Properties

Label 8325.2.a.cr.1.6
Level $8325$
Weight $2$
Character 8325.1
Self dual yes
Analytic conductor $66.475$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8325,2,Mod(1,8325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8325 = 3^{2} \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,5,0,11,0,0,-8,15,0,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4754596827\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 30x^{6} + 15x^{5} - 70x^{4} - 22x^{3} + 44x^{2} + 4x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.356037\) of defining polynomial
Character \(\chi\) \(=\) 8325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.35604 q^{2} -0.161165 q^{4} -0.748140 q^{7} -2.93062 q^{8} -5.40521 q^{11} -5.16556 q^{13} -1.01451 q^{14} -3.65170 q^{16} +3.44151 q^{17} +5.38802 q^{19} -7.32966 q^{22} -3.48474 q^{23} -7.00469 q^{26} +0.120574 q^{28} -6.47076 q^{29} -2.23046 q^{31} +0.909404 q^{32} +4.66682 q^{34} +1.00000 q^{37} +7.30635 q^{38} +6.44821 q^{41} -2.71018 q^{43} +0.871130 q^{44} -4.72543 q^{46} +10.3708 q^{47} -6.44029 q^{49} +0.832507 q^{52} -4.64473 q^{53} +2.19251 q^{56} -8.77459 q^{58} +12.7207 q^{59} -10.3592 q^{61} -3.02459 q^{62} +8.53658 q^{64} +6.09691 q^{67} -0.554651 q^{68} +2.80433 q^{71} +1.51542 q^{73} +1.35604 q^{74} -0.868359 q^{76} +4.04385 q^{77} -13.9090 q^{79} +8.74401 q^{82} +1.14982 q^{83} -3.67511 q^{86} +15.8406 q^{88} +0.373310 q^{89} +3.86456 q^{91} +0.561617 q^{92} +14.0632 q^{94} -8.96381 q^{97} -8.73326 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 11 q^{4} - 8 q^{7} + 15 q^{8} - 6 q^{13} + 4 q^{14} + 11 q^{16} + 18 q^{17} - 4 q^{19} - 6 q^{22} + 16 q^{23} + 6 q^{26} + 20 q^{28} + 2 q^{29} - 6 q^{31} + 35 q^{32} + 6 q^{34} + 9 q^{37}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35604 0.958863 0.479431 0.877579i \(-0.340843\pi\)
0.479431 + 0.877579i \(0.340843\pi\)
\(3\) 0 0
\(4\) −0.161165 −0.0805825
\(5\) 0 0
\(6\) 0 0
\(7\) −0.748140 −0.282770 −0.141385 0.989955i \(-0.545156\pi\)
−0.141385 + 0.989955i \(0.545156\pi\)
\(8\) −2.93062 −1.03613
\(9\) 0 0
\(10\) 0 0
\(11\) −5.40521 −1.62973 −0.814866 0.579650i \(-0.803189\pi\)
−0.814866 + 0.579650i \(0.803189\pi\)
\(12\) 0 0
\(13\) −5.16556 −1.43267 −0.716334 0.697757i \(-0.754181\pi\)
−0.716334 + 0.697757i \(0.754181\pi\)
\(14\) −1.01451 −0.271138
\(15\) 0 0
\(16\) −3.65170 −0.912924
\(17\) 3.44151 0.834690 0.417345 0.908748i \(-0.362961\pi\)
0.417345 + 0.908748i \(0.362961\pi\)
\(18\) 0 0
\(19\) 5.38802 1.23610 0.618048 0.786140i \(-0.287924\pi\)
0.618048 + 0.786140i \(0.287924\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −7.32966 −1.56269
\(23\) −3.48474 −0.726618 −0.363309 0.931669i \(-0.618353\pi\)
−0.363309 + 0.931669i \(0.618353\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −7.00469 −1.37373
\(27\) 0 0
\(28\) 0.120574 0.0227863
\(29\) −6.47076 −1.20159 −0.600795 0.799403i \(-0.705149\pi\)
−0.600795 + 0.799403i \(0.705149\pi\)
\(30\) 0 0
\(31\) −2.23046 −0.400603 −0.200301 0.979734i \(-0.564192\pi\)
−0.200301 + 0.979734i \(0.564192\pi\)
\(32\) 0.909404 0.160761
\(33\) 0 0
\(34\) 4.66682 0.800353
\(35\) 0 0
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 7.30635 1.18525
\(39\) 0 0
\(40\) 0 0
