Properties

Label 8325.2.a.cr.1.9
Level $8325$
Weight $2$
Character 8325.1
Self dual yes
Analytic conductor $66.475$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8325,2,Mod(1,8325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8325 = 3^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,5,0,11,0,0,-8,15,0,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4754596827\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 30x^{6} + 15x^{5} - 70x^{4} - 22x^{3} + 44x^{2} + 4x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-1.68489\) of defining polynomial
Character \(\chi\) \(=\) 8325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.68489 q^{2} +5.20864 q^{4} +3.48285 q^{7} +8.61484 q^{8} +3.18991 q^{11} +1.81648 q^{13} +9.35107 q^{14} +12.7126 q^{16} +2.82645 q^{17} -5.72714 q^{19} +8.56456 q^{22} -1.43274 q^{23} +4.87704 q^{26} +18.1409 q^{28} +2.30634 q^{29} +6.00714 q^{31} +16.9023 q^{32} +7.58870 q^{34} +1.00000 q^{37} -15.3767 q^{38} -7.82452 q^{41} -11.6967 q^{43} +16.6151 q^{44} -3.84676 q^{46} +2.42814 q^{47} +5.13024 q^{49} +9.46137 q^{52} -9.32573 q^{53} +30.0042 q^{56} +6.19227 q^{58} -2.86539 q^{59} -4.67275 q^{61} +16.1285 q^{62} +19.9557 q^{64} -6.00752 q^{67} +14.7219 q^{68} -3.40566 q^{71} -1.89975 q^{73} +2.68489 q^{74} -29.8306 q^{76} +11.1100 q^{77} -1.60903 q^{79} -21.0080 q^{82} +7.37571 q^{83} -31.4043 q^{86} +27.4806 q^{88} +8.48746 q^{89} +6.32652 q^{91} -7.46264 q^{92} +6.51929 q^{94} -9.00003 q^{97} +13.7741 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 11 q^{4} - 8 q^{7} + 15 q^{8} - 6 q^{13} + 4 q^{14} + 11 q^{16} + 18 q^{17} - 4 q^{19} - 6 q^{22} + 16 q^{23} + 6 q^{26} + 20 q^{28} + 2 q^{29} - 6 q^{31} + 35 q^{32} + 6 q^{34} + 9 q^{37}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.68489 1.89850 0.949252 0.314516i \(-0.101842\pi\)
0.949252 + 0.314516i \(0.101842\pi\)
\(3\) 0 0
\(4\) 5.20864 2.60432
\(5\) 0 0
\(6\) 0 0
\(7\) 3.48285 1.31639 0.658197 0.752846i \(-0.271320\pi\)
0.658197 + 0.752846i \(0.271320\pi\)
\(8\) 8.61484 3.04581
\(9\) 0 0
\(10\) 0 0
\(11\) 3.18991 0.961794 0.480897 0.876777i \(-0.340311\pi\)
0.480897 + 0.876777i \(0.340311\pi\)
\(12\) 0 0
\(13\) 1.81648 0.503800 0.251900 0.967753i \(-0.418945\pi\)
0.251900 + 0.967753i \(0.418945\pi\)
\(14\) 9.35107 2.49918
\(15\) 0 0
\(16\) 12.7126 3.17816
\(17\) 2.82645 0.685514 0.342757 0.939424i \(-0.388639\pi\)
0.342757 + 0.939424i \(0.388639\pi\)
\(18\) 0 0
\(19\) −5.72714 −1.31389 −0.656947 0.753936i \(-0.728153\pi\)
−0.656947 + 0.753936i \(0.728153\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 8.56456 1.82597
\(23\) −1.43274 −0.298748 −0.149374 0.988781i \(-0.547726\pi\)
−0.149374 + 0.988781i \(0.547726\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 4.87704 0.956467
\(27\) 0 0
\(28\) 18.1409 3.42831
\(29\) 2.30634 0.428276 0.214138 0.976803i \(-0.431306\pi\)
0.214138 + 0.976803i \(0.431306\pi\)
\(30\) 0 0
\(31\) 6.00714 1.07891 0.539457 0.842013i \(-0.318629\pi\)
0.539457 + 0.842013i \(0.318629\pi\)
\(32\) 16.9023 2.98794
\(33\) 0 0
\(34\) 7.58870 1.30145
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) −15.3767 −2.49444
\(39\) 0 0
\(40\) 0 0
\(41\) −7.82452 −1.22198 −0.610992 0.791636i \(-0.709229\pi\)
−0.610992 + 0.791636i \(0.709229\pi\)
\(42\) 0 0
\(43\) −11.6967 −1.78373 −0.891863 0.452305i \(-0.850602\pi\)
−0.891863 + 0.452305i \(0.850602\pi\)
\(44\) 16.6151 2.50482
\(45\) 0 0
\(46\) −3.84676 −0.567174
\(47\) 2.42814 0.354181 0.177090 0.984195i \(-0.443332\pi\)
0.177090 + 0.984195i \(0.443332\pi\)
\(48\) 0 0
\(49\) 5.13024 0.732892
\(50\) 0 0
\(51\) 0 0
\(52\) 9.46137 1.31206
\(53\) −9.32573 −1.28099 −0.640493 0.767964i \(-0.721270\pi\)
−0.640493 + 0.767964i \(0.721270\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 30.0042 4.00948
\(57\) 0 0
\(58\) 6.19227 0.813084
\(59\) −2.86539 −0.373042 −0.186521 0.982451i \(-0.559721\pi\)
−0.186521 + 0.982451i \(0.559721\pi\)
\(60\) 0 0
\(61\) −4.67275 −0.598285 −0.299142 0.954208i \(-0.596701\pi\)
−0.299142 + 0.954208i \(0.596701\pi\)
\(62\) 16.1285 2.04832
\(63\) 0 0
\(64\) 19.9557 2.49446
\(65\) 0 0
\(66\) 0 0
\(67\) −6.00752 −0.733936 −0.366968 0.930234i \(-0.619604\pi\)
−0.366968 + 0.930234i \(0.619604\pi\)
\(68\) 14.7219 1.78530
\(69\) 0 0
\(70\) 0 0
\(71\) −3.40566 −0.404177 −0.202089 0.979367i \(-0.564773\pi\)
