Properties

Label 1665.2.c.e.334.1
Level $1665$
Weight $2$
Character 1665.334
Analytic conductor $13.295$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1665,2,Mod(334,1665)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1665.334"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1665, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1665 = 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1665.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,-22,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2950919365\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 28x^{16} + 306x^{14} + 1684x^{12} + 5049x^{10} + 8280x^{8} + 7004x^{6} + 2672x^{4} + 368x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 334.1
Root \(-1.68489i\) of defining polynomial
Character \(\chi\) \(=\) 1665.334
Dual form 1665.2.c.e.334.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.68489i q^{2} -5.20864 q^{4} +(-0.587164 + 2.15760i) q^{5} -3.48285i q^{7} +8.61484i q^{8} +(5.79292 + 1.57647i) q^{10} +3.18991 q^{11} +1.81648i q^{13} -9.35107 q^{14} +12.7126 q^{16} -2.82645i q^{17} +5.72714 q^{19} +(3.05832 - 11.2382i) q^{20} -8.56456i q^{22} -1.43274i q^{23} +(-4.31048 - 2.53373i) q^{25} +4.87704 q^{26} +18.1409i q^{28} -2.30634 q^{29} +6.00714 q^{31} -16.9023i q^{32} -7.58870 q^{34} +(7.51460 + 2.04500i) q^{35} -1.00000i q^{37} -15.3767i q^{38} +(-18.5874 - 5.05832i) q^{40} -7.82452 q^{41} -11.6967i q^{43} -16.6151 q^{44} -3.84676 q^{46} -2.42814i q^{47} -5.13024 q^{49} +(-6.80279 + 11.5732i) q^{50} -9.46137i q^{52} -9.32573i q^{53} +(-1.87300 + 6.88255i) q^{55} +30.0042 q^{56} +6.19227i q^{58} +2.86539 q^{59} -4.67275 q^{61} -16.1285i q^{62} -19.9557 q^{64} +(-3.91923 - 1.06657i) q^{65} +6.00752i q^{67} +14.7219i q^{68} +(5.49061 - 20.1759i) q^{70} -3.40566 q^{71} -1.89975i q^{73} -2.68489 q^{74} -29.8306 q^{76} -11.1100i q^{77} +1.60903 q^{79} +(-7.46440 + 27.4288i) q^{80} +21.0080i q^{82} +7.37571i q^{83} +(6.09834 + 1.65959i) q^{85} -31.4043 q^{86} +27.4806i q^{88} -8.48746 q^{89} +6.32652 q^{91} +7.46264i q^{92} -6.51929 q^{94} +(-3.36277 + 12.3569i) q^{95} +9.00003i q^{97} +13.7741i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 22 q^{4} - 2 q^{5} + 6 q^{10} - 8 q^{14} + 22 q^{16} + 8 q^{19} + 4 q^{20} - 18 q^{25} + 12 q^{26} - 4 q^{29} - 12 q^{31} - 12 q^{34} + 2 q^{35} - 6 q^{40} - 4 q^{41} + 8 q^{44} + 32 q^{46} + 14 q^{49}+ \cdots + 44 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1665\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.68489i 1.89850i −0.314516 0.949252i \(-0.601842\pi\)
0.314516 0.949252i \(-0.398158\pi\)
\(3\) 0 0
\(4\) −5.20864 −2.60432
\(5\) −0.587164 + 2.15760i −0.262588 + 0.964908i
\(6\) 0 0
\(7\) 3.48285i 1.31639i −0.752846 0.658197i \(-0.771320\pi\)
0.752846 0.658197i \(-0.228680\pi\)
\(8\) 8.61484i 3.04581i
\(9\) 0 0
\(10\) 5.79292 + 1.57647i 1.83188 + 0.498524i
\(11\) 3.18991 0.961794 0.480897 0.876777i \(-0.340311\pi\)
0.480897 + 0.876777i \(0.340311\pi\)
\(12\) 0 0
\(13\) 1.81648i 0.503800i 0.967753 + 0.251900i \(0.0810554\pi\)
−0.967753 + 0.251900i \(0.918945\pi\)
\(14\) −9.35107 −2.49918
\(15\) 0 0
\(16\) 12.7126 3.17816
\(17\) 2.82645i 0.685514i −0.939424 0.342757i \(-0.888639\pi\)
0.939424 0.342757i \(-0.111361\pi\)
\(18\) 0 0
\(19\) 5.72714 1.31389 0.656947 0.753936i \(-0.271847\pi\)
0.656947 + 0.753936i \(0.271847\pi\)
\(20\) 3.05832 11.2382i 0.683862 2.51293i
\(21\) 0 0
\(22\) 8.56456i 1.82597i
\(23\) 1.43274i 0.298748i −0.988781 0.149374i \(-0.952274\pi\)
0.988781 0.149374i \(-0.0477258\pi\)
\(24\) 0 0
\(25\) −4.31048 2.53373i −0.862095 0.506746i
\(26\) 4.87704 0.956467
\(27\) 0 0
\(28\) 18.1409i 3.42831i
\(29\) −2.30634 −0.428276 −0.214138 0.976803i \(-0.568694\pi\)
−0.214138 + 0.976803i \(0.568694\pi\)
\(30\) 0 0
\(31\) 6.00714 1.07891 0.539457 0.842013i \(-0.318629\pi\)
0.539457 + 0.842013i \(0.318629\pi\)
\(32\) 16.9023i 2.98794i
\(33\) 0 0
\(34\) −7.58870 −1.30145
\(35\) 7.51460 + 2.04500i 1.27020 + 0.345669i
\(36\) 0 0
\(37\) 1.00000i 0.164399i
\(38\) 15.3767i 2.49444i
\(39\) 0 0
\(40\) −18.5874 5.05832i −2.93892 0.799791i
\(41\) −7.82452 −1.22198 −0.610992 0.791636i \(-0.709229\pi\)
−0.610992 + 0.791636i \(0.709229\pi\)
\(42\) 0 0
\(43\) 11.6967i 1.78373i −0.452305 0.891863i \(-0.649398\pi\)
0.452305 0.891863i \(-0.350602\pi\)
\(44\) −16.6151 −2.50482
\(45\) 0 0
\(46\) −3.84676 −0.567174
\(47\) 2.42814i 0.354181i −0.984195 0.177090i \(-0.943332\pi\)
0.984195 0.177090i \(-0.0566685\pi\)
\(48\) 0 0
\(49\) −5.13024 −0.732892
\(50\) −6.80279 + 11.5732i −0.962059 + 1.63669i
\(51\) 0 0
\(52\) 9.46137i 1.31206i
\(53\) 9.32573i 1.28099i −0.767964 0.640493i \(-0.778730\pi\)
0.767964 0.640493i \(-0.221270\pi\)
\(54\) 0 0
\(55\) −1.87300 + 6.88255i −0.252555 + 0.928043i
\(56\) 30.0042 4.00948
\(57\) 0 0
\(58\) 6.19227i 0.813084i
\(59\) 2.86539 0.373042 0.186521 0.982451i \(-0.440279\pi\)
0.186521 + 0.982451i \(0.440279\pi\)
\(60\) 0 0
