L(s) = 1 | + (−0.135 + 1.40i)2-s − i·3-s + (−1.96 − 0.381i)4-s + 5-s + (1.40 + 0.135i)6-s + (−2.43 + 1.04i)7-s + (0.803 − 2.71i)8-s − 9-s + (−0.135 + 1.40i)10-s + 5.54·11-s + (−0.381 + 1.96i)12-s − 1.67·13-s + (−1.13 − 3.56i)14-s − i·15-s + (3.70 + 1.49i)16-s − 5.50i·17-s + ⋯ |
L(s) = 1 | + (−0.0958 + 0.995i)2-s − 0.577i·3-s + (−0.981 − 0.190i)4-s + 0.447·5-s + (0.574 + 0.0553i)6-s + (−0.918 + 0.394i)7-s + (0.284 − 0.958i)8-s − 0.333·9-s + (−0.0428 + 0.445i)10-s + 1.67·11-s + (−0.110 + 0.566i)12-s − 0.465·13-s + (−0.304 − 0.952i)14-s − 0.258i·15-s + (0.927 + 0.374i)16-s − 1.33i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 - 0.117i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 - 0.117i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.32224 + 0.0777568i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.32224 + 0.0777568i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.135 - 1.40i)T \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + (2.43 - 1.04i)T \) |
good | 11 | \( 1 - 5.54T + 11T^{2} \) |
| 13 | \( 1 + 1.67T + 13T^{2} \) |
| 17 | \( 1 + 5.50iT - 17T^{2} \) |
| 19 | \( 1 + 1.73iT - 19T^{2} \) |
| 23 | \( 1 + 3.54iT - 23T^{2} \) |
| 29 | \( 1 - 8.46iT - 29T^{2} \) |
| 31 | \( 1 - 7.31T + 31T^{2} \) |
| 37 | \( 1 + 11.2iT - 37T^{2} \) |
| 41 | \( 1 - 0.0892iT - 41T^{2} \) |
| 43 | \( 1 - 8.68T + 43T^{2} \) |
| 47 | \( 1 - 12.7T + 47T^{2} \) |
| 53 | \( 1 - 1.26iT - 53T^{2} \) |
| 59 | \( 1 + 13.0iT - 59T^{2} \) |
| 61 | \( 1 + 2.49T + 61T^{2} \) |
| 67 | \( 1 - 7.26T + 67T^{2} \) |
| 71 | \( 1 - 6.75iT - 71T^{2} \) |
| 73 | \( 1 - 7.34iT - 73T^{2} \) |
| 79 | \( 1 - 1.15iT - 79T^{2} \) |
| 83 | \( 1 + 9.14iT - 83T^{2} \) |
| 89 | \( 1 - 4.16iT - 89T^{2} \) |
| 97 | \( 1 + 4.20iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.751786638948134823973510820803, −9.201356127108093831240426567346, −8.686848014119002327965626986813, −7.27422995487370989377274012494, −6.82547872114045725568048477605, −6.10509133388820185668183180740, −5.18900607440733807416495235023, −3.98979755609667736235846212340, −2.63494569788534737057035946276, −0.825025695732331159165250633036,
1.22249294594998003911053180693, 2.68169752316229062922431622316, 3.85326040169834135893670424297, 4.29308407756847610814314766554, 5.77709037055732098934997615563, 6.50707253414420570635711739059, 7.905964766251095436947094274030, 8.935020401669007793729776145771, 9.588516879549942885731666606787, 10.08879428231082252503900836762