−0.202089 + 0.979367i \(0.564773\pi\)
\(72\) 0 0
\(73\) −1.89975 −0.222349 −0.111174 0.993801i \(-0.535461\pi\)
−0.111174 + 0.993801i \(0.535461\pi\)
\(74\) 2.68489 0.312112
\(75\) 0 0
\(76\) −29.8306 −3.42180
\(77\) 11.1100 1.26610
\(78\) 0 0
\(79\) −1.60903 −0.181031 −0.0905153 0.995895i \(-0.528851\pi\)
−0.0905153 + 0.995895i \(0.528851\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −21.0080 −2.31994
\(83\) 7.37571 0.809589 0.404795 0.914408i \(-0.367343\pi\)
0.404795 + 0.914408i \(0.367343\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −31.4043 −3.38641
\(87\) 0 0
\(88\) 27.4806 2.92944
\(89\) 8.48746 0.899669 0.449834 0.893112i \(-0.351483\pi\)
0.449834 + 0.893112i \(0.351483\pi\)
\(90\) 0 0
\(91\) 6.32652 0.663199
\(92\) −7.46264 −0.778034
\(93\) 0 0
\(94\) 6.51929 0.672413
\(95\) 0 0
\(96\) 0 0
\(97\) −9.00003 −0.913814 −0.456907 0.889514i \(-0.651043\pi\)
−0.456907 + 0.889514i \(0.651043\pi\)
\(98\) 13.7741 1.39140
\(99\) 0 0
\(100\) 0 0
\(101\) 12.9479 1.28836 0.644182 0.764872i \(-0.277198\pi\)
0.644182 + 0.764872i \(0.277198\pi\)
\(102\) 0 0
\(103\) −7.46684 −0.735729 −0.367865 0.929879i \(-0.619911\pi\)
−0.367865 + 0.929879i \(0.619911\pi\)
\(104\) 15.6487 1.53448
\(105\) 0 0
\(106\) −25.0386 −2.43196
\(107\) 11.2215 1.08482 0.542411 0.840113i \(-0.317511\pi\)
0.542411 + 0.840113i \(0.317511\pi\)
\(108\) 0 0
\(109\) 2.67262 0.255991 0.127996 0.991775i \(-0.459146\pi\)
0.127996 + 0.991775i \(0.459146\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 44.2762 4.18371
\(113\) −18.6735 −1.75666 −0.878329 0.478057i \(-0.841341\pi\)
−0.878329 + 0.478057i \(0.841341\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 12.0129 1.11537
\(117\) 0 0
\(118\) −7.69326 −0.708222
\(119\) 9.84409 0.902406
\(120\) 0 0
\(121\) −0.824470 −0.0749518
\(122\) −12.5458 −1.13585
\(123\) 0 0
\(124\) 31.2890 2.80984
\(125\) 0 0
\(126\) 0 0
\(127\) −2.42257 −0.214968 −0.107484 0.994207i \(-0.534279\pi\)
−0.107484 + 0.994207i \(0.534279\pi\)
\(128\) 19.7741 1.74780
\(129\) 0 0
\(130\) 0 0
\(131\) −11.2791 −0.985462 −0.492731 0.870182i \(-0.664001\pi\)
−0.492731 + 0.870182i \(0.664001\pi\)
\(132\) 0 0
\(133\) −19.9467 −1.72960
\(134\) −16.1295 −1.39338
\(135\) 0 0
\(136\) 24.3494 2.08794
\(137\) −5.25383 −0.448865 −0.224433 0.974490i \(-0.572053\pi\)
−0.224433 + 0.974490i \(0.572053\pi\)
\(138\) 0 0
\(139\) −3.02727 −0.256769 −0.128385 0.991724i \(-0.540979\pi\)
−0.128385 + 0.991724i \(0.540979\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −9.14382 −0.767332
\(143\) 5.79440 0.484552
\(144\) 0 0
\(145\) 0 0
\(146\) −5.10061 −0.422130
\(147\) 0 0
\(148\) 5.20864 0.428147
\(149\) −0.862201 −0.0706343 −0.0353171 0.999376i \(-0.511244\pi\)
−0.0353171 + 0.999376i \(0.511244\pi\)
\(150\) 0 0
\(151\) −1.86529 −0.151795 −0.0758976 0.997116i \(-0.524182\pi\)
−0.0758976 + 0.997116i \(0.524182\pi\)
\(152\) −49.3384 −4.00187
\(153\) 0 0
\(154\) 29.8291 2.40370
\(155\) 0 0
\(156\) 0 0
\(157\) 19.7022 1.57241 0.786204 0.617968i \(-0.212044\pi\)
0.786204 + 0.617968i \(0.212044\pi\)
\(158\) −4.32008 −0.343687
\(159\) 0 0
\(160\) 0 0
\(161\) −4.99003 −0.393269
\(162\) 0 0
\(163\) −21.8944 −1.71490 −0.857452 0.514564i \(-0.827954\pi\)
−0.857452 + 0.514564i \(0.827954\pi\)
\(164\) −40.7551 −3.18244
\(165\) 0 0
\(166\) 19.8030 1.53701
\(167\) 17.7381 1.37262 0.686308 0.727311i \(-0.259230\pi\)
0.686308 + 0.727311i \(0.259230\pi\)
\(168\) 0 0
\(169\) −9.70041 −0.746185
\(170\) 0 0
\(171\) 0 0
\(172\) −60.9238 −4.64539
\(173\) 18.1222 1.37780 0.688901 0.724855i \(-0.258093\pi\)
0.688901 + 0.724855i \(0.258093\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 40.5522 3.05673
\(177\) 0 0
\(178\) 22.7879 1.70802
\(179\) 18.6485 1.39385 0.696926 0.717143i \(-0.254551\pi\)
0.696926 + 0.717143i \(0.254551\pi\)
\(180\) 0 0
\(181\) 8.72883 0.648809 0.324404 0.945919i \(-0.394836\pi\)
0.324404 + 0.945919i \(0.394836\pi\)
\(182\) 16.9860 1.25909
\(183\) 0 0
\(184\) −12.3429 −0.909928
\(185\) 0 0
\(186\) 0 0
\(187\) 9.01611 0.659324
\(188\) 12.6473 0.922399
\(189\) 0 0
\(190\) 0 0
\(191\) 24.5046 1.77309 0.886544 0.462644i \(-0.153099\pi\)
0.886544 + 0.462644i \(0.153099\pi\)
\(192\) 0 0
\(193\) 5.02850 0.361959 0.180980 0.983487i \(-0.442073\pi\)
0.180980 + 0.983487i \(0.442073\pi\)
\(194\) −24.1641 −1.73488