\(61\) −4.67275 −0.598285 −0.299142 0.954208i \(-0.596701\pi\)
−0.299142 + 0.954208i \(0.596701\pi\)
\(62\) 16.1285i 2.04832i
\(63\) 0 0
\(64\) −19.9557 −2.49446
\(65\) −3.91923 1.06657i −0.486121 0.132292i
\(66\) 0 0
\(67\) 6.00752i 0.733936i 0.930234 + 0.366968i \(0.119604\pi\)
−0.930234 + 0.366968i \(0.880396\pi\)
\(68\) 14.7219i 1.78530i
\(69\) 0 0
\(70\) 5.49061 20.1759i 0.656253 2.41148i
\(71\) −3.40566 −0.404177 −0.202089 0.979367i \(-0.564773\pi\)
−0.202089 + 0.979367i \(0.564773\pi\)
\(72\) 0 0
\(73\) 1.89975i 0.222349i −0.993801 0.111174i \(-0.964539\pi\)
0.993801 0.111174i \(-0.0354612\pi\)
\(74\) −2.68489 −0.312112
\(75\) 0 0
\(76\) −29.8306 −3.42180
\(77\) 11.1100i 1.26610i
\(78\) 0 0
\(79\) 1.60903 0.181031 0.0905153 0.995895i \(-0.471149\pi\)
0.0905153 + 0.995895i \(0.471149\pi\)
\(80\) −7.46440 + 27.4288i −0.834545 + 3.06663i
\(81\) 0 0
\(82\) 21.0080i 2.31994i
\(83\) 7.37571i 0.809589i 0.914408 + 0.404795i \(0.132657\pi\)
−0.914408 + 0.404795i \(0.867343\pi\)
\(84\) 0 0
\(85\) 6.09834 + 1.65959i 0.661458 + 0.180008i
\(86\) −31.4043 −3.38641
\(87\) 0 0
\(88\) 27.4806i 2.92944i
\(89\) −8.48746 −0.899669 −0.449834 0.893112i \(-0.648517\pi\)
−0.449834 + 0.893112i \(0.648517\pi\)
\(90\) 0 0
\(91\) 6.32652 0.663199
\(92\) 7.46264i 0.778034i
\(93\) 0 0
\(94\) −6.51929 −0.672413
\(95\) −3.36277 + 12.3569i −0.345013 + 1.26779i
\(96\) 0 0
\(97\) 9.00003i 0.913814i 0.889514 + 0.456907i \(0.151043\pi\)
−0.889514 + 0.456907i \(0.848957\pi\)
\(98\) 13.7741i 1.39140i
\(99\) 0 0
\(100\) 22.4517 + 13.1973i 2.24517 + 1.31973i
\(101\) 12.9479 1.28836 0.644182 0.764872i \(-0.277198\pi\)
0.644182 + 0.764872i \(0.277198\pi\)
\(102\) 0 0
\(103\) 7.46684i 0.735729i −0.929879 0.367865i \(-0.880089\pi\)
0.929879 0.367865i \(-0.119911\pi\)
\(104\) −15.6487 −1.53448
\(105\) 0 0
\(106\) −25.0386 −2.43196
\(107\) 11.2215i 1.08482i −0.840113 0.542411i \(-0.817511\pi\)
0.840113 0.542411i \(-0.182489\pi\)
\(108\) 0 0
\(109\) −2.67262 −0.255991 −0.127996 0.991775i \(-0.540854\pi\)
−0.127996 + 0.991775i \(0.540854\pi\)
\(110\) 18.4789 + 5.02880i 1.76189 + 0.479477i
\(111\) 0 0
\(112\) 44.2762i 4.18371i
\(113\) 18.6735i 1.75666i −0.478057 0.878329i \(-0.658659\pi\)
0.478057 0.878329i \(-0.341341\pi\)
\(114\) 0 0
\(115\) 3.09129 + 0.841255i 0.288264 + 0.0784475i
\(116\) 12.0129 1.11537
\(117\) 0 0
\(118\) 7.69326i 0.708222i
\(119\) −9.84409 −0.902406
\(120\) 0 0
\(121\) −0.824470 −0.0749518
\(122\) 12.5458i 1.13585i
\(123\) 0 0
\(124\) −31.2890 −2.80984
\(125\) 7.99773 7.81257i 0.715339 0.698778i
\(126\) 0 0
\(127\) 2.42257i 0.214968i 0.994207 + 0.107484i \(0.0342794\pi\)
−0.994207 + 0.107484i \(0.965721\pi\)
\(128\) 19.7741i 1.74780i
\(129\) 0 0
\(130\) −2.86362 + 10.5227i −0.251156 + 0.922903i
\(131\) −11.2791 −0.985462 −0.492731 0.870182i \(-0.664001\pi\)
−0.492731 + 0.870182i \(0.664001\pi\)
\(132\) 0 0
\(133\) 19.9467i 1.72960i
\(134\) 16.1295 1.39338
\(135\) 0 0
\(136\) 24.3494 2.08794
\(137\) 5.25383i 0.448865i 0.974490 + 0.224433i \(0.0720529\pi\)
−0.974490 + 0.224433i \(0.927947\pi\)
\(138\) 0 0
\(139\) 3.02727 0.256769 0.128385 0.991724i \(-0.459021\pi\)
0.128385 + 0.991724i \(0.459021\pi\)
\(140\) −39.1408 10.6517i −3.30800 0.900231i
\(141\) 0 0
\(142\) 9.14382i 0.767332i
\(143\) 5.79440i 0.484552i
\(144\) 0 0
\(145\) 1.35420 4.97616i 0.112460 0.413247i
\(146\) −5.10061 −0.422130
\(147\) 0 0
\(148\) 5.20864i 0.428147i
\(149\) 0.862201 0.0706343 0.0353171 0.999376i \(-0.488756\pi\)
0.0353171 + 0.999376i \(0.488756\pi\)
\(150\) 0 0
\(151\) −1.86529 −0.151795 −0.0758976 0.997116i \(-0.524182\pi\)
−0.0758976 + 0.997116i \(0.524182\pi\)
\(152\) 49.3384i 4.00187i
\(153\) 0 0
\(154\) −29.8291 −2.40370
\(155\) −3.52718 + 12.9610i −0.283310 + 1.04105i
\(156\) 0 0
\(157\) 19.7022i 1.57241i −0.617968 0.786204i \(-0.712044\pi\)
0.617968 0.786204i \(-0.287956\pi\)
\(158\) 4.32008i 0.343687i
\(159\) 0 0
\(160\) 36.4685 + 9.92445i 2.88309 + 0.784596i
\(161\) −4.99003 −0.393269
\(162\) 0 0
\(163\) 21.8944i 1.71490i −0.514564 0.857452i \(-0.672046\pi\)
0.514564 0.857452i \(-0.327954\pi\)
\(164\) 40.7551 3.18244
\(165\) 0 0
\(166\) 19.8030 1.53701
\(167\) 17.7381i 1.37262i −0.727311 0.686308i \(-0.759230\pi\)
0.727311 0.686308i \(-0.240770\pi\)
\(168\) 0 0
\(169\) 9.70041 0.746185
\(170\) 4.45581 16.3734i 0.341745 1.25578i
\(171\) 0 0
\(172\) 60.9238i 4.64539i
\(173\) 18.1222i 1.37780i 0.724855 + 0.688901i \(0.241907\pi\)
−0.724855 + 0.688901i \(0.758093\pi\)
\(174\) 0 0
\(175\) −8.82460 + 15.0127i −0.667077 + 1.13486i
\(176\) 40.5522 3.05673
\(177\) 0 0
\(178\) 22.7879i 1.70802i
\(179\) −18.6485 −1.39385 −0.696926 0.717143i \(-0.745449\pi\)
−0.696926 + 0.717143i \(0.745449\pi\)
\(180\) 0 0
\(181\) 8.72883 0.648809 0.324404 0.945919i \(-0.394836\pi\)
0.324404 + 0.945919i \(0.394836\pi\)
\(182\) 16.9860i 1.25909i
\(183\) 0 0
\(184\) 12.3429 0.909928
\(185\) 2.15760 + 0.587164i 0.158630 + 0.0431691i
\(186\) 0 0
\(187\) 9.01611i 0.659324i
\(188\) 12.6473i 0.922399i
\(189\) 0 0