\(41\) 6.44821 1.00704 0.503521 0.863983i \(-0.332038\pi\)
0.503521 + 0.863983i \(0.332038\pi\)
\(42\) 0 0
\(43\) −2.71018 −0.413299 −0.206649 0.978415i \(-0.566256\pi\)
−0.206649 + 0.978415i \(0.566256\pi\)
\(44\) 0.871130 0.131328
\(45\) 0 0
\(46\) −4.72543 −0.696726
\(47\) 10.3708 1.51274 0.756370 0.654144i \(-0.226971\pi\)
0.756370 + 0.654144i \(0.226971\pi\)
\(48\) 0 0
\(49\) −6.44029 −0.920041
\(50\) 0 0
\(51\) 0 0
\(52\) 0.832507 0.115448
\(53\) −4.64473 −0.638002 −0.319001 0.947754i \(-0.603347\pi\)
−0.319001 + 0.947754i \(0.603347\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.19251 0.292987
\(57\) 0 0
\(58\) −8.77459 −1.15216
\(59\) 12.7207 1.65609 0.828046 0.560660i \(-0.189452\pi\)
0.828046 + 0.560660i \(0.189452\pi\)
\(60\) 0 0
\(61\) −10.3592 −1.32635 −0.663177 0.748462i \(-0.730792\pi\)
−0.663177 + 0.748462i \(0.730792\pi\)
\(62\) −3.02459 −0.384123
\(63\) 0 0
\(64\) 8.53658 1.06707
\(65\) 0 0
\(66\) 0 0
\(67\) 6.09691 0.744857 0.372428 0.928061i \(-0.378525\pi\)
0.372428 + 0.928061i \(0.378525\pi\)
\(68\) −0.554651 −0.0672613
\(69\) 0 0
\(70\) 0 0
\(71\) 2.80433 0.332813 0.166407 0.986057i \(-0.446784\pi\)
0.166407 + 0.986057i \(0.446784\pi\)
\(72\) 0 0
\(73\) 1.51542 0.177367 0.0886833 0.996060i \(-0.471734\pi\)
0.0886833 + 0.996060i \(0.471734\pi\)
\(74\) 1.35604 0.157636
\(75\) 0 0
\(76\) −0.868359 −0.0996076
\(77\) 4.04385 0.460840
\(78\) 0 0
\(79\) −13.9090 −1.56489 −0.782444 0.622721i \(-0.786027\pi\)
−0.782444 + 0.622721i \(0.786027\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 8.74401 0.965614
\(83\) 1.14982 0.126209 0.0631047 0.998007i \(-0.479900\pi\)
0.0631047 + 0.998007i \(0.479900\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −3.67511 −0.396297
\(87\) 0 0
\(88\) 15.8406 1.68861
\(89\) 0.373310 0.0395707 0.0197854 0.999804i \(-0.493702\pi\)
0.0197854 + 0.999804i \(0.493702\pi\)
\(90\) 0 0
\(91\) 3.86456 0.405116
\(92\) 0.561617 0.0585526
\(93\) 0 0
\(94\) 14.0632 1.45051
\(95\) 0 0
\(96\) 0 0
\(97\) −8.96381 −0.910137 −0.455069 0.890456i \(-0.650385\pi\)
−0.455069 + 0.890456i \(0.650385\pi\)
\(98\) −8.73326 −0.882193
\(99\) 0 0
\(100\) 0 0
\(101\) 13.9235 1.38544 0.692722 0.721205i \(-0.256411\pi\)
0.692722 + 0.721205i \(0.256411\pi\)
\(102\) 0 0
\(103\) −2.98700 −0.294318 −0.147159 0.989113i \(-0.547013\pi\)
−0.147159 + 0.989113i \(0.547013\pi\)
\(104\) 15.1383 1.48443
\(105\) 0 0
\(106\) −6.29842 −0.611756
\(107\) 6.58927 0.637009 0.318504 0.947921i \(-0.396819\pi\)
0.318504 + 0.947921i \(0.396819\pi\)
\(108\) 0 0
\(109\) 17.9577 1.72004 0.860019 0.510263i \(-0.170452\pi\)
0.860019 + 0.510263i \(0.170452\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.73198 0.258148
\(113\) 19.7970 1.86235 0.931173 0.364576i \(-0.118786\pi\)
0.931173 + 0.364576i \(0.118786\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.04286 0.0968271
\(117\) 0 0
\(118\) 17.2497 1.58797
\(119\) −2.57473 −0.236026
\(120\) 0 0
\(121\) 18.2163 1.65602
\(122\) −14.0474 −1.27179
\(123\) 0 0
\(124\) 0.359472 0.0322815
\(125\) 0 0
\(126\) 0 0
\(127\) 0.141983 0.0125989 0.00629947 0.999980i \(-0.497995\pi\)
0.00629947 + 0.999980i \(0.497995\pi\)
\(128\) 9.75710 0.862414
\(129\) 0 0
\(130\) 0 0