\(195\) 0 0
\(196\) 26.7216 1.90868
\(197\) 5.67179 0.404098 0.202049 0.979375i \(-0.435240\pi\)
0.202049 + 0.979375i \(0.435240\pi\)
\(198\) 0 0
\(199\) −9.87685 −0.700151 −0.350076 0.936721i \(-0.613844\pi\)
−0.350076 + 0.936721i \(0.613844\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 34.7637 2.44597
\(203\) 8.03263 0.563780
\(204\) 0 0
\(205\) 0 0
\(206\) −20.0476 −1.39679
\(207\) 0 0
\(208\) 23.0922 1.60116
\(209\) −18.2690 −1.26370
\(210\) 0 0
\(211\) 9.45435 0.650864 0.325432 0.945565i \(-0.394490\pi\)
0.325432 + 0.945565i \(0.394490\pi\)
\(212\) −48.5743 −3.33610
\(213\) 0 0
\(214\) 30.1285 2.05954
\(215\) 0 0
\(216\) 0 0
\(217\) 20.9220 1.42028
\(218\) 7.17570 0.486000
\(219\) 0 0
\(220\) 0 0
\(221\) 5.13418 0.345362
\(222\) 0 0
\(223\) 12.4583 0.834270 0.417135 0.908844i \(-0.363034\pi\)
0.417135 + 0.908844i \(0.363034\pi\)
\(224\) 58.8683 3.93331
\(225\) 0 0
\(226\) −50.1364 −3.33502
\(227\) 21.2771 1.41221 0.706105 0.708107i \(-0.250451\pi\)
0.706105 + 0.708107i \(0.250451\pi\)
\(228\) 0 0
\(229\) −15.8819 −1.04950 −0.524752 0.851255i \(-0.675842\pi\)
−0.524752 + 0.851255i \(0.675842\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 19.8687 1.30445
\(233\) −15.5581 −1.01924 −0.509621 0.860399i \(-0.670214\pi\)
−0.509621 + 0.860399i \(0.670214\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −14.9248 −0.971521
\(237\) 0 0
\(238\) 26.4303 1.71322
\(239\) −3.01333 −0.194916 −0.0974581 0.995240i \(-0.531071\pi\)
−0.0974581 + 0.995240i \(0.531071\pi\)
\(240\) 0 0
\(241\) −12.5699 −0.809698 −0.404849 0.914384i \(-0.632676\pi\)
−0.404849 + 0.914384i \(0.632676\pi\)
\(242\) −2.21361 −0.142296
\(243\) 0 0
\(244\) −24.3387 −1.55812
\(245\) 0 0
\(246\) 0 0
\(247\) −10.4032 −0.661940
\(248\) 51.7506 3.28617
\(249\) 0 0
\(250\) 0 0
\(251\) −5.84923 −0.369200 −0.184600 0.982814i \(-0.559099\pi\)
−0.184600 + 0.982814i \(0.559099\pi\)
\(252\) 0 0
\(253\) −4.57032 −0.287334
\(254\) −6.50432 −0.408117
\(255\) 0 0
\(256\) 13.1800 0.823752
\(257\) 11.7124 0.730597 0.365298 0.930891i \(-0.380967\pi\)
0.365298 + 0.930891i \(0.380967\pi\)
\(258\) 0 0
\(259\) 3.48285 0.216414
\(260\) 0 0
\(261\) 0 0
\(262\) −30.2832 −1.87090
\(263\) −0.696631 −0.0429561 −0.0214780 0.999769i \(-0.506837\pi\)
−0.0214780 + 0.999769i \(0.506837\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −53.5548 −3.28366
\(267\) 0 0
\(268\) −31.2910 −1.91140
\(269\) −19.4644 −1.18677 −0.593383 0.804921i \(-0.702208\pi\)
−0.593383 + 0.804921i \(0.702208\pi\)
\(270\) 0 0
\(271\) −20.7858 −1.26265 −0.631325 0.775518i \(-0.717489\pi\)
−0.631325 + 0.775518i \(0.717489\pi\)
\(272\) 35.9316 2.17867
\(273\) 0 0
\(274\) −14.1060 −0.852173
\(275\) 0 0
\(276\) 0 0
\(277\) −6.29904 −0.378472 −0.189236 0.981932i \(-0.560601\pi\)
−0.189236 + 0.981932i \(0.560601\pi\)
\(278\) −8.12788 −0.487478
\(279\) 0 0
\(280\) 0 0
\(281\) 1.46824 0.0875878 0.0437939 0.999041i \(-0.486056\pi\)
0.0437939 + 0.999041i \(0.486056\pi\)
\(282\) 0 0
\(283\) 0.325582 0.0193538 0.00967692 0.999953i \(-0.496920\pi\)
0.00967692 + 0.999953i \(0.496920\pi\)
\(284\) −17.7388 −1.05261
\(285\) 0 0
\(286\) 15.5573 0.919924
\(287\) −27.2516 −1.60861
\(288\) 0 0
\(289\) −9.01119 −0.530070
\(290\) 0 0
\(291\) 0 0
\(292\) −9.89509 −0.579067
\(293\) 1.23431 0.0721090 0.0360545 0.999350i \(-0.488521\pi\)
0.0360545 + 0.999350i \(0.488521\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 8.61484 0.500728
\(297\) 0 0
\(298\) −2.31492 −0.134100
\(299\) −2.60255 −0.150509
\(300\) 0 0
\(301\) −40.7378 −2.34809
\(302\) −5.00810 −0.288184
\(303\) 0 0
\(304\) −72.8070 −4.17577
\(305\) 0 0
\(306\) 0 0
\(307\) −11.0805 −0.632397 −0.316198 0.948693i \(-0.602406\pi\)
−0.316198 + 0.948693i \(0.602406\pi\)
\(308\) 57.8679 3.29733
\(309\) 0 0
\(310\) 0 0
\(311\) 33.7268 1.91247 0.956236 0.292597i \(-0.0945196\pi\)
0.956236 + 0.292597i \(0.0945196\pi\)
\(312\) 0 0
\(313\) 31.0364 1.75428 0.877140 0.480235i \(-0.159448\pi\)
0.877140 + 0.480235i \(0.159448\pi\)
\(314\) 52.8983 2.98522
\(315\) 0 0
\(316\) −8.38088 −0.471461
\(317\) 9.28000 0.521217 0.260608 0.965445i \(-0.416077\pi\)
0.260608 + 0.965445i \(0.416077\pi\)
\(318\) 0 0
\(319\) 7.35701 0.411914
\(320\) 0 0
\(321\) 0 0
\(322\) −13.3977 −0.746624
\(323\) −16.1874 −0.900694
\(324\) 0 0
\(325\) 0 0
\(326\) −58.7842 −3.25575
\(327\) 0 0