\(190\) 33.1768 + 9.02866i 2.40690 + 0.655008i
\(191\) 24.5046 1.77309 0.886544 0.462644i \(-0.153099\pi\)
0.886544 + 0.462644i \(0.153099\pi\)
\(192\) 0 0
\(193\) 5.02850i 0.361959i 0.983487 + 0.180980i \(0.0579268\pi\)
−0.983487 + 0.180980i \(0.942073\pi\)
\(194\) 24.1641 1.73488
\(195\) 0 0
\(196\) 26.7216 1.90868
\(197\) 5.67179i 0.404098i −0.979375 0.202049i \(-0.935240\pi\)
0.979375 0.202049i \(-0.0647600\pi\)
\(198\) 0 0
\(199\) 9.87685 0.700151 0.350076 0.936721i \(-0.386156\pi\)
0.350076 + 0.936721i \(0.386156\pi\)
\(200\) 21.8277 37.1341i 1.54345 2.62578i
\(201\) 0 0
\(202\) 34.7637i 2.44597i
\(203\) 8.03263i 0.563780i
\(204\) 0 0
\(205\) 4.59428 16.8822i 0.320878 1.17910i
\(206\) −20.0476 −1.39679
\(207\) 0 0
\(208\) 23.0922i 1.60116i
\(209\) 18.2690 1.26370
\(210\) 0 0
\(211\) 9.45435 0.650864 0.325432 0.945565i \(-0.394490\pi\)
0.325432 + 0.945565i \(0.394490\pi\)
\(212\) 48.5743i 3.33610i
\(213\) 0 0
\(214\) −30.1285 −2.05954
\(215\) 25.2368 + 6.86787i 1.72113 + 0.468385i
\(216\) 0 0
\(217\) 20.9220i 1.42028i
\(218\) 7.17570i 0.486000i
\(219\) 0 0
\(220\) 9.75578 35.8487i 0.657735 2.41692i
\(221\) 5.13418 0.345362
\(222\) 0 0
\(223\) 12.4583i 0.834270i 0.908844 + 0.417135i \(0.136966\pi\)
−0.908844 + 0.417135i \(0.863034\pi\)
\(224\) −58.8683 −3.93331
\(225\) 0 0
\(226\) −50.1364 −3.33502
\(227\) 21.2771i 1.41221i −0.708107 0.706105i \(-0.750451\pi\)
0.708107 0.706105i \(-0.249549\pi\)
\(228\) 0 0
\(229\) 15.8819 1.04950 0.524752 0.851255i \(-0.324158\pi\)
0.524752 + 0.851255i \(0.324158\pi\)
\(230\) 2.25868 8.29977i 0.148933 0.547271i
\(231\) 0 0
\(232\) 19.8687i 1.30445i
\(233\) 15.5581i 1.01924i −0.860399 0.509621i \(-0.829786\pi\)
0.860399 0.509621i \(-0.170214\pi\)
\(234\) 0 0
\(235\) 5.23895 + 1.42572i 0.341752 + 0.0930034i
\(236\) −14.9248 −0.971521
\(237\) 0 0
\(238\) 26.4303i 1.71322i
\(239\) 3.01333 0.194916 0.0974581 0.995240i \(-0.468929\pi\)
0.0974581 + 0.995240i \(0.468929\pi\)
\(240\) 0 0
\(241\) −12.5699 −0.809698 −0.404849 0.914384i \(-0.632676\pi\)
−0.404849 + 0.914384i \(0.632676\pi\)
\(242\) 2.21361i 0.142296i
\(243\) 0 0
\(244\) 24.3387 1.55812
\(245\) 3.01229 11.0690i 0.192448 0.707173i
\(246\) 0 0
\(247\) 10.4032i 0.661940i
\(248\) 51.7506i 3.28617i
\(249\) 0 0
\(250\) −20.9759 21.4730i −1.32663 1.35807i
\(251\) −5.84923 −0.369200 −0.184600 0.982814i \(-0.559099\pi\)
−0.184600 + 0.982814i \(0.559099\pi\)
\(252\) 0 0
\(253\) 4.57032i 0.287334i
\(254\) 6.50432 0.408117
\(255\) 0 0
\(256\) 13.1800 0.823752
\(257\) 11.7124i 0.730597i −0.930891 0.365298i \(-0.880967\pi\)
0.930891 0.365298i \(-0.119033\pi\)
\(258\) 0 0
\(259\) −3.48285 −0.216414
\(260\) 20.4139 + 5.55538i 1.26601 + 0.344530i
\(261\) 0 0
\(262\) 30.2832i 1.87090i
\(263\) 0.696631i 0.0429561i −0.999769 0.0214780i \(-0.993163\pi\)
0.999769 0.0214780i \(-0.00683720\pi\)
\(264\) 0 0
\(265\) 20.1212 + 5.47573i 1.23603 + 0.336371i
\(266\) −53.5548 −3.28366
\(267\) 0 0
\(268\) 31.2910i 1.91140i
\(269\) 19.4644 1.18677 0.593383 0.804921i \(-0.297792\pi\)
0.593383 + 0.804921i \(0.297792\pi\)
\(270\) 0 0
\(271\) −20.7858 −1.26265 −0.631325 0.775518i \(-0.717489\pi\)
−0.631325 + 0.775518i \(0.717489\pi\)
\(272\) 35.9316i 2.17867i
\(273\) 0 0
\(274\) 14.1060 0.852173
\(275\) −13.7500 8.08237i −0.829158 0.487385i
\(276\) 0 0
\(277\) 6.29904i 0.378472i 0.981932 + 0.189236i \(0.0606012\pi\)
−0.981932 + 0.189236i \(0.939399\pi\)
\(278\) 8.12788i 0.487478i
\(279\) 0 0
\(280\) −17.6174 + 64.7371i −1.05284 + 3.86878i
\(281\) 1.46824 0.0875878 0.0437939 0.999041i \(-0.486056\pi\)
0.0437939 + 0.999041i \(0.486056\pi\)
\(282\) 0 0
\(283\) 0.325582i 0.0193538i 0.999953 + 0.00967692i \(0.00308031\pi\)
−0.999953 + 0.00967692i \(0.996920\pi\)
\(284\) 17.7388 1.05261
\(285\) 0 0
\(286\) 15.5573 0.919924
\(287\) 27.2516i 1.60861i
\(288\) 0 0
\(289\) 9.01119 0.530070
\(290\) −13.3604 3.63587i −0.784552 0.213506i
\(291\) 0 0
\(292\) 9.89509i 0.579067i
\(293\) 1.23431i 0.0721090i 0.999350 + 0.0360545i \(0.0114790\pi\)
−0.999350 + 0.0360545i \(0.988521\pi\)
\(294\) 0 0
\(295\) −1.68245 + 6.18237i −0.0979563 + 0.359951i
\(296\) 8.61484 0.500728
\(297\) 0 0
\(298\) 2.31492i 0.134100i
\(299\) 2.60255 0.150509
\(300\) 0 0
\(301\) −40.7378 −2.34809
\(302\) 5.00810i 0.288184i
\(303\) 0 0
\(304\) 72.8070 4.17577
\(305\) 2.74367 10.0819i 0.157102 0.577290i
\(306\) 0 0
\(307\) 11.0805i 0.632397i 0.948693 + 0.316198i \(0.102406\pi\)
−0.948693 + 0.316198i \(0.897594\pi\)
\(308\) 57.8679i 3.29733i
\(309\) 0 0
\(310\) 34.7989 + 9.47009i 1.97644 + 0.537865i
\(311\) 33.7268 1.91247 0.956236 0.292597i \(-0.0945196\pi\)
0.956236 + 0.292597i \(0.0945196\pi\)
\(312\) 0 0
\(313\) 31.0364i 1.75428i 0.480235 + 0.877140i \(0.340552\pi\)
−0.480235 + 0.877140i \(0.659448\pi\)
\(314\) −52.8983 −2.98522
\(315\) 0 0
\(316\) −8.38088 −0.471461
\(317\) 9.28000i 0.521217i −0.965445 0.260608i \(-0.916077\pi\)
0.965445 0.260608i \(-0.0839231\pi\)
\(318\) 0 0
\(319\) −7.35701 −0.411914
