Properties

Label 3360.2.z.d.1231.25
Level $3360$
Weight $2$
Character 3360.1231
Analytic conductor $26.830$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3360,2,Mod(1231,3360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3360.1231"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3360.z (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.8297350792\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1231.25
Character \(\chi\) \(=\) 3360.1231
Dual form 3360.2.z.d.1231.26

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +1.00000 q^{5} +(2.43116 + 1.04376i) q^{7} -1.00000 q^{9} -5.54165 q^{11} -1.67913 q^{13} -1.00000i q^{15} +5.50143i q^{17} -1.73478i q^{19} +(1.04376 - 2.43116i) q^{21} -3.54807i q^{23} +1.00000 q^{25} +1.00000i q^{27} -8.46101i q^{29} -7.31172 q^{31} +5.54165i q^{33} +(2.43116 + 1.04376i) q^{35} +11.2477i q^{37} +1.67913i q^{39} -0.0892775i q^{41} -8.68405 q^{43} -1.00000 q^{45} -12.7949 q^{47} +(4.82112 + 5.07512i) q^{49} +5.50143 q^{51} -1.26667i q^{53} -5.54165 q^{55} -1.73478 q^{57} -13.0188i q^{59} -2.49724 q^{61} +(-2.43116 - 1.04376i) q^{63} -1.67913 q^{65} -7.26352 q^{67} -3.54807 q^{69} +6.75026i q^{71} -7.34731i q^{73} -1.00000i q^{75} +(-13.4727 - 5.78417i) q^{77} +1.15000i q^{79} +1.00000 q^{81} -9.14169i q^{83} +5.50143i q^{85} -8.46101 q^{87} -4.16614i q^{89} +(-4.08224 - 1.75261i) q^{91} +7.31172i q^{93} -1.73478i q^{95} +4.20427i q^{97} +5.54165 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 28 q^{5} - 4 q^{7} - 28 q^{9} - 8 q^{13} + 28 q^{25} - 24 q^{31} - 4 q^{35} - 24 q^{43} - 28 q^{45} + 24 q^{47} + 28 q^{49} + 8 q^{57} - 16 q^{61} + 4 q^{63} - 8 q^{65} + 8 q^{67} - 24 q^{69} + 16 q^{77}+ \cdots - 48 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3360\mathbb{Z}\right)^\times\).

\(n\) \(421\) \(1121\) \(1471\) \(1921\) \(2017\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.43116 + 1.04376i 0.918894 + 0.394505i
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −5.54165 −1.67087 −0.835435 0.549589i \(-0.814784\pi\)
−0.835435 + 0.549589i \(0.814784\pi\)
\(12\) 0 0
\(13\) −1.67913 −0.465707 −0.232853 0.972512i \(-0.574806\pi\)
−0.232853 + 0.972512i \(0.574806\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) 5.50143i 1.33429i 0.744926 + 0.667147i \(0.232485\pi\)
−0.744926 + 0.667147i \(0.767515\pi\)
\(18\) 0 0
\(19\) 1.73478i 0.397985i −0.980001 0.198992i \(-0.936233\pi\)
0.980001 0.198992i \(-0.0637669\pi\)
\(20\) 0 0
\(21\) 1.04376 2.43116i 0.227768 0.530523i
\(22\) 0 0
\(23\) 3.54807i 0.739823i −0.929067 0.369912i \(-0.879388\pi\)
0.929067 0.369912i \(-0.120612\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 8.46101i 1.57117i −0.618754 0.785585i \(-0.712362\pi\)
0.618754 0.785585i \(-0.287638\pi\)
\(30\) 0 0
\(31\) −7.31172 −1.31322 −0.656612 0.754229i \(-0.728011\pi\)
−0.656612 + 0.754229i \(0.728011\pi\)
\(32\) 0 0
\(33\) 5.54165i 0.964677i
\(34\) 0 0
\(35\) 2.43116 + 1.04376i 0.410942 + 0.176428i
\(36\) 0 0
\(37\) 11.2477i 1.84912i 0.381039 + 0.924559i \(0.375567\pi\)
−0.381039 + 0.924559i \(0.624433\pi\)
\(38\) 0 0
\(39\) 1.67913i 0.268876i
\(40\) 0 0
\(41\) 0.0892775i 0.0139428i −0.999976 0.00697140i \(-0.997781\pi\)
0.999976 0.00697140i \(-0.00221908\pi\)
\(42\) 0 0
\(43\) −8.68405 −1.32430 −0.662152 0.749369i \(-0.730357\pi\)
−0.662152 + 0.749369i \(0.730357\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −12.7949 −1.86633 −0.933164 0.359450i \(-0.882964\pi\)
−0.933164 + 0.359450i \(0.882964\pi\)
\(48\) 0 0
\(49\) 4.82112 + 5.07512i 0.688731 + 0.725017i
\(50\) 0 0
\(51\) 5.50143 0.770355
\(52\) 0 0
\(53\) 1.26667i 0.173991i −0.996209 0.0869955i \(-0.972273\pi\)
0.996209 0.0869955i \(-0.0277266\pi\)
\(54\) 0 0
\(55\) −5.54165 −0.747236
\(56\) 0 0
\(57\) −1.73478 −0.229777
\(58\) 0 0
\(59\) 13.0188i 1.69490i −0.530874 0.847451i \(-0.678136\pi\)
0.530874 0.847451i \(-0.321864\pi\)
\(60\) 0 0
\(61\) −2.49724 −0.319739 −0.159869 0.987138i \(-0.551107\pi\)
−0.159869 + 0.987138i \(0.551107\pi\)
\(62\) 0 0
\(63\) −2.43116 1.04376i −0.306298 0.131502i
\(64\) 0 0
\(65\) −1.67913 −0.208270
\(66\) 0 0
\(67\) −7.26352 −0.887381 −0.443690 0.896180i \(-0.646331\pi\)
−0.443690 + 0.896180i \(0.646331\pi\)
\(68\) 0 0
\(69\) −3.54807 −0.427137
\(70\) 0 0
\(71\) 6.75026i 0.801108i 0.916273 + 0.400554i \(0.131182\pi\)
−0.916273 + 0.400554i \(0.868818\pi\)
\(72\) 0 0
\(73\) 7.34731i 0.859938i −0.902844 0.429969i \(-0.858525\pi\)