\(328\) −67.4070 −3.72193
\(329\) 8.45684 0.466241
\(330\) 0 0
\(331\) −10.7993 −0.593584 −0.296792 0.954942i \(-0.595917\pi\)
−0.296792 + 0.954942i \(0.595917\pi\)
\(332\) 38.4174 2.10843
\(333\) 0 0
\(334\) 47.6249 2.60592
\(335\) 0 0
\(336\) 0 0
\(337\) −3.06665 −0.167051 −0.0835256 0.996506i \(-0.526618\pi\)
−0.0835256 + 0.996506i \(0.526618\pi\)
\(338\) −26.0445 −1.41664
\(339\) 0 0
\(340\) 0 0
\(341\) 19.1622 1.03769
\(342\) 0 0
\(343\) −6.51209 −0.351620
\(344\) −100.765 −5.43289
\(345\) 0 0
\(346\) 48.6560 2.61576
\(347\) −26.0726 −1.39965 −0.699825 0.714315i \(-0.746739\pi\)
−0.699825 + 0.714315i \(0.746739\pi\)
\(348\) 0 0
\(349\) 12.2055 0.653346 0.326673 0.945137i \(-0.394072\pi\)
0.326673 + 0.945137i \(0.394072\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 53.9170 2.87378
\(353\) 11.8648 0.631498 0.315749 0.948843i \(-0.397744\pi\)
0.315749 + 0.948843i \(0.397744\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 44.2081 2.34302
\(357\) 0 0
\(358\) 50.0691 2.64623
\(359\) −7.36628 −0.388777 −0.194389 0.980925i \(-0.562272\pi\)
−0.194389 + 0.980925i \(0.562272\pi\)
\(360\) 0 0
\(361\) 13.8001 0.726320
\(362\) 23.4359 1.23177
\(363\) 0 0
\(364\) 32.9525 1.72718
\(365\) 0 0
\(366\) 0 0
\(367\) −20.4826 −1.06918 −0.534590 0.845111i \(-0.679534\pi\)
−0.534590 + 0.845111i \(0.679534\pi\)
\(368\) −18.2139 −0.949467
\(369\) 0 0
\(370\) 0 0
\(371\) −32.4801 −1.68628
\(372\) 0 0
\(373\) −16.5915 −0.859075 −0.429538 0.903049i \(-0.641323\pi\)
−0.429538 + 0.903049i \(0.641323\pi\)
\(374\) 24.2073 1.25173
\(375\) 0 0
\(376\) 20.9180 1.07877
\(377\) 4.18941 0.215766
\(378\) 0 0
\(379\) −15.9199 −0.817752 −0.408876 0.912590i \(-0.634079\pi\)
−0.408876 + 0.912590i \(0.634079\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 65.7921 3.36622
\(383\) 30.4997 1.55846 0.779230 0.626738i \(-0.215610\pi\)
0.779230 + 0.626738i \(0.215610\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 13.5010 0.687181
\(387\) 0 0
\(388\) −46.8779 −2.37986
\(389\) 29.8769 1.51482 0.757409 0.652941i \(-0.226465\pi\)
0.757409 + 0.652941i \(0.226465\pi\)
\(390\) 0 0
\(391\) −4.04957 −0.204796
\(392\) 44.1962 2.23225
\(393\) 0 0
\(394\) 15.2281 0.767182
\(395\) 0 0
\(396\) 0 0
\(397\) −0.946163 −0.0474866 −0.0237433 0.999718i \(-0.507558\pi\)
−0.0237433 + 0.999718i \(0.507558\pi\)
\(398\) −26.5183 −1.32924
\(399\) 0 0
\(400\) 0 0
\(401\) −37.3648 −1.86591 −0.932955 0.359994i \(-0.882779\pi\)
−0.932955 + 0.359994i \(0.882779\pi\)
\(402\) 0 0
\(403\) 10.9118 0.543557
\(404\) 67.4409 3.35531
\(405\) 0 0
\(406\) 21.5667 1.07034
\(407\) 3.18991 0.158118
\(408\) 0 0
\(409\) 22.9171 1.13318 0.566589 0.824000i \(-0.308263\pi\)
0.566589 + 0.824000i \(0.308263\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −38.8920 −1.91607
\(413\) −9.97973 −0.491070
\(414\) 0 0
\(415\) 0 0
\(416\) 30.7027 1.50533
\(417\) 0 0
\(418\) −49.0504 −2.39913
\(419\) −18.8458 −0.920678 −0.460339 0.887743i \(-0.652272\pi\)
−0.460339 + 0.887743i \(0.652272\pi\)
\(420\) 0 0
\(421\) 14.7293 0.717861 0.358931 0.933364i \(-0.383141\pi\)
0.358931 + 0.933364i \(0.383141\pi\)
\(422\) 25.3839 1.23567
\(423\) 0 0
\(424\) −80.3397 −3.90164
\(425\) 0 0
\(426\) 0 0
\(427\) −16.2745 −0.787578
\(428\) 58.4487 2.82523
\(429\) 0 0
\(430\) 0 0
\(431\) 24.7947 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(432\) 0 0
\(433\) 26.6307 1.27979 0.639894 0.768463i \(-0.278978\pi\)
0.639894 + 0.768463i \(0.278978\pi\)
\(434\) 56.1732 2.69640
\(435\) 0 0
\(436\) 13.9207 0.666682
\(437\) 8.20552 0.392523
\(438\) 0 0
\(439\) 2.93896 0.140269 0.0701344 0.997538i \(-0.477657\pi\)
0.0701344 + 0.997538i \(0.477657\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 13.7847 0.655672
\(443\) 12.1586 0.577671 0.288836 0.957379i \(-0.406732\pi\)
0.288836 + 0.957379i \(0.406732\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 33.4492 1.58387
\(447\) 0 0
\(448\) 69.5027 3.28369
\(449\) 12.0740 0.569809 0.284904 0.958556i \(-0.408038\pi\)
0.284904 + 0.958556i \(0.408038\pi\)
\(450\) 0 0
\(451\) −24.9595 −1.17530
\(452\) −97.2637 −4.57490
\(453\) 0 0
\(454\) 57.1266 2.68109
\(455\) 0 0
\(456\) 0 0
\(457\) −14.3829 −0.672803 −0.336401 0.941719i \(-0.609210\pi\)
−0.336401 + 0.941719i \(0.609210\pi\)
\(458\) −42.6411 −1.99249
\(459\) 0 0
\(460\) 0 0