\(131\) 0.435890 0.0380839 0.0190420 0.999819i \(-0.493938\pi\)
0.0190420 + 0.999819i \(0.493938\pi\)
\(132\) 0 0
\(133\) −4.03099 −0.349531
\(134\) 8.26764 0.714215
\(135\) 0 0
\(136\) −10.0858 −0.864847
\(137\) 3.78307 0.323209 0.161605 0.986856i \(-0.448333\pi\)
0.161605 + 0.986856i \(0.448333\pi\)
\(138\) 0 0
\(139\) −12.7579 −1.08211 −0.541055 0.840987i \(-0.681975\pi\)
−0.541055 + 0.840987i \(0.681975\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3.80278 0.319122
\(143\) 27.9209 2.33486
\(144\) 0 0
\(145\) 0 0
\(146\) 2.05497 0.170070
\(147\) 0 0
\(148\) −0.161165 −0.0132477
\(149\) 3.72013 0.304765 0.152382 0.988322i \(-0.451305\pi\)
0.152382 + 0.988322i \(0.451305\pi\)
\(150\) 0 0
\(151\) −7.59391 −0.617984 −0.308992 0.951065i \(-0.599992\pi\)
−0.308992 + 0.951065i \(0.599992\pi\)
\(152\) −15.7902 −1.28076
\(153\) 0 0
\(154\) 5.48361 0.441882
\(155\) 0 0
\(156\) 0 0
\(157\) 16.0657 1.28218 0.641092 0.767464i \(-0.278481\pi\)
0.641092 + 0.767464i \(0.278481\pi\)
\(158\) −18.8611 −1.50051
\(159\) 0 0
\(160\) 0 0
\(161\) 2.60707 0.205466
\(162\) 0 0
\(163\) 6.99182 0.547641 0.273821 0.961781i \(-0.411713\pi\)
0.273821 + 0.961781i \(0.411713\pi\)
\(164\) −1.03923 −0.0811499
\(165\) 0 0
\(166\) 1.55920 0.121017
\(167\) −16.3483 −1.26507 −0.632534 0.774532i \(-0.717985\pi\)
−0.632534 + 0.774532i \(0.717985\pi\)
\(168\) 0 0
\(169\) 13.6830 1.05254
\(170\) 0 0
\(171\) 0 0
\(172\) 0.436786 0.0333046
\(173\) 6.21965 0.472871 0.236436 0.971647i \(-0.424021\pi\)
0.236436 + 0.971647i \(0.424021\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 19.7382 1.48782
\(177\) 0 0
\(178\) 0.506222 0.0379429
\(179\) 10.9497 0.818418 0.409209 0.912441i \(-0.365805\pi\)
0.409209 + 0.912441i \(0.365805\pi\)
\(180\) 0 0
\(181\) 8.75050 0.650419 0.325210 0.945642i \(-0.394565\pi\)
0.325210 + 0.945642i \(0.394565\pi\)
\(182\) 5.24049 0.388451
\(183\) 0 0
\(184\) 10.2124 0.752870
\(185\) 0 0
\(186\) 0 0
\(187\) −18.6021 −1.36032
\(188\) −1.67141 −0.121900
\(189\) 0 0
\(190\) 0 0
\(191\) −15.7914 −1.14263 −0.571314 0.820732i \(-0.693566\pi\)
−0.571314 + 0.820732i \(0.693566\pi\)
\(192\) 0 0
\(193\) 10.9845 0.790681 0.395341 0.918535i \(-0.370627\pi\)
0.395341 + 0.918535i \(0.370627\pi\)
\(194\) −12.1553 −0.872697
\(195\) 0 0
\(196\) 1.03795 0.0741391
\(197\) −9.86682 −0.702982 −0.351491 0.936191i \(-0.614325\pi\)
−0.351491 + 0.936191i \(0.614325\pi\)
\(198\) 0 0
\(199\) 5.58756 0.396091 0.198046 0.980193i \(-0.436541\pi\)
0.198046 + 0.980193i \(0.436541\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 18.8808 1.32845
\(203\) 4.84104 0.339774
\(204\) 0 0
\(205\) 0 0
\(206\) −4.05048 −0.282210
\(207\) 0 0
\(208\) 18.8630 1.30792
\(209\) −29.1233 −2.01450
\(210\) 0 0
\(211\) −1.95780 −0.134781 −0.0673904 0.997727i \(-0.521467\pi\)
−0.0673904 + 0.997727i \(0.521467\pi\)
\(212\) 0.748567 0.0514118
\(213\) 0 0
\(214\) 8.93529 0.610804
\(215\) 0 0
\(216\) 0 0
\(217\) 1.66870 0.113279
\(218\) 24.3513 1.64928
\(219\) 0 0
\(220\) 0 0
\(221\) −17.7773 −1.19583
\(222\) 0 0
\(223\) −8.97271 −0.600857 −0.300429 0.953804i \(-0.597130\pi\)
−0.300429 + 0.953804i \(0.597130\pi\)
\(224\) −0.680362 −0.0454586
\(225\) 0 0
\(226\) 26.8455 1.78573
\(227\) 7.78659 0.516814 0.258407 0.966036i \(-0.416802\pi\)