0.902844 0.429969i \(-0.141475\pi\)
\(74\) 0 0
\(75\) 1.00000i 0.115470i
\(76\) 0 0
\(77\) −13.4727 5.78417i −1.53535 0.659167i
\(78\) 0 0
\(79\) 1.15000i 0.129386i 0.997905 + 0.0646928i \(0.0206067\pi\)
−0.997905 + 0.0646928i \(0.979393\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 9.14169i 1.00343i −0.865033 0.501715i \(-0.832703\pi\)
0.865033 0.501715i \(-0.167297\pi\)
\(84\) 0 0
\(85\) 5.50143i 0.596714i
\(86\) 0 0
\(87\) −8.46101 −0.907115
\(88\) 0 0
\(89\) 4.16614i 0.441610i −0.975318 0.220805i \(-0.929132\pi\)
0.975318 0.220805i \(-0.0708685\pi\)
\(90\) 0 0
\(91\) −4.08224 1.75261i −0.427935 0.183724i
\(92\) 0 0
\(93\) 7.31172i 0.758190i
\(94\) 0 0
\(95\) 1.73478i 0.177984i
\(96\) 0 0
\(97\) 4.20427i 0.426878i 0.976956 + 0.213439i \(0.0684665\pi\)
−0.976956 + 0.213439i \(0.931533\pi\)
\(98\) 0 0
\(99\) 5.54165 0.556957
\(100\) 0 0
\(101\) −15.0071 −1.49326 −0.746629 0.665240i \(-0.768329\pi\)
−0.746629 + 0.665240i \(0.768329\pi\)
\(102\) 0 0
\(103\) 1.31225 0.129300 0.0646501 0.997908i \(-0.479407\pi\)
0.0646501 + 0.997908i \(0.479407\pi\)
\(104\) 0 0
\(105\) 1.04376 2.43116i 0.101861 0.237257i
\(106\) 0 0
\(107\) 16.7713 1.62134 0.810672 0.585501i \(-0.199102\pi\)
0.810672 + 0.585501i \(0.199102\pi\)
\(108\) 0 0
\(109\) 2.48432i 0.237955i 0.992897 + 0.118978i \(0.0379616\pi\)
−0.992897 + 0.118978i \(0.962038\pi\)
\(110\) 0 0
\(111\) 11.2477 1.06759
\(112\) 0 0
\(113\) −10.7975 −1.01575 −0.507873 0.861432i \(-0.669568\pi\)
−0.507873 + 0.861432i \(0.669568\pi\)
\(114\) 0 0
\(115\) 3.54807i 0.330859i
\(116\) 0 0
\(117\) 1.67913 0.155236
\(118\) 0 0
\(119\) −5.74219 + 13.3749i −0.526386 + 1.22607i
\(120\) 0 0
\(121\) 19.7099 1.79181
\(122\) 0 0
\(123\) −0.0892775 −0.00804988
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0.926602i 0.0822226i −0.999155 0.0411113i \(-0.986910\pi\)
0.999155 0.0411113i \(-0.0130898\pi\)
\(128\) 0 0
\(129\) 8.68405i 0.764588i
\(130\) 0 0
\(131\) 12.4963i 1.09181i 0.837847 + 0.545905i \(0.183814\pi\)
−0.837847 + 0.545905i \(0.816186\pi\)
\(132\) 0 0
\(133\) 1.81070 4.21753i 0.157007 0.365706i
\(134\) 0 0
\(135\) 1.00000i 0.0860663i
\(136\) 0 0
\(137\) 3.53259 0.301810 0.150905 0.988548i \(-0.451781\pi\)
0.150905 + 0.988548i \(0.451781\pi\)
\(138\) 0 0
\(139\) 12.1022i 1.02650i 0.858240 + 0.513249i \(0.171558\pi\)
−0.858240 + 0.513249i \(0.828442\pi\)
\(140\) 0 0
\(141\) 12.7949i 1.07753i
\(142\) 0 0
\(143\) 9.30514 0.778135
\(144\) 0 0
\(145\) 8.46101i 0.702649i
\(146\) 0 0
\(147\) 5.07512 4.82112i 0.418589 0.397639i
\(148\) 0 0
\(149\) 11.1107i 0.910221i −0.890435 0.455110i \(-0.849600\pi\)
0.890435 0.455110i \(-0.150400\pi\)
\(150\) 0 0
\(151\) 3.03195i 0.246737i −0.992361 0.123368i \(-0.960630\pi\)
0.992361 0.123368i \(-0.0393696\pi\)
\(152\) 0 0
\(153\) 5.50143i 0.444764i
\(154\) 0 0
\(155\) −7.31172 −0.587292
\(156\) 0 0
\(157\) −5.57251 −0.444735 −0.222367 0.974963i \(-0.571378\pi\)
−0.222367 + 0.974963i \(0.571378\pi\)
\(158\) 0 0
\(159\) −1.26667 −0.100454
\(160\) 0 0
\(161\) 3.70334 8.62593i 0.291864 0.679819i
\(162\) 0 0
\(163\) 20.9634 1.64198 0.820989 0.570944i \(-0.193423\pi\)
0.820989 + 0.570944i \(0.193423\pi\)
\(164\) 0 0
\(165\) 5.54165i 0.431417i
\(166\) 0 0
\(167\) 5.73739 0.443973 0.221986 0.975050i \(-0.428746\pi\)
0.221986 + 0.975050i \(0.428746\pi\)
\(168\) 0 0
\(169\) −10.1805 −0.783117
\(170\) 0 0
\(171\) 1.73478i 0.132662i
\(172\) 0 0
\(173\) −17.1231 −1.30185 −0.650923 0.759144i \(-0.725618\pi\)
−0.650923 + 0.759144i \(0.725618\pi\)
\(174\) 0 0
\(175\) 2.43116 + 1.04376i 0.183779 + 0.0789011i
\(176\) 0 0
\(177\) −13.0188 −0.978552
\(178\) 0 0
\(179\) −14.4927 −1.08324 −0.541618 0.840625i \(-0.682188\pi\)
−0.541618 + 0.840625i \(0.682188\pi\)
\(180\) 0 0
\(181\) −1.28496 −0.0955104 −0.0477552 0.998859i \(-0.515207\pi\)
−0.0477552 + 0.998859i \(0.515207\pi\)
\(182\) 0 0
\(183\) 2.49724i 0.184601i
\(184\) 0 0
\(185\) 11.2477i 0.826951i
\(186\) 0 0
\(187\) 30.4870i 2.22943i
\(188\) 0 0
\(189\) −1.04376 + 2.43116i −0.0759226 + 0.176841i
\(190\) 0 0
\(191\) 9.06371i 0.655827i −0.944708 0.327914i \(-0.893655\pi\)
0.944708 0.327914i \(-0.106345\pi\)
\(192\) 0 0
\(193\) 17.5065 1.26014 0.630072 0.776536i \(-0.283025\pi\)
0.630072 + 0.776536i \(0.283025\pi\)
\(194\) 0 0
\(195\) 1.67913i 0.120245i
\(196\) 0 0
\(197\) 13.1628i 0.937808i 0.883249 + 0.468904i \(0.155351\pi\)
−0.883249 + 0.468904i \(0.844649\pi\)
\(198\) 0 0
