5406 0.747236
\(832\) −11.2648 + 7.31778i −0.390538 + 0.253698i
\(833\) −27.9204 26.5230i −0.967386 0.918969i
\(834\) −1.64082 17.0363i −0.0568171 0.589919i
\(835\) −5.73739 −0.198551
\(836\) 3.66960 + 18.8736i 0.126916 + 0.652757i
\(837\) 7.31172i 0.252730i
\(838\) 27.1291 2.61289i 0.937160 0.0902610i
\(839\) 44.8497 1.54838 0.774191 0.632952i \(-0.218157\pi\)
0.774191 + 0.632952i \(0.218157\pi\)
\(840\) −5.75438 + 4.78404i −0.198545 + 0.165065i
\(841\) −42.5887 −1.46857
\(842\) 20.9465 2.01743i 0.721865 0.0695252i
\(843\) 17.0871i 0.588510i
\(844\) −23.7259 + 4.61303i −0.816680 + 0.158787i
\(845\) 10.1805 0.350221
\(846\) −1.73474 18.0114i −0.0596414 0.619244i
\(847\) 47.9179 20.5724i 1.64648 0.706877i
\(848\) −1.89847 4.69757i −0.0651937 0.161315i
\(849\) 25.9118 0.889290
\(850\) −7.74436 + 0.745885i −0.265629 + 0.0255836i
\(851\) −39.9078 −1.36802
\(852\) 13.2523 2.57666i 0.454018 0.0882747i
\(853\) 0.0388026 0.00132858 0.000664288 1.00000i \(-0.499789\pi\)
0.000664288 1.00000i \(0.499789\pi\)
\(854\) −4.49234 8.19303i −0.153725 0.280360i
\(855\) 1.73478i 0.0593281i
\(856\) −13.4759 45.4820i −0.460598 1.55454i
\(857\) 57.0186i 1.94772i 0.227154 + 0.973859i \(0.427058\pi\)
−0.227154 + 0.973859i \(0.572942\pi\)
\(858\) −13.0988 + 1.26159i −0.447187 + 0.0430701i
\(859\) 9.67639i 0.330154i −0.986281 0.165077i \(-0.947213\pi\)
0.986281 0.165077i \(-0.0527873\pi\)
\(860\) 17.0488 3.31481i 0.581360 0.113034i
\(861\) 0.217048 0.0931846i 0.00739698 0.00317572i
\(862\) 0.396435 0.0381819i 0.0135026 0.00130048i
\(863\) 35.9183i 1.22267i 0.791371 + 0.611337i \(0.209368\pi\)
−0.791371 + 0.611337i \(0.790632\pi\)
\(864\) 5.01738 2.61265i 0.170695 0.0888840i
\(865\) −17.1231 −0.582203
\(866\) 5.72884 0.551763i 0.194674 0.0187497i
\(867\) 13.2658i 0.450529i
\(868\) 31.9854 21.7682i 1.08565 0.738859i
\(869\) 6.37291i 0.216186i
\(870\) −1.14714 11.9106i −0.0388919 0.403806i
\(871\) 12.1964 0.413259
\(872\) −6.73722 + 1.99618i −0.228151 + 0.0675993i
\(873\) 4.20427i 0.142293i
\(874\) −0.834510 8.66454i −0.0282277 0.293082i
\(875\) −2.43116 + 1.04376i −0.0821883 + 0.0352856i
\(876\) −14.4245 + 2.80456i −0.487359 + 0.0947573i
\(877\) 20.0801i 0.678057i −0.940776 0.339028i \(-0.889902\pi\)
0.940776 0.339028i \(-0.110098\pi\)
\(878\) −2.48507 25.8020i −0.0838671 0.870774i
\(879\) 27.3161i 0.921350i
\(880\) −20.5517 + 8.30572i −0.692798 + 0.279986i
\(881\) 37.0514i 1.24829i −0.781307 0.624147i \(-0.785447\pi\)
0.781307 0.624147i \(-0.214553\pi\)
\(882\) 7.79789 + 6.09860i 0.262569 + 0.205350i
\(883\) −13.3489 −0.449225 −0.224613 0.974448i \(-0.572112\pi\)
−0.224613 + 0.974448i \(0.572112\pi\)
\(884\) 3.52611 + 18.1356i 0.118596 + 0.609967i
\(885\) 13.0188 0.437622
\(886\) 2.20878 + 22.9333i 0.0742053 + 0.770458i
\(887\) −4.46449 −0.149903 −0.0749515 0.997187i \(-0.523880\pi\)
−0.0749515 + 0.997187i \(0.523880\pi\)
\(888\) 9.03770 + 30.5027i 0.303285 + 1.02360i
\(889\) 0.967153 + 2.25272i 0.0324373 + 0.0755539i