0.258407 + 0.966036i \(0.416802\pi\)
\(228\) 0 0
\(229\) −9.69814 −0.640871 −0.320435 0.947270i \(-0.603829\pi\)
−0.320435 + 0.947270i \(0.603829\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 18.9633 1.24500
\(233\) 22.4897 1.47335 0.736676 0.676246i \(-0.236394\pi\)
0.736676 + 0.676246i \(0.236394\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2.05013 −0.133452
\(237\) 0 0
\(238\) −3.49143 −0.226316
\(239\) 22.3620 1.44648 0.723238 0.690598i \(-0.242653\pi\)
0.723238 + 0.690598i \(0.242653\pi\)
\(240\) 0 0
\(241\) −4.78481 −0.308217 −0.154108 0.988054i \(-0.549250\pi\)
−0.154108 + 0.988054i \(0.549250\pi\)
\(242\) 24.7019 1.58790
\(243\) 0 0
\(244\) 1.66953 0.106881
\(245\) 0 0
\(246\) 0 0
\(247\) −27.8321 −1.77092
\(248\) 6.53663 0.415076
\(249\) 0 0
\(250\) 0 0
\(251\) 0.357304 0.0225529 0.0112764 0.999936i \(-0.496411\pi\)
0.0112764 + 0.999936i \(0.496411\pi\)
\(252\) 0 0
\(253\) 18.8357 1.18419
\(254\) 0.192534 0.0120807
\(255\) 0 0
\(256\) −3.84217 −0.240135
\(257\) 7.93068 0.494702 0.247351 0.968926i \(-0.420440\pi\)
0.247351 + 0.968926i \(0.420440\pi\)
\(258\) 0 0
\(259\) −0.748140 −0.0464872
\(260\) 0 0
\(261\) 0 0
\(262\) 0.591083 0.0365172
\(263\) −2.56626 −0.158242 −0.0791211 0.996865i \(-0.525211\pi\)
−0.0791211 + 0.996865i \(0.525211\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −5.46617 −0.335153
\(267\) 0 0
\(268\) −0.982609 −0.0600224
\(269\) −0.834873 −0.0509031 −0.0254516 0.999676i \(-0.508102\pi\)
−0.0254516 + 0.999676i \(0.508102\pi\)
\(270\) 0 0
\(271\) 14.5172 0.881855 0.440928 0.897543i \(-0.354650\pi\)
0.440928 + 0.897543i \(0.354650\pi\)
\(272\) −12.5674 −0.762008
\(273\) 0 0
\(274\) 5.12998 0.309913
\(275\) 0 0
\(276\) 0 0
\(277\) 31.2010 1.87469 0.937344 0.348406i \(-0.113277\pi\)
0.937344 + 0.348406i \(0.113277\pi\)
\(278\) −17.3002 −1.03759
\(279\) 0 0
\(280\) 0 0
\(281\) 13.0674 0.779533 0.389767 0.920914i \(-0.372556\pi\)
0.389767 + 0.920914i \(0.372556\pi\)
\(282\) 0 0
\(283\) 3.47900 0.206805 0.103402 0.994640i \(-0.467027\pi\)
0.103402 + 0.994640i \(0.467027\pi\)
\(284\) −0.451960 −0.0268189
\(285\) 0 0
\(286\) 37.8618 2.23881
\(287\) −4.82417 −0.284762
\(288\) 0 0
\(289\) −5.15599 −0.303293
\(290\) 0 0
\(291\) 0 0
\(292\) −0.244233 −0.0142926
\(293\) −30.0461 −1.75531 −0.877655 0.479293i \(-0.840893\pi\)
−0.877655 + 0.479293i \(0.840893\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2.93062 −0.170339
\(297\) 0 0
\(298\) 5.04463 0.292228
\(299\) 18.0006 1.04100
\(300\) 0 0
\(301\) 2.02760 0.116869
\(302\) −10.2976 −0.592562
\(303\) 0 0
\(304\) −19.6754 −1.12846
\(305\) 0 0
\(306\) 0 0
\(307\) −26.3957 −1.50648 −0.753241 0.657745i \(-0.771510\pi\)
−0.753241 + 0.657745i \(0.771510\pi\)
\(308\) −0.651727 −0.0371356
\(309\) 0 0
\(310\) 0 0
\(311\) 14.8744 0.843447 0.421724 0.906724i \(-0.361425\pi\)
0.421724 + 0.906724i \(0.361425\pi\)
\(312\) 0 0
\(313\) −0.373591 −0.0211166 −0.0105583 0.999944i \(-0.503361\pi\)
−0.0105583 + 0.999944i \(0.503361\pi\)
\(314\) 21.7857 1.22944
\(315\) 0 0
\(316\) 2.24165 0.126103
\(317\) −5.02971 −0.282497 −0.141248 0.989974i \(-0.545112\pi\)
−0.141248 + 0.989974i \(0.545112\pi\)
\(318\) 0 0
\(319\) 34.9758 1.95827
\(320\) 0 0
\(321\) 0 0
\(322\) 3.53528 0.197014