\(199\) 0.276416 0.0195946 0.00979732 0.999952i \(-0.496881\pi\)
0.00979732 + 0.999952i \(0.496881\pi\)
\(200\) 0 0
\(201\) 7.26352i 0.512329i
\(202\) 0 0
\(203\) 8.83129 20.5701i 0.619835 1.44374i
\(204\) 0 0
\(205\) 0.0892775i 0.00623541i
\(206\) 0 0
\(207\) 3.54807i 0.246608i
\(208\) 0 0
\(209\) 9.61352i 0.664981i
\(210\) 0 0
\(211\) −12.0851 −0.831973 −0.415986 0.909371i \(-0.636564\pi\)
−0.415986 + 0.909371i \(0.636564\pi\)
\(212\) 0 0
\(213\) 6.75026 0.462520
\(214\) 0 0
\(215\) −8.68405 −0.592247
\(216\) 0 0
\(217\) −17.7760 7.63171i −1.20671 0.518074i
\(218\) 0 0
\(219\) −7.34731 −0.496485
\(220\) 0 0
\(221\) 9.23762i 0.621389i
\(222\) 0 0
\(223\) −17.8291 −1.19393 −0.596963 0.802268i \(-0.703626\pi\)
−0.596963 + 0.802268i \(0.703626\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 27.5789i 1.83048i 0.402911 + 0.915239i \(0.367999\pi\)
−0.402911 + 0.915239i \(0.632001\pi\)
\(228\) 0 0
\(229\) −3.43380 −0.226912 −0.113456 0.993543i \(-0.536192\pi\)
−0.113456 + 0.993543i \(0.536192\pi\)
\(230\) 0 0
\(231\) −5.78417 + 13.4727i −0.380570 + 0.886436i
\(232\) 0 0
\(233\) 8.12381 0.532209 0.266104 0.963944i \(-0.414263\pi\)
0.266104 + 0.963944i \(0.414263\pi\)
\(234\) 0 0
\(235\) −12.7949 −0.834648
\(236\) 0 0
\(237\) 1.15000 0.0747008
\(238\) 0 0
\(239\) 23.7708i 1.53761i −0.639484 0.768804i \(-0.720852\pi\)
0.639484 0.768804i \(-0.279148\pi\)
\(240\) 0 0
\(241\) 13.8075i 0.889417i 0.895675 + 0.444708i \(0.146693\pi\)
−0.895675 + 0.444708i \(0.853307\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 4.82112 + 5.07512i 0.308010 + 0.324238i
\(246\) 0 0
\(247\) 2.91291i 0.185344i
\(248\) 0 0
\(249\) −9.14169 −0.579331
\(250\) 0 0
\(251\) 2.78833i 0.175998i 0.996121 + 0.0879990i \(0.0280472\pi\)
−0.996121 + 0.0879990i \(0.971953\pi\)
\(252\) 0 0
\(253\) 19.6621i 1.23615i
\(254\) 0 0
\(255\) 5.50143 0.344513
\(256\) 0 0
\(257\) 3.21699i 0.200670i −0.994954 0.100335i \(-0.968009\pi\)
0.994954 0.100335i \(-0.0319915\pi\)
\(258\) 0 0
\(259\) −11.7400 + 27.3451i −0.729487 + 1.69914i
\(260\) 0 0
\(261\) 8.46101i 0.523723i
\(262\) 0 0
\(263\) 3.61223i 0.222740i 0.993779 + 0.111370i \(0.0355238\pi\)
−0.993779 + 0.111370i \(0.964476\pi\)
\(264\) 0 0
\(265\) 1.26667i 0.0778111i
\(266\) 0 0
\(267\) −4.16614 −0.254964
\(268\) 0 0
\(269\) −8.64776 −0.527263 −0.263632 0.964623i \(-0.584920\pi\)
−0.263632 + 0.964623i \(0.584920\pi\)
\(270\) 0 0
\(271\) −3.09276 −0.187872 −0.0939358 0.995578i \(-0.529945\pi\)
−0.0939358 + 0.995578i \(0.529945\pi\)
\(272\) 0 0
\(273\) −1.75261 + 4.08224i −0.106073 + 0.247068i
\(274\) 0 0
\(275\) −5.54165 −0.334174
\(276\) 0 0
\(277\) 21.5406i 1.29425i 0.762384 + 0.647125i \(0.224029\pi\)
−0.762384 + 0.647125i \(0.775971\pi\)
\(278\) 0 0
\(279\) 7.31172 0.437741
\(280\) 0 0
\(281\) 17.0871 1.01933 0.509664 0.860373i \(-0.329770\pi\)
0.509664 + 0.860373i \(0.329770\pi\)
\(282\) 0 0
\(283\) 25.9118i 1.54030i 0.637865 + 0.770148i \(0.279818\pi\)
−0.637865 + 0.770148i \(0.720182\pi\)
\(284\) 0 0
\(285\) −1.73478 −0.102759
\(286\) 0 0
\(287\) 0.0931846 0.217048i 0.00550051 0.0128120i
\(288\) 0 0
\(289\) −13.2658 −0.780339
\(290\) 0 0
\(291\) 4.20427 0.246458
\(292\) 0 0
\(293\) −27.3161 −1.59583 −0.797913 0.602773i \(-0.794063\pi\)
−0.797913 + 0.602773i \(0.794063\pi\)
\(294\) 0 0
\(295\) 13.0188i 0.757983i
\(296\) 0 0
\(297\) 5.54165i 0.321559i
\(298\) 0 0
\(299\) 5.95767i 0.344541i
\(300\) 0 0
\(301\) −21.1123 9.06409i −1.21690 0.522445i
\(302\) 0 0
\(303\) 15.0071i 0.862133i
\(304\) 0 0
\(305\) −2.49724 −0.142991
\(306\) 0 0
\(307\) 2.39283i 0.136566i 0.997666 + 0.0682831i \(0.0217521\pi\)
−0.997666 + 0.0682831i \(0.978248\pi\)
\(308\) 0 0
\(309\) 1.31225i 0.0746515i
\(310\) 0 0
\(311\) −24.3201 −1.37907 −0.689533 0.724255i \(-0.742184\pi\)
−0.689533 + 0.724255i \(0.742184\pi\)
\(312\) 0 0
\(313\) 30.3185i 1.71370i −0.515562 0.856852i \(-0.672417\pi\)
0.515562 0.856852i \(-0.327583\pi\)
\(314\) 0 0
\(315\) −2.43116 1.04376i −0.136981 0.0588094i
\(316\) 0 0
\(317\) 7.93499i 0.445673i 0.974856 + 0.222837i \(0.0715317\pi\)
−0.974856 + 0.222837i \(0.928468\pi\)
\(318\) 0 0
\(319\) 46.8879i 2.62522i
\(320\) 0 0
\(321\) 16.7713i 0.936083i
\(322\) 0 0
\(323\) 9.54375 0.531029
\(324\) 0 0
\(325\) −1.67913 −0.0931413
\(326\) 0 0
\(327\) 2.48432 0.137383
\(328\) 0 0
\(329\) −31.1065 13.3549i −1.71496 0.736277i
\(330\) 0 0
\(331\) 14.2122 0.781172 0.390586 0.920566i \(-0.372272\pi\)
0.390586 + 0.920566i \(0.372272\pi\)
\(332\) 0 0