\(320\) 11.7173 43.0564i 0.655015 2.40693i
\(321\) 0 0
\(322\) 13.3977i 0.746624i
\(323\) 16.1874i 0.900694i
\(324\) 0 0
\(325\) 4.60246 7.82988i 0.255299 0.434324i
\(326\) −58.7842 −3.25575
\(327\) 0 0
\(328\) 67.4070i 3.72193i
\(329\) −8.45684 −0.466241
\(330\) 0 0
\(331\) −10.7993 −0.593584 −0.296792 0.954942i \(-0.595917\pi\)
−0.296792 + 0.954942i \(0.595917\pi\)
\(332\) 38.4174i 2.10843i
\(333\) 0 0
\(334\) −47.6249 −2.60592
\(335\) −12.9618 3.52740i −0.708180 0.192722i
\(336\) 0 0
\(337\) 3.06665i 0.167051i 0.996506 + 0.0835256i \(0.0266180\pi\)
−0.996506 + 0.0835256i \(0.973382\pi\)
\(338\) 26.0445i 1.41664i
\(339\) 0 0
\(340\) −31.7641 8.64419i −1.72265 0.468797i
\(341\) 19.1622 1.03769
\(342\) 0 0
\(343\) 6.51209i 0.351620i
\(344\) 100.765 5.43289
\(345\) 0 0
\(346\) 48.6560 2.61576
\(347\) 26.0726i 1.39965i 0.714315 + 0.699825i \(0.246739\pi\)
−0.714315 + 0.699825i \(0.753261\pi\)
\(348\) 0 0
\(349\) −12.2055 −0.653346 −0.326673 0.945137i \(-0.605928\pi\)
−0.326673 + 0.945137i \(0.605928\pi\)
\(350\) 40.3076 + 23.6931i 2.15453 + 1.26645i
\(351\) 0 0
\(352\) 53.9170i 2.87378i
\(353\) 11.8648i 0.631498i 0.948843 + 0.315749i \(0.102256\pi\)
−0.948843 + 0.315749i \(0.897744\pi\)
\(354\) 0 0
\(355\) 1.99968 7.34805i 0.106132 0.389994i
\(356\) 44.2081 2.34302
\(357\) 0 0
\(358\) 50.0691i 2.64623i
\(359\) 7.36628 0.388777 0.194389 0.980925i \(-0.437728\pi\)
0.194389 + 0.980925i \(0.437728\pi\)
\(360\) 0 0
\(361\) 13.8001 0.726320
\(362\) 23.4359i 1.23177i
\(363\) 0 0
\(364\) −32.9525 −1.72718
\(365\) 4.09889 + 1.11546i 0.214546 + 0.0583860i
\(366\) 0 0
\(367\) 20.4826i 1.06918i 0.845111 + 0.534590i \(0.179534\pi\)
−0.845111 + 0.534590i \(0.820466\pi\)
\(368\) 18.2139i 0.949467i
\(369\) 0 0
\(370\) 1.57647 5.79292i 0.0819568 0.301160i
\(371\) −32.4801 −1.68628
\(372\) 0 0
\(373\) 16.5915i 0.859075i −0.903049 0.429538i \(-0.858677\pi\)
0.903049 0.429538i \(-0.141323\pi\)
\(374\) −24.2073 −1.25173
\(375\) 0 0
\(376\) 20.9180 1.07877
\(377\) 4.18941i 0.215766i
\(378\) 0 0
\(379\) 15.9199 0.817752 0.408876 0.912590i \(-0.365921\pi\)
0.408876 + 0.912590i \(0.365921\pi\)
\(380\) 17.5154 64.3625i 0.898523 3.30172i
\(381\) 0 0
\(382\) 65.7921i 3.36622i
\(383\) 30.4997i 1.55846i 0.626738 + 0.779230i \(0.284390\pi\)
−0.626738 + 0.779230i \(0.715610\pi\)
\(384\) 0 0
\(385\) 23.9709 + 6.52338i 1.22167 + 0.332462i
\(386\) 13.5010 0.687181
\(387\) 0 0
\(388\) 46.8779i 2.37986i
\(389\) −29.8769 −1.51482 −0.757409 0.652941i \(-0.773535\pi\)
−0.757409 + 0.652941i \(0.773535\pi\)
\(390\) 0 0
\(391\) −4.04957 −0.204796
\(392\) 44.1962i 2.23225i
\(393\) 0 0
\(394\) −15.2281 −0.767182
\(395\) −0.944767 + 3.47165i −0.0475364 + 0.174678i
\(396\) 0 0
\(397\) 0.946163i 0.0474866i 0.999718 + 0.0237433i \(0.00755843\pi\)
−0.999718 + 0.0237433i \(0.992442\pi\)
\(398\) 26.5183i 1.32924i
\(399\) 0 0
\(400\) −54.7975 32.2104i −2.73988 1.61052i
\(401\) −37.3648 −1.86591 −0.932955 0.359994i \(-0.882779\pi\)
−0.932955 + 0.359994i \(0.882779\pi\)
\(402\) 0 0
\(403\) 10.9118i 0.543557i
\(404\) −67.4409 −3.35531
\(405\) 0 0
\(406\) 21.5667 1.07034
\(407\) 3.18991i 0.158118i
\(408\) 0 0
\(409\) −22.9171 −1.13318 −0.566589 0.824000i \(-0.691737\pi\)
−0.566589 + 0.824000i \(0.691737\pi\)
\(410\) −45.3268 12.3351i −2.23853 0.609189i
\(411\) 0 0
\(412\) 38.8920i 1.91607i
\(413\) 9.97973i 0.491070i
\(414\) 0 0
\(415\) −15.9138 4.33075i −0.781179 0.212588i
\(416\) 30.7027 1.50533
\(417\) 0 0
\(418\) 49.0504i 2.39913i
\(419\) 18.8458 0.920678 0.460339 0.887743i \(-0.347728\pi\)
0.460339 + 0.887743i \(0.347728\pi\)
\(420\) 0 0
\(421\) 14.7293 0.717861 0.358931 0.933364i \(-0.383141\pi\)
0.358931 + 0.933364i \(0.383141\pi\)
\(422\) 25.3839i 1.23567i
\(423\) 0 0
\(424\) 80.3397 3.90164
\(425\) −7.16145 + 12.1833i −0.347382 + 0.590979i
\(426\) 0 0
\(427\) 16.2745i 0.787578i
\(428\) 58.4487i 2.82523i
\(429\) 0 0
\(430\) 18.4395 67.7579i 0.889230 3.26758i
\(431\) 24.7947 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(432\) 0 0
\(433\) 26.6307i 1.27979i 0.768463 + 0.639894i \(0.221022\pi\)
−0.768463 + 0.639894i \(0.778978\pi\)
\(434\) −56.1732 −2.69640
\(435\) 0 0
\(436\) 13.9207 0.666682
\(437\) 8.20552i 0.392523i
\(438\) 0 0
\(439\) −2.93896 −0.140269 −0.0701344 0.997538i \(-0.522343\pi\)
−0.0701344 + 0.997538i \(0.522343\pi\)
\(440\) −59.2921 16.1356i −2.82664 0.769235i
\(441\) 0 0
\(442\) 13.7847i 0.655672i
\(443\) 12.1586i 0.577671i 0.957379 + 0.288836i \(0.0932681\pi\)
−0.957379 + 0.288836i \(0.906732\pi\)
\(444\) 0 0
\(445\) 4.98353 18.3125i 0.236242 0.868098i
\(446\) 33.4492 1.58387
\(447\) 0 0
\(448\) 69.5027i 3.28369i
\(449\) −12.0740 −0.569809 −0.284904 0.958556i \(-0.591962\pi\)
−0.284904 + 0.958556i \(0.591962\pi\)
\(450\) 0 0
\(451\) −24.9595 −1.17530
\(452\) 97.2637i 4.57490i
\(453\) 0 0
\(454\) −57.1266 −2.68109
\(455\) −3.71470 + 13.6501i −0.174148 + 0.639926i
\(456\) 0 0
\(457\) 14.3829i 0.672803i 0.941719 + 0.336401i \(0.109210\pi\)