\(461\) 16.2105 0.754997 0.377498 0.926010i \(-0.376784\pi\)
0.377498 + 0.926010i \(0.376784\pi\)
\(462\) 0 0
\(463\) 26.8128 1.24609 0.623047 0.782184i \(-0.285894\pi\)
0.623047 + 0.782184i \(0.285894\pi\)
\(464\) 29.3196 1.36113
\(465\) 0 0
\(466\) −41.7717 −1.93504
\(467\) 8.58230 0.397141 0.198571 0.980087i \(-0.436370\pi\)
0.198571 + 0.980087i \(0.436370\pi\)
\(468\) 0 0
\(469\) −20.9233 −0.966148
\(470\) 0 0
\(471\) 0 0
\(472\) −24.6849 −1.13621
\(473\) −37.3114 −1.71558
\(474\) 0 0
\(475\) 0 0
\(476\) 51.2743 2.35015
\(477\) 0 0
\(478\) −8.09047 −0.370049
\(479\) −2.01066 −0.0918693 −0.0459346 0.998944i \(-0.514627\pi\)
−0.0459346 + 0.998944i \(0.514627\pi\)
\(480\) 0 0
\(481\) 1.81648 0.0828242
\(482\) −33.7488 −1.53722
\(483\) 0 0
\(484\) −4.29437 −0.195199
\(485\) 0 0
\(486\) 0 0
\(487\) 38.1485 1.72867 0.864336 0.502915i \(-0.167739\pi\)
0.864336 + 0.502915i \(0.167739\pi\)
\(488\) −40.2550 −1.82226
\(489\) 0 0
\(490\) 0 0
\(491\) −21.6136 −0.975409 −0.487705 0.873009i \(-0.662166\pi\)
−0.487705 + 0.873009i \(0.662166\pi\)
\(492\) 0 0
\(493\) 6.51874 0.293589
\(494\) −27.9315 −1.25670
\(495\) 0 0
\(496\) 76.3666 3.42896
\(497\) −11.8614 −0.532056
\(498\) 0 0
\(499\) 37.8811 1.69579 0.847896 0.530162i \(-0.177869\pi\)
0.847896 + 0.530162i \(0.177869\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −15.7045 −0.700928
\(503\) −0.494731 −0.0220590 −0.0110295 0.999939i \(-0.503511\pi\)
−0.0110295 + 0.999939i \(0.503511\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −12.2708 −0.545504
\(507\) 0 0
\(508\) −12.6183 −0.559845
\(509\) 2.62220 0.116227 0.0581136 0.998310i \(-0.481491\pi\)
0.0581136 + 0.998310i \(0.481491\pi\)
\(510\) 0 0
\(511\) −6.61653 −0.292698
\(512\) −4.16132 −0.183906
\(513\) 0 0
\(514\) 31.4464 1.38704
\(515\) 0 0
\(516\) 0 0
\(517\) 7.74555 0.340649
\(518\) 9.35107 0.410862
\(519\) 0 0
\(520\) 0 0
\(521\) −5.05777 −0.221585 −0.110792 0.993844i \(-0.535339\pi\)
−0.110792 + 0.993844i \(0.535339\pi\)
\(522\) 0 0
\(523\) −18.1730 −0.794648 −0.397324 0.917678i \(-0.630061\pi\)
−0.397324 + 0.917678i \(0.630061\pi\)
\(524\) −58.7489 −2.56646
\(525\) 0 0
\(526\) −1.87038 −0.0815523
\(527\) 16.9789 0.739611
\(528\) 0 0
\(529\) −20.9472 −0.910750
\(530\) 0 0
\(531\) 0 0
\(532\) −103.895 −4.50444
\(533\) −14.2131 −0.615636
\(534\) 0 0
\(535\) 0 0
\(536\) −51.7538 −2.23543
\(537\) 0 0
\(538\) −52.2598 −2.25308
\(539\) 16.3650 0.704891
\(540\) 0 0
\(541\) 6.96392 0.299402 0.149701 0.988731i \(-0.452169\pi\)
0.149701 + 0.988731i \(0.452169\pi\)
\(542\) −55.8077 −2.39715
\(543\) 0 0
\(544\) 47.7736 2.04828
\(545\) 0 0
\(546\) 0 0
\(547\) 28.2295 1.20701 0.603504 0.797360i \(-0.293771\pi\)
0.603504 + 0.797360i \(0.293771\pi\)
\(548\) −27.3653 −1.16899
\(549\) 0 0
\(550\) 0 0
\(551\) −13.2087 −0.562710
\(552\) 0 0
\(553\) −5.60402 −0.238307
\(554\) −16.9122 −0.718531
\(555\) 0 0
\(556\) −15.7679 −0.668710
\(557\) −20.4748 −0.867545 −0.433773 0.901022i \(-0.642818\pi\)
−0.433773 + 0.901022i \(0.642818\pi\)
\(558\) 0 0
\(559\) −21.2467 −0.898642
\(560\) 0 0
\(561\) 0 0
\(562\) 3.94206 0.166286
\(563\) −4.03262 −0.169955 −0.0849774 0.996383i \(-0.527082\pi\)
−0.0849774 + 0.996383i \(0.527082\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.874152 0.0367433
\(567\) 0 0
\(568\) −29.3392 −1.23105
\(569\) −24.6352 −1.03276 −0.516381 0.856359i \(-0.672721\pi\)
−0.516381 + 0.856359i \(0.672721\pi\)
\(570\) 0 0
\(571\) 31.7960 1.33062 0.665311 0.746566i \(-0.268299\pi\)
0.665311 + 0.746566i \(0.268299\pi\)
\(572\) 30.1809 1.26193
\(573\) 0 0
\(574\) −73.1676 −3.05396
\(575\) 0 0
\(576\) 0 0
\(577\) −39.0173 −1.62431 −0.812155 0.583442i \(-0.801706\pi\)
−0.812155 + 0.583442i \(0.801706\pi\)
\(578\) −24.1941 −1.00634
\(579\) 0 0
\(580\) 0 0
\(581\) 25.6885 1.06574
\(582\) 0 0
\(583\) −29.7482 −1.23205
\(584\) −16.3660 −0.677231
\(585\) 0 0
\(586\) 3.31398 0.136899
\(587\) 28.0766 1.15884 0.579422 0.815028i \(-0.303278\pi\)
0.579422 + 0.815028i \(0.303278\pi\)
\(588\) 0 0
\(589\) −34.4037 −1.41758
\(590\) 0 0
\(591\) 0 0
\(592\) 12.7126 0.522486
\(593\) 21.1330 0.867829 0.433915 0.900954i \(-0.357132\pi\)
0.433915 + 0.900954i \(0.357132\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4.49090 −0.183954
\(597\) 0 0
\(598\) −6.98755 −0.285742
\(599\) −14.1739 −0.579129 −0.289564 0.957159i \(-0.593510\pi\)