\(333\) 11.2477i 0.616373i
\(334\) 0 0
\(335\) −7.26352 −0.396849
\(336\) 0 0
\(337\) 2.94854 0.160617 0.0803085 0.996770i \(-0.474409\pi\)
0.0803085 + 0.996770i \(0.474409\pi\)
\(338\) 0 0
\(339\) 10.7975i 0.586442i
\(340\) 0 0
\(341\) 40.5190 2.19423
\(342\) 0 0
\(343\) 6.42370 + 17.3706i 0.346847 + 0.937922i
\(344\) 0 0
\(345\) −3.54807 −0.191022
\(346\) 0 0
\(347\) 30.9749 1.66282 0.831410 0.555659i \(-0.187534\pi\)
0.831410 + 0.555659i \(0.187534\pi\)
\(348\) 0 0
\(349\) 4.43452 0.237374 0.118687 0.992932i \(-0.462131\pi\)
0.118687 + 0.992932i \(0.462131\pi\)
\(350\) 0 0
\(351\) 1.67913i 0.0896253i
\(352\) 0 0
\(353\) 25.5750i 1.36122i −0.732647 0.680609i \(-0.761715\pi\)
0.732647 0.680609i \(-0.238285\pi\)
\(354\) 0 0
\(355\) 6.75026i 0.358266i
\(356\) 0 0
\(357\) 13.3749 + 5.74219i 0.707874 + 0.303909i
\(358\) 0 0
\(359\) 15.8598i 0.837049i 0.908206 + 0.418525i \(0.137453\pi\)
−0.908206 + 0.418525i \(0.862547\pi\)
\(360\) 0 0
\(361\) 15.9906 0.841608
\(362\) 0 0
\(363\) 19.7099i 1.03450i
\(364\) 0 0
\(365\) 7.34731i 0.384576i
\(366\) 0 0
\(367\) −20.7390 −1.08257 −0.541284 0.840840i \(-0.682062\pi\)
−0.541284 + 0.840840i \(0.682062\pi\)
\(368\) 0 0
\(369\) 0.0892775i 0.00464760i
\(370\) 0 0
\(371\) 1.32211 3.07949i 0.0686404 0.159879i
\(372\) 0 0
\(373\) 14.5992i 0.755920i −0.925822 0.377960i \(-0.876626\pi\)
0.925822 0.377960i \(-0.123374\pi\)
\(374\) 0 0
\(375\) 1.00000i 0.0516398i
\(376\) 0 0
\(377\) 14.2071i 0.731704i
\(378\) 0 0
\(379\) −35.0992 −1.80292 −0.901462 0.432859i \(-0.857505\pi\)
−0.901462 + 0.432859i \(0.857505\pi\)
\(380\) 0 0
\(381\) −0.926602 −0.0474713
\(382\) 0 0
\(383\) 2.93845 0.150148 0.0750739 0.997178i \(-0.476081\pi\)
0.0750739 + 0.997178i \(0.476081\pi\)
\(384\) 0 0
\(385\) −13.4727 5.78417i −0.686630 0.294789i
\(386\) 0 0
\(387\) 8.68405 0.441435
\(388\) 0 0
\(389\) 29.8030i 1.51107i −0.655106 0.755537i \(-0.727376\pi\)
0.655106 0.755537i \(-0.272624\pi\)
\(390\) 0 0
\(391\) 19.5195 0.987141
\(392\) 0 0
\(393\) 12.4963 0.630357
\(394\) 0 0
\(395\) 1.15000i 0.0578630i
\(396\) 0 0
\(397\) 20.3840 1.02304 0.511521 0.859271i \(-0.329082\pi\)
0.511521 + 0.859271i \(0.329082\pi\)
\(398\) 0 0
\(399\) −4.21753 1.81070i −0.211140 0.0906482i
\(400\) 0 0
\(401\) −4.24845 −0.212157 −0.106079 0.994358i \(-0.533830\pi\)
−0.106079 + 0.994358i \(0.533830\pi\)
\(402\) 0 0
\(403\) 12.2773 0.611577
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 62.3311i 3.08964i
\(408\) 0 0
\(409\) 16.3835i 0.810113i 0.914292 + 0.405057i \(0.132748\pi\)
−0.914292 + 0.405057i \(0.867252\pi\)
\(410\) 0 0
\(411\) 3.53259i 0.174250i
\(412\) 0 0
\(413\) 13.5885 31.6508i 0.668648 1.55743i
\(414\) 0 0
\(415\) 9.14169i 0.448748i
\(416\) 0 0
\(417\) 12.1022 0.592649
\(418\) 0 0
\(419\) 19.2720i 0.941497i 0.882268 + 0.470748i \(0.156016\pi\)
−0.882268 + 0.470748i \(0.843984\pi\)
\(420\) 0 0
\(421\) 14.8800i 0.725206i 0.931944 + 0.362603i \(0.118112\pi\)
−0.931944 + 0.362603i \(0.881888\pi\)
\(422\) 0 0
\(423\) 12.7949 0.622110
\(424\) 0 0
\(425\) 5.50143i 0.266859i
\(426\) 0 0
\(427\) −6.07120 2.60653i −0.293806 0.126139i
\(428\) 0 0
\(429\) 9.30514i 0.449257i
\(430\) 0 0
\(431\) 0.281619i 0.0135651i −0.999977 0.00678255i \(-0.997841\pi\)
0.999977 0.00678255i \(-0.00215897\pi\)
\(432\) 0 0
\(433\) 4.06965i 0.195575i −0.995207 0.0977874i \(-0.968823\pi\)
0.995207 0.0977874i \(-0.0311765\pi\)
\(434\) 0 0
\(435\) −8.46101 −0.405674
\(436\) 0 0
\(437\) −6.15510 −0.294439
\(438\) 0 0
\(439\) 18.3292 0.874804 0.437402 0.899266i \(-0.355899\pi\)
0.437402 + 0.899266i \(0.355899\pi\)
\(440\) 0 0
\(441\) −4.82112 5.07512i −0.229577 0.241672i
\(442\) 0 0
\(443\) 16.2913 0.774023 0.387012 0.922075i \(-0.373507\pi\)
0.387012 + 0.922075i \(0.373507\pi\)
\(444\) 0 0
\(445\) 4.16614i 0.197494i
\(446\) 0 0
\(447\) −11.1107 −0.525516
\(448\) 0 0
\(449\) −36.2809 −1.71220 −0.856101 0.516809i \(-0.827120\pi\)
−0.856101 + 0.516809i \(0.827120\pi\)
\(450\) 0 0
\(451\) 0.494744i 0.0232966i
\(452\) 0 0
\(453\) −3.03195 −0.142453
\(454\) 0 0
\(455\) −4.08224 1.75261i −0.191378 0.0821638i
\(456\) 0 0
\(457\) 21.7531 1.01757 0.508783 0.860895i \(-0.330096\pi\)
0.508783 + 0.860895i \(0.330096\pi\)
\(458\) 0 0
\(459\) −5.50143 −0.256785
\(460\) 0 0
\(461\) 17.9992 0.838305 0.419153 0.907916i \(-0.362327\pi\)
0.419153 + 0.907916i \(0.362327\pi\)
\(462\) 0 0
\(463\) 22.6300i 1.05170i 0.850576 + 0.525852i \(0.176254\pi\)