\(323\) 18.5429 1.03176
\(324\) 0 0
\(325\) 0 0
\(326\) 9.48116 0.525113
\(327\) 0 0
\(328\) −18.8972 −1.04343
\(329\) −7.75883 −0.427758
\(330\) 0 0
\(331\) 2.14829 0.118081 0.0590404 0.998256i \(-0.481196\pi\)
0.0590404 + 0.998256i \(0.481196\pi\)
\(332\) −0.185311 −0.0101703
\(333\) 0 0
\(334\) −22.1689 −1.21303
\(335\) 0 0
\(336\) 0 0
\(337\) 14.2432 0.775878 0.387939 0.921685i \(-0.373187\pi\)
0.387939 + 0.921685i \(0.373187\pi\)
\(338\) 18.5546 1.00924
\(339\) 0 0
\(340\) 0 0
\(341\) 12.0561 0.652875
\(342\) 0 0
\(343\) 10.0552 0.542931
\(344\) 7.94251 0.428231
\(345\) 0 0
\(346\) 8.43408 0.453419
\(347\) 21.3584 1.14658 0.573289 0.819353i \(-0.305667\pi\)
0.573289 + 0.819353i \(0.305667\pi\)
\(348\) 0 0
\(349\) −8.65232 −0.463148 −0.231574 0.972817i \(-0.574388\pi\)
−0.231574 + 0.972817i \(0.574388\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4.91552 −0.261998
\(353\) −24.5145 −1.30477 −0.652387 0.757886i \(-0.726232\pi\)
−0.652387 + 0.757886i \(0.726232\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.0601644 −0.00318871
\(357\) 0 0
\(358\) 14.8482 0.784750
\(359\) −20.8964 −1.10287 −0.551434 0.834218i \(-0.685919\pi\)
−0.551434 + 0.834218i \(0.685919\pi\)
\(360\) 0 0
\(361\) 10.0307 0.527933
\(362\) 11.8660 0.623663
\(363\) 0 0
\(364\) −0.622832 −0.0326453
\(365\) 0 0
\(366\) 0 0
\(367\) 0.961719 0.0502013 0.0251007 0.999685i \(-0.492009\pi\)
0.0251007 + 0.999685i \(0.492009\pi\)
\(368\) 12.7252 0.663347
\(369\) 0 0
\(370\) 0 0
\(371\) 3.47491 0.180408
\(372\) 0 0
\(373\) −16.9978 −0.880114 −0.440057 0.897970i \(-0.645042\pi\)
−0.440057 + 0.897970i \(0.645042\pi\)
\(374\) −25.2251 −1.30436
\(375\) 0 0
\(376\) −30.3929 −1.56740
\(377\) 33.4251 1.72148
\(378\) 0 0
\(379\) 12.9112 0.663203 0.331601 0.943420i \(-0.392411\pi\)
0.331601 + 0.943420i \(0.392411\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −21.4138 −1.09562
\(383\) 13.8233 0.706337 0.353168 0.935560i \(-0.385104\pi\)
0.353168 + 0.935560i \(0.385104\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 14.8954 0.758155
\(387\) 0 0
\(388\) 1.44465 0.0733411
\(389\) 10.0408 0.509089 0.254544 0.967061i \(-0.418074\pi\)
0.254544 + 0.967061i \(0.418074\pi\)
\(390\) 0 0
\(391\) −11.9928 −0.606500
\(392\) 18.8740 0.953282
\(393\) 0 0
\(394\) −13.3798 −0.674063
\(395\) 0 0
\(396\) 0 0
\(397\) −4.87476 −0.244657 −0.122329 0.992490i \(-0.539036\pi\)
−0.122329 + 0.992490i \(0.539036\pi\)
\(398\) 7.57693 0.379797
\(399\) 0 0
\(400\) 0 0
\(401\) 5.97844 0.298549 0.149275 0.988796i \(-0.452306\pi\)
0.149275 + 0.988796i \(0.452306\pi\)
\(402\) 0 0
\(403\) 11.5216 0.573930
\(404\) −2.24398 −0.111642
\(405\) 0 0
\(406\) 6.56462 0.325797
\(407\) −5.40521 −0.267926
\(408\) 0 0
\(409\) −28.3419 −1.40142 −0.700709 0.713447i \(-0.747133\pi\)
−0.700709 + 0.713447i \(0.747133\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.481399 0.0237168
\(413\) −9.51686 −0.468294
\(414\) 0 0
\(415\) 0 0
\(416\) −4.69758 −0.230318
\(417\) 0 0
\(418\) −39.4923 −1.93163
\(419\) −9.61738 −0.469840 −0.234920 0.972015i \(-0.575483\pi\)
−0.234920 + 0.972015i \(0.575483\pi\)
\(420\) 0 0
\(421\) −8.65638 −0.421886 −0.210943 0.977498i \(-0.567653\pi\)
−0.210943 + 0.977498i \(0.567653\pi\)