−0.289564 + 0.957159i \(0.593510\pi\)
\(600\) 0 0
\(601\) 48.8255 1.99164 0.995818 0.0913627i \(-0.0291223\pi\)
0.995818 + 0.0913627i \(0.0291223\pi\)
\(602\) −109.376 −4.45785
\(603\) 0 0
\(604\) −9.71563 −0.395323
\(605\) 0 0
\(606\) 0 0
\(607\) −8.91773 −0.361959 −0.180980 0.983487i \(-0.557927\pi\)
−0.180980 + 0.983487i \(0.557927\pi\)
\(608\) −96.8020 −3.92584
\(609\) 0 0
\(610\) 0 0
\(611\) 4.41066 0.178436
\(612\) 0 0
\(613\) 43.5970 1.76087 0.880433 0.474171i \(-0.157252\pi\)
0.880433 + 0.474171i \(0.157252\pi\)
\(614\) −29.7499 −1.20061
\(615\) 0 0
\(616\) 95.7107 3.85629
\(617\) −25.4049 −1.02276 −0.511382 0.859353i \(-0.670866\pi\)
−0.511382 + 0.859353i \(0.670866\pi\)
\(618\) 0 0
\(619\) −4.97246 −0.199860 −0.0999299 0.994994i \(-0.531862\pi\)
−0.0999299 + 0.994994i \(0.531862\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 90.5528 3.63084
\(623\) 29.5605 1.18432
\(624\) 0 0
\(625\) 0 0
\(626\) 83.3293 3.33051
\(627\) 0 0
\(628\) 102.622 4.09505
\(629\) 2.82645 0.112698
\(630\) 0 0
\(631\) −0.771437 −0.0307104 −0.0153552 0.999882i \(-0.504888\pi\)
−0.0153552 + 0.999882i \(0.504888\pi\)
\(632\) −13.8616 −0.551384
\(633\) 0 0
\(634\) 24.9158 0.989532
\(635\) 0 0
\(636\) 0 0
\(637\) 9.31897 0.369231
\(638\) 19.7528 0.782020
\(639\) 0 0
\(640\) 0 0
\(641\) −41.6238 −1.64404 −0.822020 0.569459i \(-0.807153\pi\)
−0.822020 + 0.569459i \(0.807153\pi\)
\(642\) 0 0
\(643\) 7.31649 0.288534 0.144267 0.989539i \(-0.453918\pi\)
0.144267 + 0.989539i \(0.453918\pi\)
\(644\) −25.9913 −1.02420
\(645\) 0 0
\(646\) −43.4615 −1.70997
\(647\) −43.4618 −1.70866 −0.854329 0.519733i \(-0.826032\pi\)
−0.854329 + 0.519733i \(0.826032\pi\)
\(648\) 0 0
\(649\) −9.14034 −0.358790
\(650\) 0 0
\(651\) 0 0
\(652\) −114.040 −4.46616
\(653\) 22.9698 0.898878 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −99.4703 −3.88366
\(657\) 0 0
\(658\) 22.7057 0.885160
\(659\) −35.7491 −1.39259 −0.696294 0.717757i \(-0.745169\pi\)
−0.696294 + 0.717757i \(0.745169\pi\)
\(660\) 0 0
\(661\) 27.3305 1.06303 0.531516 0.847048i \(-0.321622\pi\)
0.531516 + 0.847048i \(0.321622\pi\)
\(662\) −28.9950 −1.12692
\(663\) 0 0
\(664\) 63.5406 2.46585
\(665\) 0 0
\(666\) 0 0
\(667\) −3.30439 −0.127947
\(668\) 92.3913 3.57473
\(669\) 0 0
\(670\) 0 0
\(671\) −14.9057 −0.575427
\(672\) 0 0
\(673\) −19.6281 −0.756609 −0.378305 0.925681i \(-0.623493\pi\)
−0.378305 + 0.925681i \(0.623493\pi\)
\(674\) −8.23363 −0.317147
\(675\) 0 0
\(676\) −50.5259 −1.94330
\(677\) 3.03052 0.116472 0.0582362 0.998303i \(-0.481452\pi\)
0.0582362 + 0.998303i \(0.481452\pi\)
\(678\) 0 0
\(679\) −31.3457 −1.20294
\(680\) 0 0
\(681\) 0 0
\(682\) 51.4485 1.97007
\(683\) 44.7410 1.71197 0.855983 0.517004i \(-0.172953\pi\)
0.855983 + 0.517004i \(0.172953\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −17.4843 −0.667552
\(687\) 0 0
\(688\) −148.696 −5.66897
\(689\) −16.9400 −0.645361
\(690\) 0 0
\(691\) −13.7681 −0.523764 −0.261882 0.965100i \(-0.584343\pi\)
−0.261882 + 0.965100i \(0.584343\pi\)
\(692\) 94.3917 3.58824
\(693\) 0 0
\(694\) −70.0020 −2.65724
\(695\) 0 0
\(696\) 0 0
\(697\) −22.1156 −0.837688
\(698\) 32.7705 1.24038
\(699\) 0 0
\(700\) 0 0
\(701\) 12.2193 0.461517 0.230758 0.973011i \(-0.425879\pi\)
0.230758 + 0.973011i \(0.425879\pi\)
\(702\) 0 0
\(703\) −5.72714 −0.216003
\(704\) 63.6569 2.39916
\(705\) 0 0
\(706\) 31.8556 1.19890
\(707\) 45.0956 1.69599
\(708\) 0 0
\(709\) −4.22619 −0.158718 −0.0793589 0.996846i \(-0.525287\pi\)
−0.0793589 + 0.996846i \(0.525287\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 73.1181 2.74022
\(713\) −8.60669 −0.322323
\(714\) 0 0
\(715\) 0 0
\(716\) 97.1331 3.63003
\(717\) 0 0
\(718\) −19.7777 −0.738095
\(719\) −19.2764 −0.718888 −0.359444 0.933167i \(-0.617034\pi\)
−0.359444 + 0.933167i \(0.617034\pi\)
\(720\) 0 0
\(721\) −26.0059 −0.968509
\(722\) 37.0517 1.37892
\(723\) 0 0
\(724\) 45.4653 1.68970
\(725\) 0 0
\(726\) 0 0
\(727\) −16.6423 −0.617227 −0.308614 0.951187i \(-0.599865\pi\)
−0.308614 + 0.951187i \(0.599865\pi\)
\(728\) 54.5019 2.01998
\(729\) 0 0
\(730\) 0 0
\(731\) −33.0600 −1.22277
\(732\) 0 0
\(733\) −1.77985 −0.0657404 −0.0328702 0.999460i \(-0.510465\pi\)
−0.0328702 + 0.999460i \(0.510465\pi\)
\(734\) −54.9934 −2.02984
\(735\) 0 0
\(736\) −24.2167 −0.892640
\(737\) −19.1635 −0.705895
\(738\) 0 0