−0.850576 + 0.525852i \(0.823746\pi\)
\(464\) 0 0
\(465\) 7.31172i 0.339073i
\(466\) 0 0
\(467\) 11.6927i 0.541072i 0.962710 + 0.270536i \(0.0872009\pi\)
−0.962710 + 0.270536i \(0.912799\pi\)
\(468\) 0 0
\(469\) −17.6588 7.58140i −0.815408 0.350077i
\(470\) 0 0
\(471\) 5.57251i 0.256768i
\(472\) 0 0
\(473\) 48.1239 2.21274
\(474\) 0 0
\(475\) 1.73478i 0.0795970i
\(476\) 0 0
\(477\) 1.26667i 0.0579970i
\(478\) 0 0
\(479\) −26.6487 −1.21761 −0.608805 0.793320i \(-0.708351\pi\)
−0.608805 + 0.793320i \(0.708351\pi\)
\(480\) 0 0
\(481\) 18.8864i 0.861147i
\(482\) 0 0
\(483\) −8.62593 3.70334i −0.392494 0.168508i
\(484\) 0 0
\(485\) 4.20427i 0.190906i
\(486\) 0 0
\(487\) 9.67576i 0.438450i −0.975674 0.219225i \(-0.929647\pi\)
0.975674 0.219225i \(-0.0703530\pi\)
\(488\) 0 0
\(489\) 20.9634i 0.947996i
\(490\) 0 0
\(491\) 21.3834 0.965021 0.482511 0.875890i \(-0.339725\pi\)
0.482511 + 0.875890i \(0.339725\pi\)
\(492\) 0 0
\(493\) 46.5477 2.09640
\(494\) 0 0
\(495\) 5.54165 0.249079
\(496\) 0 0
\(497\) −7.04567 + 16.4110i −0.316041 + 0.736133i
\(498\) 0 0
\(499\) 12.1520 0.543997 0.271998 0.962298i \(-0.412315\pi\)
0.271998 + 0.962298i \(0.412315\pi\)
\(500\) 0 0
\(501\) 5.73739i 0.256328i
\(502\) 0 0
\(503\) −5.68562 −0.253509 −0.126755 0.991934i \(-0.540456\pi\)
−0.126755 + 0.991934i \(0.540456\pi\)
\(504\) 0 0
\(505\) −15.0071 −0.667806
\(506\) 0 0
\(507\) 10.1805i 0.452133i
\(508\) 0 0
\(509\) 2.01211 0.0891852 0.0445926 0.999005i \(-0.485801\pi\)
0.0445926 + 0.999005i \(0.485801\pi\)
\(510\) 0 0
\(511\) 7.66886 17.8625i 0.339250 0.790191i
\(512\) 0 0
\(513\) 1.73478 0.0765922
\(514\) 0 0
\(515\) 1.31225 0.0578248
\(516\) 0 0
\(517\) 70.9049 3.11839
\(518\) 0 0
\(519\) 17.1231i 0.751621i
\(520\) 0 0
\(521\) 4.06826i 0.178234i 0.996021 + 0.0891168i \(0.0284045\pi\)
−0.996021 + 0.0891168i \(0.971596\pi\)
\(522\) 0 0
\(523\) 23.4857i 1.02696i −0.858102 0.513479i \(-0.828356\pi\)
0.858102 0.513479i \(-0.171644\pi\)
\(524\) 0 0
\(525\) 1.04376 2.43116i 0.0455536 0.106105i
\(526\) 0 0
\(527\) 40.2249i 1.75223i
\(528\) 0 0
\(529\) 10.4112 0.452661
\(530\) 0 0
\(531\) 13.0188i 0.564967i
\(532\) 0 0
\(533\) 0.149908i 0.00649326i
\(534\) 0 0
\(535\) 16.7713 0.725087
\(536\) 0 0
\(537\) 14.4927i 0.625407i
\(538\) 0 0
\(539\) −26.7169 28.1245i −1.15078 1.21141i
\(540\) 0 0
\(541\) 28.2718i 1.21550i 0.794129 + 0.607749i \(0.207928\pi\)
−0.794129 + 0.607749i \(0.792072\pi\)
\(542\) 0 0
\(543\) 1.28496i 0.0551430i
\(544\) 0 0
\(545\) 2.48432i 0.106417i
\(546\) 0 0
\(547\) 29.7498 1.27201 0.636004 0.771685i \(-0.280586\pi\)
0.636004 + 0.771685i \(0.280586\pi\)
\(548\) 0 0
\(549\) 2.49724 0.106580
\(550\) 0 0
\(551\) −14.6780 −0.625302
\(552\) 0 0
\(553\) −1.20033 + 2.79585i −0.0510433 + 0.118892i
\(554\) 0 0
\(555\) 11.2477 0.477440
\(556\) 0 0
\(557\) 16.5286i 0.700340i −0.936686 0.350170i \(-0.886124\pi\)
0.936686 0.350170i \(-0.113876\pi\)
\(558\) 0 0
\(559\) 14.5816 0.616738
\(560\) 0 0
\(561\) −30.4870 −1.28716
\(562\) 0 0
\(563\) 15.9112i 0.670578i −0.942115 0.335289i \(-0.891166\pi\)
0.942115 0.335289i \(-0.108834\pi\)
\(564\) 0 0
\(565\) −10.7975 −0.454256
\(566\) 0 0
\(567\) 2.43116 + 1.04376i 0.102099 + 0.0438339i
\(568\) 0 0
\(569\) 13.2684 0.556239 0.278120 0.960546i \(-0.410289\pi\)
0.278120 + 0.960546i \(0.410289\pi\)
\(570\) 0 0
\(571\) 8.34007 0.349021 0.174511 0.984655i \(-0.444166\pi\)
0.174511 + 0.984655i \(0.444166\pi\)
\(572\) 0 0
\(573\) −9.06371 −0.378642
\(574\) 0 0
\(575\) 3.54807i 0.147965i
\(576\) 0 0
\(577\) 23.6242i 0.983487i −0.870740 0.491743i \(-0.836360\pi\)
0.870740 0.491743i \(-0.163640\pi\)
\(578\) 0 0
\(579\) 17.5065i 0.727545i
\(580\) 0 0
\(581\) 9.54176 22.2249i 0.395859 0.922046i
\(582\) 0 0
\(583\) 7.01946i 0.290716i
\(584\) 0 0
\(585\) 1.67913 0.0694235
\(586\) 0 0
\(587\) 6.67124i 0.275351i −0.990477 0.137676i \(-0.956037\pi\)
0.990477 0.137676i \(-0.0439632\pi\)
\(588\) 0 0
\(589\) 12.6842i 0.522643i
\(590\) 0 0
\(591\) 13.1628 0.541444
\(592\) 0 0
\(593\) 25.3635i 1.04155i −0.853693 0.520776i \(-0.825642\pi\)
0.853693 0.520776i \(-0.174358\pi\)
\(594\) 0 0
\(595\) −5.74219 + 13.3749i −0.235407 + 0.548317i
\(596\) 0 0
\(597\) 0.276416i 0.0113130i
\(598\) 0 0
\(599\) 32.0409i 1.30915i −0.755995 0.654577i \(-0.772847\pi\)
0.755995 0.654577i \(-0.227153\pi\)
\(600\) 0 0
\(601\) 27.2798i 1.11277i 0.830925 + 0.556384i \(0.187812\pi\)
−0.830925 + 0.556384i \(0.812188\pi\)
\(602\) 0 0
\(603\) 7.26352 0.295794