\(422\) −2.65485 −0.129236
\(423\) 0 0
\(424\) 13.6119 0.661053
\(425\) 0 0
\(426\) 0 0
\(427\) 7.75011 0.375054
\(428\) −1.06196 −0.0513317
\(429\) 0 0
\(430\) 0 0
\(431\) −34.7519 −1.67394 −0.836969 0.547250i \(-0.815675\pi\)
−0.836969 + 0.547250i \(0.815675\pi\)
\(432\) 0 0
\(433\) −27.9319 −1.34232 −0.671161 0.741312i \(-0.734204\pi\)
−0.671161 + 0.741312i \(0.734204\pi\)
\(434\) 2.26281 0.108619
\(435\) 0 0
\(436\) −2.89415 −0.138605
\(437\) −18.7758 −0.898169
\(438\) 0 0
\(439\) −23.0305 −1.09919 −0.549593 0.835433i \(-0.685217\pi\)
−0.549593 + 0.835433i \(0.685217\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −24.1067 −1.14664
\(443\) 27.7267 1.31733 0.658667 0.752435i \(-0.271121\pi\)
0.658667 + 0.752435i \(0.271121\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −12.1673 −0.576139
\(447\) 0 0
\(448\) −6.38656 −0.301736
\(449\) −26.4363 −1.24761 −0.623804 0.781581i \(-0.714414\pi\)
−0.623804 + 0.781581i \(0.714414\pi\)
\(450\) 0 0
\(451\) −34.8539 −1.64121
\(452\) −3.19058 −0.150072
\(453\) 0 0
\(454\) 10.5589 0.495554
\(455\) 0 0
\(456\) 0 0
\(457\) −26.3869 −1.23433 −0.617164 0.786835i \(-0.711718\pi\)
−0.617164 + 0.786835i \(0.711718\pi\)
\(458\) −13.1510 −0.614507
\(459\) 0 0
\(460\) 0 0
\(461\) 12.8328 0.597684 0.298842 0.954303i \(-0.403400\pi\)
0.298842 + 0.954303i \(0.403400\pi\)
\(462\) 0 0
\(463\) −8.59902 −0.399630 −0.199815 0.979834i \(-0.564034\pi\)
−0.199815 + 0.979834i \(0.564034\pi\)
\(464\) 23.6293 1.09696
\(465\) 0 0
\(466\) 30.4969 1.41274
\(467\) 29.1169 1.34737 0.673686 0.739018i \(-0.264710\pi\)
0.673686 + 0.739018i \(0.264710\pi\)
\(468\) 0 0
\(469\) −4.56135 −0.210623
\(470\) 0 0
\(471\) 0 0
\(472\) −37.2795 −1.71593
\(473\) 14.6491 0.673566
\(474\) 0 0
\(475\) 0 0
\(476\) 0.414957 0.0190195
\(477\) 0 0
\(478\) 30.3237 1.38697
\(479\) −35.3714 −1.61616 −0.808081 0.589072i \(-0.799493\pi\)
−0.808081 + 0.589072i \(0.799493\pi\)
\(480\) 0 0
\(481\) −5.16556 −0.235529
\(482\) −6.48837 −0.295537
\(483\) 0 0
\(484\) −2.93582 −0.133446
\(485\) 0 0
\(486\) 0 0
\(487\) 37.1133 1.68176 0.840882 0.541219i \(-0.182037\pi\)
0.840882 + 0.541219i \(0.182037\pi\)
\(488\) 30.3587 1.37428
\(489\) 0 0
\(490\) 0 0
\(491\) 30.6327 1.38243 0.691217 0.722647i \(-0.257075\pi\)
0.691217 + 0.722647i \(0.257075\pi\)
\(492\) 0 0
\(493\) −22.2692 −1.00295
\(494\) −37.7414 −1.69806
\(495\) 0 0
\(496\) 8.14496 0.365720
\(497\) −2.09804 −0.0941098
\(498\) 0 0
\(499\) −26.3356 −1.17894 −0.589472 0.807789i \(-0.700664\pi\)
−0.589472 + 0.807789i \(0.700664\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.484518 0.0216251
\(503\) 20.8358 0.929023 0.464511 0.885567i \(-0.346230\pi\)
0.464511 + 0.885567i \(0.346230\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 25.5419 1.13548
\(507\) 0 0
\(508\) −0.0228827 −0.00101525
\(509\) −3.57224 −0.158337 −0.0791685 0.996861i \(-0.525227\pi\)
−0.0791685 + 0.996861i \(0.525227\pi\)
\(510\) 0 0
\(511\) −1.13375 −0.0501540
\(512\) −24.7243 −1.09267
\(513\) 0 0
\(514\) 10.7543 0.474352
\(515\) 0 0
\(516\) 0 0
\(517\) −56.0565 −2.46536
\(518\) −1.01451 −0.0445748
\(519\) 0 0
\(520\) 0 0
\(521\) −36.9568 −1.61911 −0.809554 0.587045i \(-0.800291\pi\)
−0.809554 + 0.587045i \(0.800291\pi\)
\(522\) 0 0