\(890\) −5.86468 + 0.564846i −0.196584 + 0.0189337i
\(891\) 5.54165 0.185652
\(892\) 35.0028 6.80560i 1.17198 0.227868i
\(893\) 22.1963i 0.742771i
\(894\) 1.50638 + 15.6405i 0.0503810 + 0.523096i
\(895\) −14.4927 −0.484438
\(896\) 26.3666 + 14.1704i 0.880847 + 0.473400i
\(897\) 5.95767 0.198921
\(898\) 4.91897 + 51.0726i 0.164148 + 1.70432i
\(899\) 61.8645i 2.06330i
\(900\) 1.96324 0.381712i 0.0654412 0.0127237i
\(901\) −6.96852 −0.232155
\(902\) 0.696452 0.0670775i 0.0231893 0.00223344i
\(903\) −9.06409 21.1123i −0.301634 0.702575i
\(904\) −8.67595 29.2818i −0.288558 0.973897i
\(905\) −1.28496 −0.0427135
\(906\) −0.411072 4.26807i −0.0136570 0.141797i
\(907\) 17.0639 0.566598 0.283299 0.959032i \(-0.408571\pi\)
0.283299 + 0.959032i \(0.408571\pi\)
\(908\) −10.5272 54.1440i −0.349358 1.79683i
\(909\) −15.0071 −0.497753
\(910\) 3.02062 + 5.50895i 0.100133 + 0.182620i
\(911\) 0.534170i 0.0176978i 0.999961 + 0.00884891i \(0.00281673\pi\)
−0.999961 + 0.00884891i \(0.997183\pi\)
\(912\) −6.43358 + 2.60005i −0.213037 + 0.0860963i
\(913\) 50.6600i 1.67660i
\(914\) −2.94928 30.6218i −0.0975536 1.01288i
\(915\) 2.49724i 0.0825562i
\(916\) −6.74135 + 1.31072i −0.222741 + 0.0433075i
\(917\) 13.0432 + 30.3806i 0.430725 + 1.00326i
\(918\) −0.745885 7.74436i −0.0246179 0.255602i
\(919\) 7.87145i 0.259655i −0.991537 0.129828i \(-0.958558\pi\)
0.991537 0.129828i \(-0.0414424\pi\)
\(920\) 9.62198 2.85092i 0.317227 0.0939919i
\(921\) 2.39283 0.0788465
\(922\) 2.44033 + 25.3374i 0.0803680 + 0.834444i
\(923\) 11.3346i 0.373081i
\(924\) 16.4984 + 24.2421i 0.542756 + 0.797507i
\(925\) 11.2477i 0.369824i
\(926\) −31.8562 + 3.06818i −1.04686 + 0.100827i
\(927\) −1.31225 −0.0431001
\(928\) −42.4521 + 22.1056i −1.39356 + 0.725653i
\(929\) 29.4442i 0.966034i −0.875611 0.483017i \(-0.839541\pi\)
0.875611 0.483017i \(-0.160459\pi\)
\(930\) −10.2927 + 0.991324i −0.337511 + 0.0325068i
\(931\) −8.80420 8.36356i −0.288546 0.274105i
\(932\) −15.9490 + 3.10096i −0.522426 + 0.101575i
\(933\) 24.3201i 0.796204i
\(934\) 16.4598 1.58529i 0.538580 0.0518724i
\(935\) 30.4870i 0.997032i
\(936\) −1.34920 4.55362i −0.0441000 0.148840i
\(937\) 47.0734i 1.53782i 0.639357 + 0.768910i \(0.279201\pi\)
−0.639357 + 0.768910i \(0.720799\pi\)
\(938\) −13.0665 23.8304i −0.426637 0.778091i
\(939\) 30.3185 0.989407
\(940\) −25.1194 + 4.88397i −0.819305 + 0.159298i
\(941\) −7.55709 −0.246354 −0.123177 0.992385i \(-0.539308\pi\)
−0.123177 + 0.992385i \(0.539308\pi\)
\(942\) −7.84442 + 0.755522i −0.255585 + 0.0246162i
\(943\) −0.316763 −0.0103152
\(944\) −19.5123 48.2813i −0.635072 1.57142i
\(945\) −1.04376 2.43116i −0.0339536 0.0790858i
\(946\) −6.52465 67.7440i −0.212135 2.20255i
\(947\) −35.7888 −1.16298 −0.581490 0.813554i \(-0.697530\pi\)
−0.581490 + 0.813554i \(0.697530\pi\)
\(948\) 2.25773 0.438970i 0.0733276 0.0142571i
\(949\) 12.3371i 0.400479i
\(950\) −2.44204 + 0.235201i −0.0792304 + 0.00763094i
\(951\) 7.93499 0.257310
\(952\) 31.6573 26.3191i 1.02602 0.853007i