−0.941719 + 0.336401i \(0.890790\pi\)
\(458\) 42.6411i 1.99249i
\(459\) 0 0
\(460\) −16.1014 4.38179i −0.750732 0.204302i
\(461\) 16.2105 0.754997 0.377498 0.926010i \(-0.376784\pi\)
0.377498 + 0.926010i \(0.376784\pi\)
\(462\) 0 0
\(463\) 26.8128i 1.24609i 0.782184 + 0.623047i \(0.214106\pi\)
−0.782184 + 0.623047i \(0.785894\pi\)
\(464\) −29.3196 −1.36113
\(465\) 0 0
\(466\) −41.7717 −1.93504
\(467\) 8.58230i 0.397141i −0.980087 0.198571i \(-0.936370\pi\)
0.980087 0.198571i \(-0.0636299\pi\)
\(468\) 0 0
\(469\) 20.9233 0.966148
\(470\) 3.82789 14.0660i 0.176567 0.648817i
\(471\) 0 0
\(472\) 24.6849i 1.13621i
\(473\) 37.3114i 1.71558i
\(474\) 0 0
\(475\) −24.6867 14.5110i −1.13270 0.665811i
\(476\) 51.2743 2.35015
\(477\) 0 0
\(478\) 8.09047i 0.370049i
\(479\) 2.01066 0.0918693 0.0459346 0.998944i \(-0.485373\pi\)
0.0459346 + 0.998944i \(0.485373\pi\)
\(480\) 0 0
\(481\) 1.81648 0.0828242
\(482\) 33.7488i 1.53722i
\(483\) 0 0
\(484\) 4.29437 0.195199
\(485\) −19.4185 5.28449i −0.881747 0.239956i
\(486\) 0 0
\(487\) 38.1485i 1.72867i −0.502915 0.864336i \(-0.667739\pi\)
0.502915 0.864336i \(-0.332261\pi\)
\(488\) 40.2550i 1.82226i
\(489\) 0 0
\(490\) −29.7191 8.08767i −1.34257 0.365364i
\(491\) −21.6136 −0.975409 −0.487705 0.873009i \(-0.662166\pi\)
−0.487705 + 0.873009i \(0.662166\pi\)
\(492\) 0 0
\(493\) 6.51874i 0.293589i
\(494\) 27.9315 1.25670
\(495\) 0 0
\(496\) 76.3666 3.42896
\(497\) 11.8614i 0.532056i
\(498\) 0 0
\(499\) −37.8811 −1.69579 −0.847896 0.530162i \(-0.822131\pi\)
−0.847896 + 0.530162i \(0.822131\pi\)
\(500\) −41.6573 + 40.6929i −1.86297 + 1.81984i
\(501\) 0 0
\(502\) 15.7045i 0.700928i
\(503\) 0.494731i 0.0220590i −0.999939 0.0110295i \(-0.996489\pi\)
0.999939 0.0110295i \(-0.00351087\pi\)
\(504\) 0 0
\(505\) −7.60254 + 27.9364i −0.338309 + 1.24315i
\(506\) −12.2708 −0.545504
\(507\) 0 0
\(508\) 12.6183i 0.559845i
\(509\) −2.62220 −0.116227 −0.0581136 0.998310i \(-0.518509\pi\)
−0.0581136 + 0.998310i \(0.518509\pi\)
\(510\) 0 0
\(511\) −6.61653 −0.292698
\(512\) 4.16132i 0.183906i
\(513\) 0 0
\(514\) −31.4464 −1.38704
\(515\) 16.1104 + 4.38426i 0.709911 + 0.193193i
\(516\) 0 0
\(517\) 7.74555i 0.340649i
\(518\) 9.35107i 0.410862i
\(519\) 0 0
\(520\) 9.18833 33.7636i 0.402935 1.48063i
\(521\) −5.05777 −0.221585 −0.110792 0.993844i \(-0.535339\pi\)
−0.110792 + 0.993844i \(0.535339\pi\)
\(522\) 0 0
\(523\) 18.1730i 0.794648i −0.917678 0.397324i \(-0.869939\pi\)
0.917678 0.397324i \(-0.130061\pi\)
\(524\) 58.7489 2.56646
\(525\) 0 0
\(526\) −1.87038 −0.0815523
\(527\) 16.9789i 0.739611i
\(528\) 0 0
\(529\) 20.9472 0.910750
\(530\) 14.7017 54.0232i 0.638603 2.34662i
\(531\) 0 0
\(532\) 103.895i 4.50444i
\(533\) 14.2131i 0.615636i
\(534\) 0 0
\(535\) 24.2115 + 6.58886i 1.04675 + 0.284861i
\(536\) −51.7538 −2.23543
\(537\) 0 0
\(538\) 52.2598i 2.25308i
\(539\) −16.3650 −0.704891
\(540\) 0 0
\(541\) 6.96392 0.299402 0.149701 0.988731i \(-0.452169\pi\)
0.149701 + 0.988731i \(0.452169\pi\)
\(542\) 55.8077i 2.39715i
\(543\) 0 0
\(544\) −47.7736 −2.04828
\(545\) 1.56927 5.76646i 0.0672201 0.247008i
\(546\) 0 0
\(547\) 28.2295i 1.20701i −0.797360 0.603504i \(-0.793771\pi\)
0.797360 0.603504i \(-0.206229\pi\)
\(548\) 27.3653i 1.16899i
\(549\) 0 0
\(550\) −21.7003 + 36.9173i −0.925303 + 1.57416i
\(551\) −13.2087 −0.562710
\(552\) 0 0
\(553\) 5.60402i 0.238307i
\(554\) 16.9122 0.718531
\(555\) 0 0
\(556\) −15.7679 −0.668710
\(557\) 20.4748i 0.867545i 0.901022 + 0.433773i \(0.142818\pi\)
−0.901022 + 0.433773i \(0.857182\pi\)
\(558\) 0 0
\(559\) 21.2467 0.898642
\(560\) 95.5303 + 25.9974i 4.03689 + 1.09859i
\(561\) 0 0
\(562\) 3.94206i 0.166286i
\(563\) 4.03262i 0.169955i −0.996383 0.0849774i \(-0.972918\pi\)
0.996383 0.0849774i \(-0.0270818\pi\)
\(564\) 0 0
\(565\) 40.2900 + 10.9644i 1.69501 + 0.461277i
\(566\) 0.874152 0.0367433
\(567\) 0 0
\(568\) 29.3392i 1.23105i
\(569\) 24.6352 1.03276 0.516381 0.856359i \(-0.327279\pi\)
0.516381 + 0.856359i \(0.327279\pi\)
\(570\) 0 0
\(571\) 31.7960 1.33062 0.665311 0.746566i \(-0.268299\pi\)
0.665311 + 0.746566i \(0.268299\pi\)
\(572\) 30.1809i 1.26193i
\(573\) 0 0
\(574\) 73.1676 3.05396
\(575\) −3.63018 + 6.17581i −0.151389 + 0.257549i
\(576\) 0 0
\(577\) 39.0173i 1.62431i 0.583442 + 0.812155i \(0.301706\pi\)
−0.583442 + 0.812155i \(0.698294\pi\)
\(578\) 24.1941i 1.00634i
\(579\) 0 0
\(580\) −7.05353 + 25.9190i −0.292882 + 1.07623i
\(581\) 25.6885 1.06574
\(582\) 0 0
\(583\) 29.7482i 1.23205i
\(584\) 16.3660 0.677231
\(585\) 0 0
\(586\) 3.31398 0.136899
\(587\) 28.0766i 1.15884i −0.815028 0.579422i \(-0.803278\pi\)
0.815028 0.579422i \(-0.196722\pi\)
\(588\) 0 0
\(589\) 34.4037 1.41758
\(590\) 16.5990 + 4.51721i 0.683369 + 0.185970i
\(591\) 0 0
\(592\) 12.7126i 0.522486i
\(593\) 21.1330i 0.867829i 0.900954 + 0.433915i \(0.142868\pi\)
−0.900954 + 0.433915i \(0.857132\pi\)
\(594\) 0 0
\(595\) 5.78009 21.2396i 0.236961 0.870739i
\(596\) −4.49090 −0.183954
\(597\) 0 0