\(604\) 0 0
\(605\) 19.7099 0.801320
\(606\) 0 0
\(607\) 29.6611 1.20391 0.601953 0.798532i \(-0.294390\pi\)
0.601953 + 0.798532i \(0.294390\pi\)
\(608\) 0 0
\(609\) −20.5701 8.83129i −0.833542 0.357862i
\(610\) 0 0
\(611\) 21.4843 0.869162
\(612\) 0 0
\(613\) 17.5337i 0.708180i −0.935211 0.354090i \(-0.884791\pi\)
0.935211 0.354090i \(-0.115209\pi\)
\(614\) 0 0
\(615\) −0.0892775 −0.00360002
\(616\) 0 0
\(617\) −19.9979 −0.805085 −0.402543 0.915401i \(-0.631873\pi\)
−0.402543 + 0.915401i \(0.631873\pi\)
\(618\) 0 0
\(619\) 10.3616i 0.416466i 0.978079 + 0.208233i \(0.0667713\pi\)
−0.978079 + 0.208233i \(0.933229\pi\)
\(620\) 0 0
\(621\) 3.54807 0.142379
\(622\) 0 0
\(623\) 4.34847 10.1286i 0.174218 0.405793i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 9.61352 0.383927
\(628\) 0 0
\(629\) −61.8787 −2.46727
\(630\) 0 0
\(631\) 1.55276i 0.0618145i −0.999522 0.0309072i \(-0.990160\pi\)
0.999522 0.0309072i \(-0.00983964\pi\)
\(632\) 0 0
\(633\) 12.0851i 0.480340i
\(634\) 0 0
\(635\) 0.926602i 0.0367711i
\(636\) 0 0
\(637\) −8.09528 8.52178i −0.320747 0.337645i
\(638\) 0 0
\(639\) 6.75026i 0.267036i
\(640\) 0 0
\(641\) −13.3311 −0.526546 −0.263273 0.964721i \(-0.584802\pi\)
−0.263273 + 0.964721i \(0.584802\pi\)
\(642\) 0 0
\(643\) 20.6034i 0.812520i 0.913758 + 0.406260i \(0.133167\pi\)
−0.913758 + 0.406260i \(0.866833\pi\)
\(644\) 0 0
\(645\) 8.68405i 0.341934i
\(646\) 0 0
\(647\) 35.8391 1.40898 0.704490 0.709714i \(-0.251176\pi\)
0.704490 + 0.709714i \(0.251176\pi\)
\(648\) 0 0
\(649\) 72.1455i 2.83196i
\(650\) 0 0
\(651\) −7.63171 + 17.7760i −0.299110 + 0.696696i
\(652\) 0 0
\(653\) 2.28298i 0.0893398i 0.999002 + 0.0446699i \(0.0142236\pi\)
−0.999002 + 0.0446699i \(0.985776\pi\)
\(654\) 0 0
\(655\) 12.4963i 0.488272i
\(656\) 0 0
\(657\) 7.34731i 0.286646i
\(658\) 0 0
\(659\) −18.0400 −0.702737 −0.351369 0.936237i \(-0.614284\pi\)
−0.351369 + 0.936237i \(0.614284\pi\)
\(660\) 0 0
\(661\) −29.8230 −1.15998 −0.579991 0.814623i \(-0.696944\pi\)
−0.579991 + 0.814623i \(0.696944\pi\)
\(662\) 0 0
\(663\) −9.23762 −0.358759
\(664\) 0 0
\(665\) 1.81070 4.21753i 0.0702158 0.163549i
\(666\) 0 0
\(667\) −30.0202 −1.16239
\(668\) 0 0
\(669\) 17.8291i 0.689314i
\(670\) 0 0
\(671\) 13.8388 0.534242
\(672\) 0 0
\(673\) 29.2670 1.12816 0.564080 0.825720i \(-0.309231\pi\)
0.564080 + 0.825720i \(0.309231\pi\)
\(674\) 0 0
\(675\) 1.00000i 0.0384900i
\(676\) 0 0
\(677\) −25.9210 −0.996226 −0.498113 0.867112i \(-0.665974\pi\)
−0.498113 + 0.867112i \(0.665974\pi\)
\(678\) 0 0
\(679\) −4.38826 + 10.2213i −0.168406 + 0.392256i
\(680\) 0 0
\(681\) 27.5789 1.05683
\(682\) 0 0
\(683\) −22.5472 −0.862745 −0.431373 0.902174i \(-0.641971\pi\)
−0.431373 + 0.902174i \(0.641971\pi\)
\(684\) 0 0
\(685\) 3.53259 0.134973
\(686\) 0 0
\(687\) 3.43380i 0.131008i
\(688\) 0 0
\(689\) 2.12691i 0.0810288i
\(690\) 0 0
\(691\) 8.74160i 0.332546i 0.986080 + 0.166273i \(0.0531733\pi\)
−0.986080 + 0.166273i \(0.946827\pi\)
\(692\) 0 0
\(693\) 13.4727 + 5.78417i 0.511784 + 0.219722i
\(694\) 0 0
\(695\) 12.1022i 0.459064i
\(696\) 0 0
\(697\) 0.491154 0.0186038
\(698\) 0 0
\(699\) 8.12381i 0.307271i
\(700\) 0 0
\(701\) 14.5041i 0.547811i 0.961757 + 0.273906i \(0.0883156\pi\)
−0.961757 + 0.273906i \(0.911684\pi\)
\(702\) 0 0
\(703\) 19.5123 0.735921
\(704\) 0 0
\(705\) 12.7949i 0.481884i
\(706\) 0 0
\(707\) −36.4846 15.6638i −1.37215 0.589099i
\(708\) 0 0
\(709\) 27.9863i 1.05105i −0.850779 0.525523i \(-0.823870\pi\)
0.850779 0.525523i \(-0.176130\pi\)
\(710\) 0 0
\(711\) 1.15000i 0.0431285i
\(712\) 0 0
\(713\) 25.9425i 0.971554i
\(714\) 0 0
\(715\) 9.30514 0.347993
\(716\) 0 0
\(717\) −23.7708 −0.887739
\(718\) 0 0
\(719\) 31.9104 1.19006 0.595029 0.803704i \(-0.297141\pi\)
0.595029 + 0.803704i \(0.297141\pi\)
\(720\) 0 0
\(721\) 3.19030 + 1.36968i 0.118813 + 0.0510096i
\(722\) 0 0
\(723\) 13.8075 0.513505
\(724\) 0 0
\(725\) 8.46101i 0.314234i
\(726\) 0 0
\(727\) −37.3223 −1.38421 −0.692104 0.721798i \(-0.743316\pi\)
−0.692104 + 0.721798i \(0.743316\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 47.7747i 1.76701i
\(732\) 0 0
\(733\) −31.5170 −1.16411 −0.582053 0.813151i \(-0.697750\pi\)
−0.582053 + 0.813151i \(0.697750\pi\)
\(734\) 0 0
\(735\) 5.07512 4.82112i 0.187199 0.177830i
\(736\) 0 0
\(737\) 40.2519 1.48270
\(738\) 0 0
\(739\) −4.86962 −0.179132 −0.0895659 0.995981i \(-0.528548\pi\)
−0.0895659 + 0.995981i \(0.528548\pi\)
\(740\) 0 0
