Defining parameters
Level: | \( N \) | \(=\) | \( 1665 = 3^{2} \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1665.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(456\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1665, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 236 | 90 | 146 |
Cusp forms | 220 | 90 | 130 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1665, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1665.2.c.a | $2$ | $13.295$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+2iq^{2}-2q^{4}+(1+2i)q^{5}+(-4+\cdots)q^{10}+\cdots\) |
1665.2.c.b | $2$ | $13.295$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+2q^{4}+(-1+2i)q^{5}+2iq^{7}-6q^{11}+\cdots\) |
1665.2.c.c | $2$ | $13.295$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+2q^{4}+(1+2i)q^{5}-2iq^{7}+6q^{11}+\cdots\) |
1665.2.c.d | $8$ | $13.295$ | 8.0.309760000.3 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta _{4}+\beta _{5})q^{2}+(1-\beta _{1})q^{4}+(\beta _{2}+\cdots)q^{5}+\cdots\) |
1665.2.c.e | $18$ | $13.295$ | \(\mathbb{Q}[x]/(x^{18} + \cdots)\) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+(\beta _{1}+\beta _{13})q^{2}+(-2+\beta _{3}+\beta _{4})q^{4}+\cdots\) |
1665.2.c.f | $26$ | $13.295$ | None | \(0\) | \(0\) | \(2\) | \(0\) | ||
1665.2.c.g | $32$ | $13.295$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1665, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1665, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(555, [\chi])\)\(^{\oplus 2}\)