\(523\) 16.0177 0.700405 0.350203 0.936674i \(-0.386113\pi\)
0.350203 + 0.936674i \(0.386113\pi\)
\(524\) −0.0702502 −0.00306890
\(525\) 0 0
\(526\) −3.47994 −0.151733
\(527\) −7.67616 −0.334379
\(528\) 0 0
\(529\) −10.8566 −0.472027
\(530\) 0 0
\(531\) 0 0
\(532\) 0.649655 0.0281661
\(533\) −33.3086 −1.44276
\(534\) 0 0
\(535\) 0 0
\(536\) −17.8677 −0.771768
\(537\) 0 0
\(538\) −1.13212 −0.0488091
\(539\) 34.8111 1.49942
\(540\) 0 0
\(541\) −9.82948 −0.422602 −0.211301 0.977421i \(-0.567770\pi\)
−0.211301 + 0.977421i \(0.567770\pi\)
\(542\) 19.6858 0.845578
\(543\) 0 0
\(544\) 3.12973 0.134186
\(545\) 0 0
\(546\) 0 0
\(547\) 16.7689 0.716987 0.358493 0.933532i \(-0.383291\pi\)
0.358493 + 0.933532i \(0.383291\pi\)
\(548\) −0.609698 −0.0260450
\(549\) 0 0
\(550\) 0 0
\(551\) −34.8646 −1.48528
\(552\) 0 0
\(553\) 10.4059 0.442504
\(554\) 42.3097 1.79757
\(555\) 0 0
\(556\) 2.05612 0.0871990
\(557\) 35.3749 1.49888 0.749440 0.662072i \(-0.230323\pi\)
0.749440 + 0.662072i \(0.230323\pi\)
\(558\) 0 0
\(559\) 13.9996 0.592120
\(560\) 0 0
\(561\) 0 0
\(562\) 17.7198 0.747465
\(563\) 16.7458 0.705751 0.352876 0.935670i \(-0.385204\pi\)
0.352876 + 0.935670i \(0.385204\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.71765 0.198298
\(567\) 0 0
\(568\) −8.21844 −0.344838
\(569\) 26.0953 1.09397 0.546987 0.837141i \(-0.315775\pi\)
0.546987 + 0.837141i \(0.315775\pi\)
\(570\) 0 0
\(571\) 24.5326 1.02666 0.513328 0.858193i \(-0.328413\pi\)
0.513328 + 0.858193i \(0.328413\pi\)
\(572\) −4.49987 −0.188149
\(573\) 0 0
\(574\) −6.54175 −0.273047
\(575\) 0 0
\(576\) 0 0
\(577\) 21.9665 0.914479 0.457239 0.889344i \(-0.348838\pi\)
0.457239 + 0.889344i \(0.348838\pi\)
\(578\) −6.99171 −0.290817
\(579\) 0 0
\(580\) 0 0
\(581\) −0.860228 −0.0356883
\(582\) 0 0
\(583\) 25.1057 1.03977
\(584\) −4.44112 −0.183775
\(585\) 0 0
\(586\) −40.7436 −1.68310
\(587\) 14.6771 0.605788 0.302894 0.953024i \(-0.402047\pi\)
0.302894 + 0.953024i \(0.402047\pi\)
\(588\) 0 0
\(589\) −12.0178 −0.495183
\(590\) 0 0
\(591\) 0 0
\(592\) −3.65170 −0.150084
\(593\) −6.40723 −0.263113 −0.131557 0.991309i \(-0.541998\pi\)
−0.131557 + 0.991309i \(0.541998\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.599554 −0.0245587
\(597\) 0 0
\(598\) 24.4095 0.998178
\(599\) −19.0689 −0.779133 −0.389566 0.920998i \(-0.627375\pi\)
−0.389566 + 0.920998i \(0.627375\pi\)
\(600\) 0 0
\(601\) 22.2923 0.909320 0.454660 0.890665i \(-0.349761\pi\)
0.454660 + 0.890665i \(0.349761\pi\)
\(602\) 2.74949 0.112061
\(603\) 0 0
\(604\) 1.22387 0.0497987
\(605\) 0 0
\(606\) 0 0
\(607\) 16.2888 0.661143 0.330571 0.943781i \(-0.392759\pi\)
0.330571 + 0.943781i \(0.392759\pi\)
\(608\) 4.89988 0.198717
\(609\) 0 0
\(610\) 0 0
\(611\) −53.5711 −2.16726
\(612\) 0 0
\(613\) 1.73076 0.0699046 0.0349523 0.999389i \(-0.488872\pi\)
0.0349523 + 0.999389i \(0.488872\pi\)
\(614\) −35.7935 −1.44451
\(615\) 0 0
\(616\) −11.8510 −0.477490
\(617\) −18.1783 −0.731830 −0.365915 0.930648i \(-0.619244\pi\)
−0.365915 + 0.930648i \(0.619244\pi\)
\(618\) 0 0
\(619\) 32.8475 1.32025 0.660127 0.751154i \(-0.270503\pi\)
0.660127 + 0.751154i \(0.270503\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 20.1702 0.808750
\(623\) −0.279288 −0.0111894