\(739\) 32.6285 1.20026 0.600130 0.799903i \(-0.295116\pi\)
0.600130 + 0.799903i \(0.295116\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −87.2055 −3.20142
\(743\) −21.1995 −0.777734 −0.388867 0.921294i \(-0.627134\pi\)
−0.388867 + 0.921294i \(0.627134\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −44.5464 −1.63096
\(747\) 0 0
\(748\) 46.9617 1.71709
\(749\) 39.0828 1.42805
\(750\) 0 0
\(751\) −53.3277 −1.94595 −0.972977 0.230901i \(-0.925833\pi\)
−0.972977 + 0.230901i \(0.925833\pi\)
\(752\) 30.8680 1.12564
\(753\) 0 0
\(754\) 11.2481 0.409632
\(755\) 0 0
\(756\) 0 0
\(757\) 26.9137 0.978197 0.489098 0.872229i \(-0.337326\pi\)
0.489098 + 0.872229i \(0.337326\pi\)
\(758\) −42.7433 −1.55251
\(759\) 0 0
\(760\) 0 0
\(761\) 19.7208 0.714879 0.357439 0.933936i \(-0.383650\pi\)
0.357439 + 0.933936i \(0.383650\pi\)
\(762\) 0 0
\(763\) 9.30835 0.336985
\(764\) 127.635 4.61769
\(765\) 0 0
\(766\) 81.8883 2.95874
\(767\) −5.20492 −0.187939
\(768\) 0 0
\(769\) −40.4230 −1.45769 −0.728846 0.684678i \(-0.759943\pi\)
−0.728846 + 0.684678i \(0.759943\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 26.1916 0.942657
\(773\) −14.1890 −0.510342 −0.255171 0.966896i \(-0.582132\pi\)
−0.255171 + 0.966896i \(0.582132\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −77.5338 −2.78330
\(777\) 0 0
\(778\) 80.2161 2.87589
\(779\) 44.8121 1.60556
\(780\) 0 0
\(781\) −10.8637 −0.388735
\(782\) −10.8727 −0.388806
\(783\) 0 0
\(784\) 65.2189 2.32925
\(785\) 0 0
\(786\) 0 0
\(787\) −48.0720 −1.71358 −0.856790 0.515665i \(-0.827545\pi\)
−0.856790 + 0.515665i \(0.827545\pi\)
\(788\) 29.5423 1.05240
\(789\) 0 0
\(790\) 0 0
\(791\) −65.0371 −2.31245
\(792\) 0 0
\(793\) −8.48795 −0.301416
\(794\) −2.54034 −0.0901535
\(795\) 0 0
\(796\) −51.4449 −1.82342
\(797\) 35.1334 1.24449 0.622245 0.782822i \(-0.286221\pi\)
0.622245 + 0.782822i \(0.286221\pi\)
\(798\) 0 0
\(799\) 6.86301 0.242796
\(800\) 0 0
\(801\) 0 0
\(802\) −100.320 −3.54244
\(803\) −6.06002 −0.213854
\(804\) 0 0
\(805\) 0 0
\(806\) 29.2971 1.03195
\(807\) 0 0
\(808\) 111.544 3.92411
\(809\) 18.5994 0.653922 0.326961 0.945038i \(-0.393975\pi\)
0.326961 + 0.945038i \(0.393975\pi\)
\(810\) 0 0
\(811\) −41.2856 −1.44973 −0.724867 0.688889i \(-0.758099\pi\)
−0.724867 + 0.688889i \(0.758099\pi\)
\(812\) 41.8391 1.46826
\(813\) 0 0
\(814\) 8.56456 0.300188
\(815\) 0 0
\(816\) 0 0
\(817\) 66.9884 2.34363
\(818\) 61.5300 2.15134
\(819\) 0 0
\(820\) 0 0
\(821\) −5.64400 −0.196977 −0.0984885 0.995138i \(-0.531401\pi\)
−0.0984885 + 0.995138i \(0.531401\pi\)
\(822\) 0 0
\(823\) 52.1526 1.81792 0.908962 0.416879i \(-0.136876\pi\)
0.908962 + 0.416879i \(0.136876\pi\)
\(824\) −64.3256 −2.24089
\(825\) 0 0
\(826\) −26.7945 −0.932299
\(827\) −10.2565 −0.356654 −0.178327 0.983971i \(-0.557069\pi\)
−0.178327 + 0.983971i \(0.557069\pi\)
\(828\) 0 0
\(829\) −10.0803 −0.350105 −0.175052 0.984559i \(-0.556010\pi\)
−0.175052 + 0.984559i \(0.556010\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 36.2491 1.25671
\(833\) 14.5004 0.502408
\(834\) 0 0
\(835\) 0 0
\(836\) −95.1569 −3.29107
\(837\) 0 0
\(838\) −50.5990 −1.74791
\(839\) −42.0725 −1.45250 −0.726252 0.687428i \(-0.758740\pi\)
−0.726252 + 0.687428i \(0.758740\pi\)
\(840\) 0 0
\(841\) −23.6808 −0.816579
\(842\) 39.5465 1.36286
\(843\) 0 0
\(844\) 49.2443 1.69506
\(845\) 0 0
\(846\) 0 0
\(847\) −2.87151 −0.0986661
\(848\) −118.555 −4.07118
\(849\) 0 0
\(850\) 0 0
\(851\) −1.43274 −0.0491138
\(852\) 0 0
\(853\) 13.3261 0.456277 0.228138 0.973629i \(-0.426736\pi\)
0.228138 + 0.973629i \(0.426736\pi\)
\(854\) −43.6952 −1.49522
\(855\) 0 0
\(856\) 96.6714 3.30416
\(857\) −32.2245 −1.10077 −0.550383 0.834912i \(-0.685518\pi\)
−0.550383 + 0.834912i \(0.685518\pi\)
\(858\) 0 0
\(859\) −28.0054 −0.955530 −0.477765 0.878488i \(-0.658553\pi\)
−0.477765 + 0.878488i \(0.658553\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 66.5711 2.26742
\(863\) −47.0680 −1.60221 −0.801107 0.598521i \(-0.795755\pi\)
−0.801107 + 0.598521i \(0.795755\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 71.5005 2.42968
\(867\) 0 0
\(868\) 108.975 3.69885
\(869\) −5.13268 −0.174114
\(870\) 0 0
\(871\) −10.9125 −0.369757
\(872\) 23.0242 0.779699
\(873\) 0 0
\(874\) 22.0309 0.745207
\(875\) 0 0
\(876\) 0 0
\(877\) −16.9389 −0.571986 −0.285993 0.958232i \(-0.592323\pi\)