\(598\) 6.98755i 0.285742i
\(599\) 14.1739 0.579129 0.289564 0.957159i \(-0.406490\pi\)
0.289564 + 0.957159i \(0.406490\pi\)
\(600\) 0 0
\(601\) 48.8255 1.99164 0.995818 0.0913627i \(-0.0291223\pi\)
0.995818 + 0.0913627i \(0.0291223\pi\)
\(602\) 109.376i 4.45785i
\(603\) 0 0
\(604\) 9.71563 0.395323
\(605\) 0.484099 1.77888i 0.0196814 0.0723216i
\(606\) 0 0
\(607\) 8.91773i 0.361959i 0.983487 + 0.180980i \(0.0579268\pi\)
−0.983487 + 0.180980i \(0.942073\pi\)
\(608\) 96.8020i 3.92584i
\(609\) 0 0
\(610\) −27.0689 7.36646i −1.09599 0.298259i
\(611\) 4.41066 0.178436
\(612\) 0 0
\(613\) 43.5970i 1.76087i 0.474171 + 0.880433i \(0.342748\pi\)
−0.474171 + 0.880433i \(0.657252\pi\)
\(614\) 29.7499 1.20061
\(615\) 0 0
\(616\) 95.7107 3.85629
\(617\) 25.4049i 1.02276i 0.859353 + 0.511382i \(0.170866\pi\)
−0.859353 + 0.511382i \(0.829134\pi\)
\(618\) 0 0
\(619\) 4.97246 0.199860 0.0999299 0.994994i \(-0.468138\pi\)
0.0999299 + 0.994994i \(0.468138\pi\)
\(620\) 18.3718 67.5092i 0.737829 2.71124i
\(621\) 0 0
\(622\) 90.5528i 3.63084i
\(623\) 29.5605i 1.18432i
\(624\) 0 0
\(625\) 12.1604 + 21.8432i 0.486417 + 0.873727i
\(626\) 83.3293 3.33051
\(627\) 0 0
\(628\) 102.622i 4.09505i
\(629\) −2.82645 −0.112698
\(630\) 0 0
\(631\) −0.771437 −0.0307104 −0.0153552 0.999882i \(-0.504888\pi\)
−0.0153552 + 0.999882i \(0.504888\pi\)
\(632\) 13.8616i 0.551384i
\(633\) 0 0
\(634\) −24.9158 −0.989532
\(635\) −5.22693 1.42244i −0.207424 0.0564479i
\(636\) 0 0
\(637\) 9.31897i 0.369231i
\(638\) 19.7528i 0.782020i
\(639\) 0 0
\(640\) −42.6647 11.6107i −1.68647 0.458952i
\(641\) −41.6238 −1.64404 −0.822020 0.569459i \(-0.807153\pi\)
−0.822020 + 0.569459i \(0.807153\pi\)
\(642\) 0 0
\(643\) 7.31649i 0.288534i 0.989539 + 0.144267i \(0.0460825\pi\)
−0.989539 + 0.144267i \(0.953918\pi\)
\(644\) 25.9913 1.02420
\(645\) 0 0
\(646\) −43.4615 −1.70997
\(647\) 43.4618i 1.70866i 0.519733 + 0.854329i \(0.326032\pi\)
−0.519733 + 0.854329i \(0.673968\pi\)
\(648\) 0 0
\(649\) 9.14034 0.358790
\(650\) −21.0224 12.3571i −0.824566 0.484686i
\(651\) 0 0
\(652\) 114.040i 4.46616i
\(653\) 22.9698i 0.898878i 0.893311 + 0.449439i \(0.148376\pi\)
−0.893311 + 0.449439i \(0.851624\pi\)
\(654\) 0 0
\(655\) 6.62270 24.3359i 0.258770 0.950881i
\(656\) −99.4703 −3.88366
\(657\) 0 0
\(658\) 22.7057i 0.885160i
\(659\) 35.7491 1.39259 0.696294 0.717757i \(-0.254831\pi\)
0.696294 + 0.717757i \(0.254831\pi\)
\(660\) 0 0
\(661\) 27.3305 1.06303 0.531516 0.847048i \(-0.321622\pi\)
0.531516 + 0.847048i \(0.321622\pi\)
\(662\) 28.9950i 1.12692i
\(663\) 0 0
\(664\) −63.5406 −2.46585
\(665\) 43.0371 + 11.7120i 1.66891 + 0.454172i
\(666\) 0 0
\(667\) 3.30439i 0.127947i
\(668\) 92.3913i 3.57473i
\(669\) 0 0
\(670\) −9.47068 + 34.8011i −0.365884 + 1.34448i
\(671\) −14.9057 −0.575427
\(672\) 0 0
\(673\) 19.6281i 0.756609i −0.925681 0.378305i \(-0.876507\pi\)
0.925681 0.378305i \(-0.123493\pi\)
\(674\) 8.23363 0.317147
\(675\) 0 0
\(676\) −50.5259 −1.94330
\(677\) 3.03052i 0.116472i −0.998303 0.0582362i \(-0.981452\pi\)
0.998303 0.0582362i \(-0.0185477\pi\)
\(678\) 0 0
\(679\) 31.3457 1.20294
\(680\) −14.2971 + 52.5363i −0.548268 + 2.01467i
\(681\) 0 0
\(682\) 51.4485i 1.97007i
\(683\) 44.7410i 1.71197i 0.517004 + 0.855983i \(0.327047\pi\)
−0.517004 + 0.855983i \(0.672953\pi\)
\(684\) 0 0
\(685\) −11.3357 3.08486i −0.433114 0.117866i
\(686\) −17.4843 −0.667552
\(687\) 0 0
\(688\) 148.696i 5.66897i
\(689\) 16.9400 0.645361
\(690\) 0 0
\(691\) −13.7681 −0.523764 −0.261882 0.965100i \(-0.584343\pi\)
−0.261882 + 0.965100i \(0.584343\pi\)
\(692\) 94.3917i 3.58824i
\(693\) 0 0
\(694\) 70.0020 2.65724
\(695\) −1.77750 + 6.53163i −0.0674245 + 0.247759i
\(696\) 0 0
\(697\) 22.1156i 0.837688i
\(698\) 32.7705i 1.24038i
\(699\) 0 0
\(700\) 45.9641 78.1959i 1.73728 2.95553i
\(701\) 12.2193 0.461517 0.230758 0.973011i \(-0.425879\pi\)
0.230758 + 0.973011i \(0.425879\pi\)
\(702\) 0 0
\(703\) 5.72714i 0.216003i
\(704\) −63.6569 −2.39916
\(705\) 0 0
\(706\) 31.8556 1.19890
\(707\) 45.0956i 1.69599i
\(708\) 0 0
\(709\) 4.22619 0.158718 0.0793589 0.996846i \(-0.474713\pi\)
0.0793589 + 0.996846i \(0.474713\pi\)
\(710\) −19.7287 5.36892i −0.740405 0.201492i
\(711\) 0 0
\(712\) 73.1181i 2.74022i
\(713\) 8.60669i 0.322323i
\(714\) 0 0
\(715\) −12.5020 3.40226i −0.467548 0.127237i
\(716\) 97.1331 3.63003
\(717\) 0 0
\(718\) 19.7777i 0.738095i
\(719\) 19.2764 0.718888 0.359444 0.933167i \(-0.382966\pi\)
0.359444 + 0.933167i \(0.382966\pi\)
\(720\) 0 0
\(721\) −26.0059 −0.968509
\(722\) 37.0517i 1.37892i
\(723\) 0 0
\(724\) −45.4653 −1.68970
\(725\) 9.94142 + 5.84364i 0.369215 + 0.217027i
\(726\) 0 0
\(727\) 16.6423i 0.617227i 0.951187 + 0.308614i \(0.0998650\pi\)
−0.951187 + 0.308614i \(0.900135\pi\)
\(728\) 54.5019i 2.01998i
\(729\) 0 0
\(730\) 2.99490 11.0051i 0.110846 0.407316i
\(731\) −33.0600 −1.22277
\(732\) 0 0
\(733\) 1.77985i 0.0657404i −0.999460 0.0328702i \(-0.989535\pi\)
0.999460 0.0328702i \(-0.0104648\pi\)