\(741\) 2.91291 0.107009
\(742\) 0 0
\(743\) 24.0338i 0.881714i −0.897577 0.440857i \(-0.854675\pi\)
0.897577 0.440857i \(-0.145325\pi\)
\(744\) 0 0
\(745\) 11.1107i 0.407063i
\(746\) 0 0
\(747\) 9.14169i 0.334477i
\(748\) 0 0
\(749\) 40.7738 + 17.5053i 1.48984 + 0.639629i
\(750\) 0 0
\(751\) 1.33007i 0.0485348i 0.999706 + 0.0242674i \(0.00772531\pi\)
−0.999706 + 0.0242674i \(0.992275\pi\)
\(752\) 0 0
\(753\) 2.78833 0.101612
\(754\) 0 0
\(755\) 3.03195i 0.110344i
\(756\) 0 0
\(757\) 12.9373i 0.470213i 0.971970 + 0.235106i \(0.0755439\pi\)
−0.971970 + 0.235106i \(0.924456\pi\)
\(758\) 0 0
\(759\) 19.6621 0.713691
\(760\) 0 0
\(761\) 35.0635i 1.27105i −0.772079 0.635526i \(-0.780783\pi\)
0.772079 0.635526i \(-0.219217\pi\)
\(762\) 0 0
\(763\) −2.59305 + 6.03980i −0.0938746 + 0.218655i
\(764\) 0 0
\(765\) 5.50143i 0.198905i
\(766\) 0 0
\(767\) 21.8602i 0.789327i
\(768\) 0 0
\(769\) 18.6210i 0.671491i −0.941953 0.335746i \(-0.891012\pi\)
0.941953 0.335746i \(-0.108988\pi\)
\(770\) 0 0
\(771\) −3.21699 −0.115857
\(772\) 0 0
\(773\) 26.4130 0.950010 0.475005 0.879983i \(-0.342446\pi\)
0.475005 + 0.879983i \(0.342446\pi\)
\(774\) 0 0
\(775\) −7.31172 −0.262645
\(776\) 0 0
\(777\) 27.3451 + 11.7400i 0.981001 + 0.421170i
\(778\) 0 0
\(779\) −0.154876 −0.00554903
\(780\) 0 0
\(781\) 37.4075i 1.33855i
\(782\) 0 0
\(783\) 8.46101 0.302372
\(784\) 0 0
\(785\) −5.57251 −0.198892
\(786\) 0 0
\(787\) 18.3513i 0.654153i −0.944998 0.327077i \(-0.893936\pi\)
0.944998 0.327077i \(-0.106064\pi\)
\(788\) 0 0
\(789\) 3.61223 0.128599
\(790\) 0 0
\(791\) −26.2506 11.2701i −0.933363 0.400718i
\(792\) 0 0
\(793\) 4.19319 0.148904
\(794\) 0 0
\(795\) −1.26667 −0.0449243
\(796\) 0 0
\(797\) 16.6258 0.588917 0.294458 0.955664i \(-0.404861\pi\)
0.294458 + 0.955664i \(0.404861\pi\)
\(798\) 0 0
\(799\) 70.3903i 2.49023i
\(800\) 0 0
\(801\) 4.16614i 0.147203i
\(802\) 0 0
\(803\) 40.7162i 1.43684i
\(804\) 0 0
\(805\) 3.70334 8.62593i 0.130526 0.304024i
\(806\) 0 0
\(807\) 8.64776i 0.304416i
\(808\) 0 0
\(809\) 6.95098 0.244383 0.122192 0.992507i \(-0.461008\pi\)
0.122192 + 0.992507i \(0.461008\pi\)
\(810\) 0 0
\(811\) 49.6027i 1.74179i −0.491471 0.870894i \(-0.663541\pi\)
0.491471 0.870894i \(-0.336459\pi\)
\(812\) 0 0
\(813\) 3.09276i 0.108468i
\(814\) 0 0
\(815\) 20.9634 0.734315
\(816\) 0 0
\(817\) 15.0649i 0.527053i
\(818\) 0 0
\(819\) 4.08224 + 1.75261i 0.142645 + 0.0612413i
\(820\) 0 0
\(821\) 46.2978i 1.61580i −0.589317 0.807902i \(-0.700603\pi\)
0.589317 0.807902i \(-0.299397\pi\)
\(822\) 0 0
\(823\) 5.51492i 0.192238i −0.995370 0.0961191i \(-0.969357\pi\)
0.995370 0.0961191i \(-0.0306430\pi\)
\(824\) 0 0
\(825\) 5.54165i 0.192935i
\(826\) 0 0
\(827\) −56.0706 −1.94976 −0.974882 0.222720i \(-0.928506\pi\)
−0.974882 + 0.222720i \(0.928506\pi\)
\(828\) 0 0
\(829\) 44.7027 1.55259 0.776295 0.630370i \(-0.217097\pi\)
0.776295 + 0.630370i \(0.217097\pi\)
\(830\) 0 0
\(831\) 21.5406 0.747236
\(832\) 0 0
\(833\) −27.9204 + 26.5230i −0.967386 + 0.918969i
\(834\) 0 0
\(835\) 5.73739 0.198551
\(836\) 0 0
\(837\) 7.31172i 0.252730i
\(838\) 0 0
\(839\) 44.8497 1.54838 0.774191 0.632952i \(-0.218157\pi\)
0.774191 + 0.632952i \(0.218157\pi\)
\(840\) 0 0
\(841\) −42.5887 −1.46857
\(842\) 0 0
\(843\) 17.0871i 0.588510i
\(844\) 0 0
\(845\) −10.1805 −0.350221
\(846\) 0 0
\(847\) 47.9179 + 20.5724i 1.64648 + 0.706877i
\(848\) 0 0
\(849\) 25.9118 0.889290
\(850\) 0 0
\(851\) 39.9078 1.36802
\(852\) 0 0
\(853\) −0.0388026 −0.00132858 −0.000664288 1.00000i \(-0.500211\pi\)
−0.000664288 1.00000i \(0.500211\pi\)
\(854\) 0 0
\(855\) 1.73478i 0.0593281i
\(856\) 0 0
\(857\) 57.0186i 1.94772i −0.227154 0.973859i \(-0.572942\pi\)
0.227154 0.973859i \(-0.427058\pi\)
\(858\) 0 0
\(859\) 9.67639i 0.330154i −0.986281 0.165077i \(-0.947213\pi\)
0.986281 0.165077i \(-0.0527873\pi\)
\(860\) 0 0
\(861\) −0.217048 0.0931846i −0.00739698 0.00317572i
\(862\) 0 0
\(863\) 35.9183i 1.22267i −0.791371 0.611337i \(-0.790632\pi\)
0.791371 0.611337i \(-0.209368\pi\)
\(864\) 0 0
\(865\) −17.1231 −0.582203
\(866\) 0 0
\(867\) 13.2658i 0.450529i
\(868\) 0 0
\(869\) 6.37291i 0.216186i
\(870\) 0 0
\(871\) 12.1964 0.413259
\(872\) 0 0
\(873\) 4.20427i 0.142293i
\(874\) 0 0
\(875\) 2.43116 + 1.04376i 0.0821883 + 0.0352856i
\(876\) 0 0
\(877\) 20.0801i 0.678057i −0.940776 0.339028i \(-0.889902\pi\)
0.940776 0.339028i \(-0.110098\pi\)
\(878\) 0 0
\(879\) 27.3161i 0.921350i
\(880\) 0 0