−0.285993 + 0.958232i \(0.592323\pi\)
\(878\) 7.89078 0.266301
\(879\) 0 0
\(880\) 0 0
\(881\) −34.0552 −1.14735 −0.573674 0.819084i \(-0.694482\pi\)
−0.573674 + 0.819084i \(0.694482\pi\)
\(882\) 0 0
\(883\) 7.85431 0.264319 0.132159 0.991228i \(-0.457809\pi\)
0.132159 + 0.991228i \(0.457809\pi\)
\(884\) 26.7421 0.899433
\(885\) 0 0
\(886\) 32.6444 1.09671
\(887\) 50.8348 1.70687 0.853433 0.521203i \(-0.174517\pi\)
0.853433 + 0.521203i \(0.174517\pi\)
\(888\) 0 0
\(889\) −8.43743 −0.282982
\(890\) 0 0
\(891\) 0 0
\(892\) 64.8908 2.17271
\(893\) −13.9063 −0.465356
\(894\) 0 0
\(895\) 0 0
\(896\) 68.8704 2.30080
\(897\) 0 0
\(898\) 32.4174 1.08178
\(899\) 13.8545 0.462074
\(900\) 0 0
\(901\) −26.3587 −0.878135
\(902\) −67.0136 −2.23131
\(903\) 0 0
\(904\) −160.870 −5.35044
\(905\) 0 0
\(906\) 0 0
\(907\) 55.4966 1.84273 0.921366 0.388695i \(-0.127074\pi\)
0.921366 + 0.388695i \(0.127074\pi\)
\(908\) 110.825 3.67784
\(909\) 0 0
\(910\) 0 0
\(911\) −35.8745 −1.18858 −0.594288 0.804252i \(-0.702566\pi\)
−0.594288 + 0.804252i \(0.702566\pi\)
\(912\) 0 0
\(913\) 23.5278 0.778658
\(914\) −38.6165 −1.27732
\(915\) 0 0
\(916\) −82.7230 −2.73324
\(917\) −39.2835 −1.29726
\(918\) 0 0
\(919\) −43.0966 −1.42162 −0.710812 0.703382i \(-0.751672\pi\)
−0.710812 + 0.703382i \(0.751672\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 43.5233 1.43336
\(923\) −6.18630 −0.203625
\(924\) 0 0
\(925\) 0 0
\(926\) 71.9893 2.36572
\(927\) 0 0
\(928\) 38.9825 1.27966
\(929\) −41.5247 −1.36238 −0.681190 0.732107i \(-0.738537\pi\)
−0.681190 + 0.732107i \(0.738537\pi\)
\(930\) 0 0
\(931\) −29.3816 −0.962942
\(932\) −81.0363 −2.65443
\(933\) 0 0
\(934\) 23.0425 0.753975
\(935\) 0 0
\(936\) 0 0
\(937\) 18.2330 0.595647 0.297823 0.954621i \(-0.403739\pi\)
0.297823 + 0.954621i \(0.403739\pi\)
\(938\) −56.1768 −1.83424
\(939\) 0 0
\(940\) 0 0
\(941\) 37.9004 1.23552 0.617759 0.786367i \(-0.288041\pi\)
0.617759 + 0.786367i \(0.288041\pi\)
\(942\) 0 0
\(943\) 11.2105 0.365065
\(944\) −36.4267 −1.18559
\(945\) 0 0
\(946\) −100.177 −3.25703
\(947\) 1.57146 0.0510655 0.0255328 0.999674i \(-0.491872\pi\)
0.0255328 + 0.999674i \(0.491872\pi\)
\(948\) 0 0
\(949\) −3.45085 −0.112019
\(950\) 0 0
\(951\) 0 0
\(952\) 84.8053 2.74856
\(953\) −15.7102 −0.508904 −0.254452 0.967085i \(-0.581895\pi\)
−0.254452 + 0.967085i \(0.581895\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −15.6954 −0.507624
\(957\) 0 0
\(958\) −5.39840 −0.174414
\(959\) −18.2983 −0.590883
\(960\) 0 0
\(961\) 5.08577 0.164057
\(962\) 4.87704 0.157242
\(963\) 0 0
\(964\) −65.4720 −2.10871
\(965\) 0 0
\(966\) 0 0
\(967\) 4.31176 0.138657 0.0693285 0.997594i \(-0.477914\pi\)
0.0693285 + 0.997594i \(0.477914\pi\)
\(968\) −7.10268 −0.228289
\(969\) 0 0
\(970\) 0 0
\(971\) −4.36056 −0.139937 −0.0699686 0.997549i \(-0.522290\pi\)
−0.0699686 + 0.997549i \(0.522290\pi\)
\(972\) 0 0
\(973\) −10.5435 −0.338010
\(974\) 102.424 3.28189
\(975\) 0 0
\(976\) −59.4030 −1.90144
\(977\) −29.2433 −0.935576 −0.467788 0.883841i \(-0.654949\pi\)
−0.467788 + 0.883841i \(0.654949\pi\)
\(978\) 0 0
\(979\) 27.0742 0.865296
\(980\) 0 0
\(981\) 0 0
\(982\) −58.0302 −1.85182
\(983\) 23.6085 0.752995 0.376498 0.926418i \(-0.377128\pi\)
0.376498 + 0.926418i \(0.377128\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 17.5021 0.557381
\(987\) 0 0
\(988\) −54.1866 −1.72390
\(989\) 16.7583 0.532884
\(990\) 0 0
\(991\) −37.2039 −1.18182 −0.590910 0.806738i \(-0.701231\pi\)
−0.590910 + 0.806738i \(0.701231\pi\)
\(992\) 101.535 3.22373
\(993\) 0 0
\(994\) −31.8465 −1.01011
\(995\) 0 0
\(996\) 0 0
\(997\) 57.1337 1.80944 0.904721 0.426004i \(-0.140079\pi\)
0.904721 + 0.426004i \(0.140079\pi\)
\(998\) 101.707 3.21947
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8325.2.a.cr.1.9 9
3.2 odd 2 925.2.a.l.1.1 9
5.2 odd 4 1665.2.c.e.334.18 18
5.3 odd 4 1665.2.c.e.334.1 18
5.4 even 2 8325.2.a.cq.1.1 9
15.2 even 4 185.2.b.a.149.1 18
15.8 even 4 185.2.b.a.149.18 yes 18
15.14 odd 2 925.2.a.m.1.9 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.b.a.149.1 18 15.2 even 4
185.2.b.a.149.18 yes 18 15.8 even 4
925.2.a.l.1.1 9 3.2 odd 2
925.2.a.m.1.9 9 15.14 odd 2
1665.2.c.e.334.1 18 5.3 odd 4
1665.2.c.e.334.18 18 5.2 odd 4
8325.2.a.cq.1.1 9 5.4 even 2
8325.2.a.cr.1.9 9 1.1 even 1 trivial