\(734\) 54.9934 2.02984
\(735\) 0 0
\(736\) −24.2167 −0.892640
\(737\) 19.1635i 0.705895i
\(738\) 0 0
\(739\) −32.6285 −1.20026 −0.600130 0.799903i \(-0.704884\pi\)
−0.600130 + 0.799903i \(0.704884\pi\)
\(740\) −11.2382 3.05832i −0.413123 0.112426i
\(741\) 0 0
\(742\) 87.2055i 3.20142i
\(743\) 21.1995i 0.777734i −0.921294 0.388867i \(-0.872866\pi\)
0.921294 0.388867i \(-0.127134\pi\)
\(744\) 0 0
\(745\) −0.506254 + 1.86029i −0.0185477 + 0.0681556i
\(746\) −44.5464 −1.63096
\(747\) 0 0
\(748\) 46.9617i 1.71709i
\(749\) −39.0828 −1.42805
\(750\) 0 0
\(751\) −53.3277 −1.94595 −0.972977 0.230901i \(-0.925833\pi\)
−0.972977 + 0.230901i \(0.925833\pi\)
\(752\) 30.8680i 1.12564i
\(753\) 0 0
\(754\) −11.2481 −0.409632
\(755\) 1.09523 4.02455i 0.0398596 0.146469i
\(756\) 0 0
\(757\) 26.9137i 0.978197i −0.872229 0.489098i \(-0.837326\pi\)
0.872229 0.489098i \(-0.162674\pi\)
\(758\) 42.7433i 1.55251i
\(759\) 0 0
\(760\) −106.452 28.9697i −3.86144 1.05084i
\(761\) 19.7208 0.714879 0.357439 0.933936i \(-0.383650\pi\)
0.357439 + 0.933936i \(0.383650\pi\)
\(762\) 0 0
\(763\) 9.30835i 0.336985i
\(764\) −127.635 −4.61769
\(765\) 0 0
\(766\) 81.8883 2.95874
\(767\) 5.20492i 0.187939i
\(768\) 0 0
\(769\) 40.4230 1.45769 0.728846 0.684678i \(-0.240057\pi\)
0.728846 + 0.684678i \(0.240057\pi\)
\(770\) 17.5146 64.3592i 0.631181 2.31935i
\(771\) 0 0
\(772\) 26.1916i 0.942657i
\(773\) 14.1890i 0.510342i −0.966896 0.255171i \(-0.917868\pi\)
0.966896 0.255171i \(-0.0821317\pi\)
\(774\) 0 0
\(775\) −25.8937 15.2205i −0.930127 0.546736i
\(776\) −77.5338 −2.78330
\(777\) 0 0
\(778\) 80.2161i 2.87589i
\(779\) −44.8121 −1.60556
\(780\) 0 0
\(781\) −10.8637 −0.388735
\(782\) 10.8727i 0.388806i
\(783\) 0 0
\(784\) −65.2189 −2.32925
\(785\) 42.5095 + 11.5684i 1.51723 + 0.412895i
\(786\) 0 0
\(787\) 48.0720i 1.71358i 0.515665 + 0.856790i \(0.327545\pi\)
−0.515665 + 0.856790i \(0.672455\pi\)
\(788\) 29.5423i 1.05240i
\(789\) 0 0
\(790\) 9.32101 + 2.53660i 0.331627 + 0.0902480i
\(791\) −65.0371 −2.31245
\(792\) 0 0
\(793\) 8.48795i 0.301416i
\(794\) 2.54034 0.0901535
\(795\) 0 0
\(796\) −51.4449 −1.82342
\(797\) 35.1334i 1.24449i −0.782822 0.622245i \(-0.786221\pi\)
0.782822 0.622245i \(-0.213779\pi\)
\(798\) 0 0
\(799\) −6.86301 −0.242796
\(800\) −42.8260 + 72.8572i −1.51413 + 2.57589i
\(801\) 0 0
\(802\) 100.320i 3.54244i
\(803\) 6.06002i 0.213854i
\(804\) 0 0
\(805\) 2.92997 10.7665i 0.103268 0.379469i
\(806\) 29.2971 1.03195
\(807\) 0 0
\(808\) 111.544i 3.92411i
\(809\) −18.5994 −0.653922 −0.326961 0.945038i \(-0.606025\pi\)
−0.326961 + 0.945038i \(0.606025\pi\)
\(810\) 0 0
\(811\) −41.2856 −1.44973 −0.724867 0.688889i \(-0.758099\pi\)
−0.724867 + 0.688889i \(0.758099\pi\)
\(812\) 41.8391i 1.46826i
\(813\) 0 0
\(814\) −8.56456 −0.300188
\(815\) 47.2394 + 12.8556i 1.65473 + 0.450313i
\(816\) 0 0
\(817\) 66.9884i 2.34363i
\(818\) 61.5300i 2.15134i
\(819\) 0 0
\(820\) −23.9299 + 87.9332i −0.835669 + 3.07076i
\(821\) −5.64400 −0.196977 −0.0984885 0.995138i \(-0.531401\pi\)
−0.0984885 + 0.995138i \(0.531401\pi\)
\(822\) 0 0
\(823\) 52.1526i 1.81792i 0.416879 + 0.908962i \(0.363124\pi\)
−0.416879 + 0.908962i \(0.636876\pi\)
\(824\) 64.3256 2.24089
\(825\) 0 0
\(826\) −26.7945 −0.932299
\(827\) 10.2565i 0.356654i 0.983971 + 0.178327i \(0.0570686\pi\)
−0.983971 + 0.178327i \(0.942931\pi\)
\(828\) 0 0
\(829\) 10.0803 0.350105 0.175052 0.984559i \(-0.443990\pi\)
0.175052 + 0.984559i \(0.443990\pi\)
\(830\) −11.6276 + 42.7269i −0.403599 + 1.48307i
\(831\) 0 0
\(832\) 36.2491i 1.25671i
\(833\) 14.5004i 0.502408i
\(834\) 0 0
\(835\) 38.2717 + 10.4152i 1.32445 + 0.360432i
\(836\) −95.1569 −3.29107
\(837\) 0 0
\(838\) 50.5990i 1.74791i
\(839\) 42.0725 1.45250 0.726252 0.687428i \(-0.241260\pi\)
0.726252 + 0.687428i \(0.241260\pi\)
\(840\) 0 0
\(841\) −23.6808 −0.816579
\(842\) 39.5465i 1.36286i
\(843\) 0 0
\(844\) −49.2443 −1.69506
\(845\) −5.69573 + 20.9296i −0.195939 + 0.720000i
\(846\) 0 0
\(847\) 2.87151i 0.0986661i
\(848\) 118.555i 4.07118i
\(849\) 0 0
\(850\) 32.7109 + 19.2277i 1.12198 + 0.659505i
\(851\) −1.43274 −0.0491138
\(852\) 0 0
\(853\) 13.3261i 0.456277i 0.973629 + 0.228138i \(0.0732638\pi\)
−0.973629 + 0.228138i \(0.926736\pi\)
\(854\) 43.6952 1.49522
\(855\) 0 0
\(856\) 96.6714 3.30416
\(857\) 32.2245i 1.10077i 0.834912 + 0.550383i \(0.185518\pi\)
−0.834912 + 0.550383i \(0.814482\pi\)
\(858\) 0 0
\(859\) 28.0054 0.955530 0.477765 0.878488i \(-0.341447\pi\)
0.477765 + 0.878488i \(0.341447\pi\)
\(860\) −131.449 35.7722i −4.48238 1.21982i
\(861\) 0 0
\(862\) 66.5711i 2.26742i
\(863\) 47.0680i 1.60221i −0.598521 0.801107i \(-0.704245\pi\)
0.598521 0.801107i \(-0.295755\pi\)
\(864\) 0 0
\(865\) −39.1004 10.6407i −1.32945 0.361794i
\(866\) 71.5005 2.42968
\(867\) 0 0
\(868\) 108.975i 3.69885i
\(869\) 5.13268 0.174114
\(870\) 0 0
\(871\) −10.9125 −0.369757
\(872\) 23.0242i 0.779699i
\(873\) 0 0
\(874\) −22.0309 −0.745207
\(875\) −27.2100 27.8549i −0.919866 0.941667i