\(953\) −0.983354 −0.0318540 −0.0159270 0.999873i \(-0.505070\pi\)
−0.0159270 + 0.999873i \(0.505070\pi\)
\(954\) 1.78310 0.171736i 0.0577299 0.00556015i
\(955\) 9.06371i 0.293295i
\(956\) −9.07362 46.6678i −0.293462 1.50934i
\(957\) −46.8879 −1.51567
\(958\) 3.61304 + 37.5134i 0.116732 + 1.21200i
\(959\) 8.58831 3.68719i 0.277331 0.119066i
\(960\) −4.35808 6.70874i −0.140656 0.216524i
\(961\) 22.4613 0.724557
\(962\) 26.5864 2.56062i 0.857180 0.0825578i
\(963\) 16.7713 0.540448
\(964\) 5.27048 + 27.1073i 0.169751 + 0.873067i
\(965\) −17.5065 −0.563554
\(966\) −6.38270 11.6406i −0.205360 0.374531i
\(967\) 18.3924i 0.591459i 0.955272 + 0.295730i \(0.0955627\pi\)
−0.955272 + 0.295730i \(0.904437\pi\)
\(968\) 15.8371 + 53.4511i 0.509024 + 1.71798i
\(969\) 9.54375i 0.306590i
\(970\) 5.91834 0.570015i 0.190027 0.0183021i
\(971\) 1.49104i 0.0478497i 0.999714 + 0.0239248i \(0.00761624\pi\)
−0.999714 + 0.0239248i \(0.992384\pi\)
\(972\) 0.381712 + 1.96324i 0.0122434 + 0.0629708i
\(973\) 12.6319 + 29.4225i 0.404959 + 0.943243i
\(974\) 13.6206 1.31184i 0.436431 0.0420341i
\(975\) 1.67913i 0.0537752i
\(976\) 9.26124 3.74282i 0.296445 0.119805i
\(977\) −24.8612 −0.795382 −0.397691 0.917519i \(-0.630188\pi\)
−0.397691 + 0.917519i \(0.630188\pi\)
\(978\) 29.5101 2.84222i 0.943630 0.0908841i
\(979\) 23.0873i 0.737873i
\(980\) 7.52775 11.8039i 0.240465 0.377063i
\(981\) 2.48432i 0.0793183i
\(982\) 2.89917 + 30.1015i 0.0925162 + 0.960576i
\(983\) 33.5242 1.06925 0.534627 0.845088i \(-0.320452\pi\)
0.534627 + 0.845088i \(0.320452\pi\)
\(984\) 0.0717355 + 0.242111i 0.00228685 + 0.00771822i
\(985\) 13.1628i 0.419400i
\(986\) 6.31094 + 65.5251i 0.200981 + 2.08675i
\(987\) 13.3549 + 31.1065i 0.425090 + 0.990131i
\(988\) 1.11189 + 5.71874i 0.0353741 + 0.181937i
\(989\) 30.8116i 0.979751i
\(990\) −0.751337 7.80098i −0.0238791 0.247931i
\(991\) 32.3140i 1.02649i −0.858243 0.513244i \(-0.828443\pi\)
0.858243 0.513244i \(-0.171557\pi\)
\(992\) 19.1029 + 36.6857i 0.606519 + 1.16477i
\(993\) 14.2122i 0.451010i
\(994\) −22.1465 + 12.1432i −0.702443 + 0.385159i
\(995\) −0.276416 −0.00876299
\(996\) 17.9473 3.48949i 0.568682 0.110569i
\(997\) 2.00398 0.0634665 0.0317333 0.999496i \(-0.489897\pi\)
0.0317333 + 0.999496i \(0.489897\pi\)
\(998\) 1.64757 + 17.1063i 0.0521528 + 0.541491i
\(999\) −11.2477 −0.355863
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.z.c.811.11 28
4.3 odd 2 3360.2.z.c.1231.4 28
7.6 odd 2 840.2.z.d.811.11 yes 28
8.3 odd 2 840.2.z.d.811.12 yes 28
8.5 even 2 3360.2.z.d.1231.26 28
28.27 even 2 3360.2.z.d.1231.25 28
56.13 odd 2 3360.2.z.c.1231.3 28
56.27 even 2 inner 840.2.z.c.811.12 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.z.c.811.11 28 1.1 even 1 trivial
840.2.z.c.811.12 yes 28 56.27 even 2 inner
840.2.z.d.811.11 yes 28 7.6 odd 2
840.2.z.d.811.12 yes 28 8.3 odd 2
3360.2.z.c.1231.3 28 56.13 odd 2
3360.2.z.c.1231.4 28 4.3 odd 2
3360.2.z.d.1231.25 28 28.27 even 2
3360.2.z.d.1231.26 28 8.5 even 2