Properties

Label 1665.2.c
Level $1665$
Weight $2$
Character orbit 1665.c
Rep. character $\chi_{1665}(334,\cdot)$
Character field $\Q$
Dimension $90$
Newform subspaces $7$
Sturm bound $456$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1665 = 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1665.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(456\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1665, [\chi])\).

Total New Old
Modular forms 236 90 146
Cusp forms 220 90 130
Eisenstein series 16 0 16

Trace form

\( 90 q - 86 q^{4} + 2 q^{5} + O(q^{10}) \) \( 90 q - 86 q^{4} + 2 q^{5} - 18 q^{10} - 8 q^{11} + 102 q^{16} + 8 q^{19} - 4 q^{20} + 14 q^{25} - 12 q^{26} + 12 q^{29} - 12 q^{31} - 28 q^{34} + 6 q^{35} + 50 q^{40} - 4 q^{41} + 24 q^{44} + 16 q^{46} - 122 q^{49} + 36 q^{50} - 18 q^{55} - 24 q^{56} - 20 q^{59} - 16 q^{61} - 110 q^{64} + 4 q^{65} + 32 q^{70} + 8 q^{71} - 10 q^{74} - 32 q^{76} + 20 q^{79} + 52 q^{80} + 32 q^{85} - 80 q^{86} - 16 q^{89} + 76 q^{91} + 52 q^{94} + 20 q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1665, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1665.2.c.a 1665.c 5.b $2$ $13.295$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2iq^{2}-2q^{4}+(1+2i)q^{5}+(-4+\cdots)q^{10}+\cdots\)
1665.2.c.b 1665.c 5.b $2$ $13.295$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2q^{4}+(-1+2i)q^{5}+2iq^{7}-6q^{11}+\cdots\)
1665.2.c.c 1665.c 5.b $2$ $13.295$ \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2q^{4}+(1+2i)q^{5}-2iq^{7}+6q^{11}+\cdots\)
1665.2.c.d 1665.c 5.b $8$ $13.295$ 8.0.309760000.3 None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{4}+\beta _{5})q^{2}+(1-\beta _{1})q^{4}+(\beta _{2}+\cdots)q^{5}+\cdots\)
1665.2.c.e 1665.c 5.b $18$ $13.295$ \(\mathbb{Q}[x]/(x^{18} + \cdots)\) None \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{13})q^{2}+(-2+\beta _{3}+\beta _{4})q^{4}+\cdots\)
1665.2.c.f 1665.c 5.b $26$ $13.295$ None \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$
1665.2.c.g 1665.c 5.b $32$ $13.295$ None \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1665, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1665, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(555, [\chi])\)\(^{\oplus 2}\)