\(876\) 0 0
\(877\) 16.9389i 0.571986i 0.958232 + 0.285993i \(0.0923235\pi\)
−0.958232 + 0.285993i \(0.907677\pi\)
\(878\) 7.89078i 0.266301i
\(879\) 0 0
\(880\) −23.8108 + 87.4954i −0.802661 + 2.94947i
\(881\) −34.0552 −1.14735 −0.573674 0.819084i \(-0.694482\pi\)
−0.573674 + 0.819084i \(0.694482\pi\)
\(882\) 0 0
\(883\) 7.85431i 0.264319i 0.991228 + 0.132159i \(0.0421910\pi\)
−0.991228 + 0.132159i \(0.957809\pi\)
\(884\) −26.7421 −0.899433
\(885\) 0 0
\(886\) 32.6444 1.09671
\(887\) 50.8348i 1.70687i −0.521203 0.853433i \(-0.674517\pi\)
0.521203 0.853433i \(-0.325483\pi\)
\(888\) 0 0
\(889\) 8.43743 0.282982
\(890\) −49.1672 13.3802i −1.64809 0.448506i
\(891\) 0 0
\(892\) 64.8908i 2.17271i
\(893\) 13.9063i 0.465356i
\(894\) 0 0
\(895\) 10.9497 40.2359i 0.366008 1.34494i
\(896\) 68.8704 2.30080
\(897\) 0 0
\(898\) 32.4174i 1.08178i
\(899\) −13.8545 −0.462074
\(900\) 0 0
\(901\) −26.3587 −0.878135
\(902\) 67.0136i 2.23131i
\(903\) 0 0
\(904\) 160.870 5.35044
\(905\) −5.12525 + 18.8333i −0.170369 + 0.626041i
\(906\) 0 0
\(907\) 55.4966i 1.84273i −0.388695 0.921366i \(-0.627074\pi\)
0.388695 0.921366i \(-0.372926\pi\)
\(908\) 110.825i 3.67784i
\(909\) 0 0
\(910\) 36.6490 + 9.97357i 1.21490 + 0.330621i
\(911\) −35.8745 −1.18858 −0.594288 0.804252i \(-0.702566\pi\)
−0.594288 + 0.804252i \(0.702566\pi\)
\(912\) 0 0
\(913\) 23.5278i 0.778658i
\(914\) 38.6165 1.27732
\(915\) 0 0
\(916\) −82.7230 −2.73324
\(917\) 39.2835i 1.29726i
\(918\) 0 0
\(919\) 43.0966 1.42162 0.710812 0.703382i \(-0.248328\pi\)
0.710812 + 0.703382i \(0.248328\pi\)
\(920\) −7.24728 + 26.6310i −0.238936 + 0.877997i
\(921\) 0 0
\(922\) 43.5233i 1.43336i
\(923\) 6.18630i 0.203625i
\(924\) 0 0
\(925\) −2.53373 + 4.31048i −0.0833085 + 0.141728i
\(926\) 71.9893 2.36572
\(927\) 0 0
\(928\) 38.9825i 1.27966i
\(929\) 41.5247 1.36238 0.681190 0.732107i \(-0.261463\pi\)
0.681190 + 0.732107i \(0.261463\pi\)
\(930\) 0 0
\(931\) −29.3816 −0.962942
\(932\) 81.0363i 2.65443i
\(933\) 0 0
\(934\) −23.0425 −0.753975
\(935\) 19.4532 + 5.29394i 0.636187 + 0.173130i
\(936\) 0 0
\(937\) 18.2330i 0.595647i −0.954621 0.297823i \(-0.903739\pi\)
0.954621 0.297823i \(-0.0962606\pi\)
\(938\) 56.1768i 1.83424i
\(939\) 0 0
\(940\) −27.2878 7.42604i −0.890030 0.242211i
\(941\) 37.9004 1.23552 0.617759 0.786367i \(-0.288041\pi\)
0.617759 + 0.786367i \(0.288041\pi\)
\(942\) 0 0
\(943\) 11.2105i 0.365065i
\(944\) 36.4267 1.18559
\(945\) 0 0
\(946\) −100.177 −3.25703
\(947\) 1.57146i 0.0510655i −0.999674 0.0255328i \(-0.991872\pi\)
0.999674 0.0255328i \(-0.00812821\pi\)
\(948\) 0 0
\(949\) 3.45085 0.112019
\(950\) −38.9605 + 66.2811i −1.26404 + 2.15044i
\(951\) 0 0
\(952\) 84.8053i 2.74856i
\(953\) 15.7102i 0.508904i −0.967085 0.254452i \(-0.918105\pi\)
0.967085 0.254452i \(-0.0818951\pi\)
\(954\) 0 0
\(955\) −14.3882 + 52.8710i −0.465591 + 1.71087i
\(956\) −15.6954 −0.507624
\(957\) 0 0
\(958\) 5.39840i 0.174414i
\(959\) 18.2983 0.590883
\(960\) 0 0
\(961\) 5.08577 0.164057
\(962\) 4.87704i 0.157242i
\(963\) 0 0
\(964\) 65.4720 2.10871
\(965\) −10.8495 2.95255i −0.349257 0.0950460i
\(966\) 0 0
\(967\) 4.31176i 0.138657i −0.997594 0.0693285i \(-0.977914\pi\)
0.997594 0.0693285i \(-0.0220856\pi\)
\(968\) 7.10268i 0.228289i
\(969\) 0 0
\(970\) −14.1883 + 52.1364i −0.455558 + 1.67400i
\(971\) −4.36056 −0.139937 −0.0699686 0.997549i \(-0.522290\pi\)
−0.0699686 + 0.997549i \(0.522290\pi\)
\(972\) 0 0
\(973\) 10.5435i 0.338010i
\(974\) −102.424 −3.28189
\(975\) 0 0
\(976\) −59.4030 −1.90144
\(977\) 29.2433i 0.935576i 0.883841 + 0.467788i \(0.154949\pi\)
−0.883841 + 0.467788i \(0.845051\pi\)
\(978\) 0 0
\(979\) −27.0742 −0.865296
\(980\) −15.6899 + 57.6545i −0.501197 + 1.84170i
\(981\) 0 0
\(982\) 58.0302i 1.85182i
\(983\) 23.6085i 0.752995i 0.926418 + 0.376498i \(0.122872\pi\)
−0.926418 + 0.376498i \(0.877128\pi\)
\(984\) 0 0
\(985\) 12.2374 + 3.33027i 0.389918 + 0.106111i
\(986\) 17.5021 0.557381
\(987\) 0 0
\(988\) 54.1866i 1.72390i
\(989\) −16.7583 −0.532884
\(990\) 0 0
\(991\) −37.2039 −1.18182 −0.590910 0.806738i \(-0.701231\pi\)
−0.590910 + 0.806738i \(0.701231\pi\)
\(992\) 101.535i 3.22373i
\(993\) 0 0
\(994\) 31.8465 1.01011
\(995\) −5.79933 + 21.3103i −0.183851 + 0.675582i
\(996\) 0 0
\(997\) 57.1337i 1.80944i −0.426004 0.904721i \(-0.640079\pi\)
0.426004 0.904721i \(-0.359921\pi\)
\(998\) 101.707i 3.21947i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1665.2.c.e.334.1 18
3.2 odd 2 185.2.b.a.149.18 yes 18
5.2 odd 4 8325.2.a.cr.1.9 9
5.3 odd 4 8325.2.a.cq.1.1 9
5.4 even 2 inner 1665.2.c.e.334.18 18
15.2 even 4 925.2.a.l.1.1 9
15.8 even 4 925.2.a.m.1.9 9
15.14 odd 2 185.2.b.a.149.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.b.a.149.1 18 15.14 odd 2
185.2.b.a.149.18 yes 18 3.2 odd 2
925.2.a.l.1.1 9 15.2 even 4
925.2.a.m.1.9 9 15.8 even 4
1665.2.c.e.334.1 18 1.1 even 1 trivial
1665.2.c.e.334.18 18 5.4 even 2 inner
8325.2.a.cq.1.1 9 5.3 odd 4
8325.2.a.cr.1.9 9 5.2 odd 4