\(881\) 37.0514i 1.24829i 0.781307 + 0.624147i \(0.214553\pi\)
−0.781307 + 0.624147i \(0.785447\pi\)
\(882\) 0 0
\(883\) 13.3489 0.449225 0.224613 0.974448i \(-0.427888\pi\)
0.224613 + 0.974448i \(0.427888\pi\)
\(884\) 0 0
\(885\) −13.0188 −0.437622
\(886\) 0 0
\(887\) −4.46449 −0.149903 −0.0749515 0.997187i \(-0.523880\pi\)
−0.0749515 + 0.997187i \(0.523880\pi\)
\(888\) 0 0
\(889\) 0.967153 2.25272i 0.0324373 0.0755539i
\(890\) 0 0
\(891\) −5.54165 −0.185652
\(892\) 0 0
\(893\) 22.1963i 0.742771i
\(894\) 0 0
\(895\) −14.4927 −0.484438
\(896\) 0 0
\(897\) 5.95767 0.198921
\(898\) 0 0
\(899\) 61.8645i 2.06330i
\(900\) 0 0
\(901\) 6.96852 0.232155
\(902\) 0 0
\(903\) −9.06409 + 21.1123i −0.301634 + 0.702575i
\(904\) 0 0
\(905\) −1.28496 −0.0427135
\(906\) 0 0
\(907\) −17.0639 −0.566598 −0.283299 0.959032i \(-0.591429\pi\)
−0.283299 + 0.959032i \(0.591429\pi\)
\(908\) 0 0
\(909\) 15.0071 0.497753
\(910\) 0 0
\(911\) 0.534170i 0.0176978i −0.999961 0.00884891i \(-0.997183\pi\)
0.999961 0.00884891i \(-0.00281673\pi\)
\(912\) 0 0
\(913\) 50.6600i 1.67660i
\(914\) 0 0
\(915\) 2.49724i 0.0825562i
\(916\) 0 0
\(917\) −13.0432 + 30.3806i −0.430725 + 1.00326i
\(918\) 0 0
\(919\) 7.87145i 0.259655i 0.991537 + 0.129828i \(0.0414424\pi\)
−0.991537 + 0.129828i \(0.958558\pi\)
\(920\) 0 0
\(921\) 2.39283 0.0788465
\(922\) 0 0
\(923\) 11.3346i 0.373081i
\(924\) 0 0
\(925\) 11.2477i 0.369824i
\(926\) 0 0
\(927\) −1.31225 −0.0431001
\(928\) 0 0
\(929\) 29.4442i 0.966034i 0.875611 + 0.483017i \(0.160459\pi\)
−0.875611 + 0.483017i \(0.839541\pi\)
\(930\) 0 0
\(931\) 8.80420 8.36356i 0.288546 0.274105i
\(932\) 0 0
\(933\) 24.3201i 0.796204i
\(934\) 0 0
\(935\) 30.4870i 0.997032i
\(936\) 0 0
\(937\) 47.0734i 1.53782i −0.639357 0.768910i \(-0.720799\pi\)
0.639357 0.768910i \(-0.279201\pi\)
\(938\) 0 0
\(939\) −30.3185 −0.989407
\(940\) 0 0
\(941\) 7.55709 0.246354 0.123177 0.992385i \(-0.460692\pi\)
0.123177 + 0.992385i \(0.460692\pi\)
\(942\) 0 0
\(943\) −0.316763 −0.0103152
\(944\) 0 0
\(945\) −1.04376 + 2.43116i −0.0339536 + 0.0790858i
\(946\) 0 0
\(947\) 35.7888 1.16298 0.581490 0.813554i \(-0.302470\pi\)
0.581490 + 0.813554i \(0.302470\pi\)
\(948\) 0 0
\(949\) 12.3371i 0.400479i
\(950\) 0 0
\(951\) 7.93499 0.257310
\(952\) 0 0
\(953\) −0.983354 −0.0318540 −0.0159270 0.999873i \(-0.505070\pi\)
−0.0159270 + 0.999873i \(0.505070\pi\)
\(954\) 0 0
\(955\) 9.06371i 0.293295i
\(956\) 0 0
\(957\) 46.8879 1.51567
\(958\) 0 0
\(959\) 8.58831 + 3.68719i 0.277331 + 0.119066i
\(960\) 0 0
\(961\) 22.4613 0.724557
\(962\) 0 0
\(963\) −16.7713 −0.540448
\(964\) 0 0
\(965\) 17.5065 0.563554
\(966\) 0 0
\(967\) 18.3924i 0.591459i −0.955272 0.295730i \(-0.904437\pi\)
0.955272 0.295730i \(-0.0955627\pi\)
\(968\) 0 0
\(969\) 9.54375i 0.306590i
\(970\) 0 0
\(971\) 1.49104i 0.0478497i 0.999714 + 0.0239248i \(0.00761624\pi\)
−0.999714 + 0.0239248i \(0.992384\pi\)
\(972\) 0 0
\(973\) −12.6319 + 29.4225i −0.404959 + 0.943243i
\(974\) 0 0
\(975\) 1.67913i 0.0537752i
\(976\) 0 0
\(977\) −24.8612 −0.795382 −0.397691 0.917519i \(-0.630188\pi\)
−0.397691 + 0.917519i \(0.630188\pi\)
\(978\) 0 0
\(979\) 23.0873i 0.737873i
\(980\) 0 0
\(981\) 2.48432i 0.0793183i
\(982\) 0 0
\(983\) 33.5242 1.06925 0.534627 0.845088i \(-0.320452\pi\)
0.534627 + 0.845088i \(0.320452\pi\)
\(984\) 0 0
\(985\) 13.1628i 0.419400i
\(986\) 0 0
\(987\) −13.3549 + 31.1065i −0.425090 + 0.990131i
\(988\) 0 0
\(989\) 30.8116i 0.979751i
\(990\) 0 0
\(991\) 32.3140i 1.02649i 0.858243 + 0.513244i \(0.171557\pi\)
−0.858243 + 0.513244i \(0.828443\pi\)
\(992\) 0 0
\(993\) 14.2122i 0.451010i
\(994\) 0 0
\(995\) 0.276416 0.00876299
\(996\) 0 0
\(997\) −2.00398 −0.0634665 −0.0317333 0.999496i \(-0.510103\pi\)
−0.0317333 + 0.999496i \(0.510103\pi\)
\(998\) 0 0
\(999\) −11.2477 −0.355863
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3360.2.z.d.1231.25 28
4.3 odd 2 840.2.z.d.811.11 yes 28
7.6 odd 2 3360.2.z.c.1231.4 28
8.3 odd 2 3360.2.z.c.1231.3 28
8.5 even 2 840.2.z.c.811.12 yes 28
28.27 even 2 840.2.z.c.811.11 28
56.13 odd 2 840.2.z.d.811.12 yes 28
56.27 even 2 inner 3360.2.z.d.1231.26 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.z.c.811.11 28 28.27 even 2
840.2.z.c.811.12 yes 28 8.5 even 2
840.2.z.d.811.11 yes 28 4.3 odd 2
840.2.z.d.811.12 yes 28 56.13 odd 2
3360.2.z.c.1231.3 28 8.3 odd 2
3360.2.z.c.1231.4 28 7.6 odd 2
3360.2.z.d.1231.25 28 1.1 even 1 trivial
3360.2.z.d.1231.26 28 56.27 even 2 inner