\(624\) 0 0
\(625\) 0 0
\(626\) −0.506603 −0.0202479
\(627\) 0 0
\(628\) −2.58923 −0.103322
\(629\) 3.44151 0.137222
\(630\) 0 0
\(631\) −24.9007 −0.991280 −0.495640 0.868528i \(-0.665066\pi\)
−0.495640 + 0.868528i \(0.665066\pi\)
\(632\) 40.7621 1.62143
\(633\) 0 0
\(634\) −6.82048 −0.270876
\(635\) 0 0
\(636\) 0 0
\(637\) 33.2677 1.31811
\(638\) 47.4285 1.87771
\(639\) 0 0
\(640\) 0 0
\(641\) 31.7199 1.25286 0.626430 0.779477i \(-0.284515\pi\)
0.626430 + 0.779477i \(0.284515\pi\)
\(642\) 0 0
\(643\) 32.4283 1.27885 0.639424 0.768854i \(-0.279173\pi\)
0.639424 + 0.768854i \(0.279173\pi\)
\(644\) −0.420168 −0.0165570
\(645\) 0 0
\(646\) 25.1449 0.989312
\(647\) 45.5239 1.78973 0.894864 0.446339i \(-0.147272\pi\)
0.894864 + 0.446339i \(0.147272\pi\)
\(648\) 0 0
\(649\) −68.7580 −2.69899
\(650\) 0 0
\(651\) 0 0
\(652\) −1.12684 −0.0441303
\(653\) 18.4351 0.721421 0.360710 0.932678i \(-0.382534\pi\)
0.360710 + 0.932678i \(0.382534\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −23.5469 −0.919352
\(657\) 0 0
\(658\) −10.5213 −0.410161
\(659\) −44.1954 −1.72161 −0.860805 0.508935i \(-0.830039\pi\)
−0.860805 + 0.508935i \(0.830039\pi\)
\(660\) 0 0
\(661\) 11.9408 0.464443 0.232222 0.972663i \(-0.425401\pi\)
0.232222 + 0.972663i \(0.425401\pi\)
\(662\) 2.91316 0.113223
\(663\) 0 0
\(664\) −3.36969 −0.130769
\(665\) 0 0
\(666\) 0 0
\(667\) 22.5489 0.873097
\(668\) 2.63477 0.101942
\(669\) 0 0
\(670\) 0 0
\(671\) 55.9934 2.16160
\(672\) 0 0
\(673\) 36.3828 1.40245 0.701227 0.712938i \(-0.252636\pi\)
0.701227 + 0.712938i \(0.252636\pi\)
\(674\) 19.3143 0.743960
\(675\) 0 0
\(676\) −2.20522 −0.0848161
\(677\) −6.30279 −0.242236 −0.121118 0.992638i \(-0.538648\pi\)
−0.121118 + 0.992638i \(0.538648\pi\)
\(678\) 0 0
\(679\) 6.70619 0.257360
\(680\) 0 0
\(681\) 0 0
\(682\) 16.3485 0.626017
\(683\) −5.75633 −0.220260 −0.110130 0.993917i \(-0.535127\pi\)
−0.110130 + 0.993917i \(0.535127\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 13.6352 0.520596
\(687\) 0 0
\(688\) 9.89676 0.377310
\(689\) 23.9926 0.914045
\(690\) 0 0
\(691\) 46.6320 1.77397 0.886983 0.461802i \(-0.152797\pi\)
0.886983 + 0.461802i \(0.152797\pi\)
\(692\) −1.00239 −0.0381051
\(693\) 0 0
\(694\) 28.9627 1.09941
\(695\) 0 0
\(696\) 0 0
\(697\) 22.1916 0.840567
\(698\) −11.7329 −0.444095
\(699\) 0 0
\(700\) 0 0
\(701\) −4.14142 −0.156419 −0.0782096 0.996937i \(-0.524920\pi\)
−0.0782096 + 0.996937i \(0.524920\pi\)
\(702\) 0 0
\(703\) 5.38802 0.203213
\(704\) −46.1420 −1.73904
\(705\) 0 0
\(706\) −33.2425 −1.25110
\(707\) −10.4168 −0.391762
\(708\) 0 0
\(709\) −42.7621 −1.60596 −0.802981 0.596004i \(-0.796754\pi\)
−0.802981 + 0.596004i \(0.796754\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.09403 −0.0410004
\(713\) 7.77257 0.291085
\(714\) 0 0
\(715\) 0 0
\(716\) −1.76470 −0.0659501
\(717\) 0 0
\(718\) −28.3363 −1.05750
\(719\) 6.85976 0.255826 0.127913 0.991785i \(-0.459172\pi\)
0.127913 + 0.991785i \(0.459172\pi\)
\(720\) 0 0
\(721\) 2.23469 0.0832243
\(722\) 13.6020 0.506215
\(723\) 0 0
\(724\) −1.41027 −0.0524124
\(725\) 0 0
\(726\) 0 0
\(727\) −7.85944 −0.291490 −0.145745 0.989322i \(-0.546558\pi\)
−0.145745 + 0.989322i \(0.546558\pi\)
\(728\) −11.3256 −0.419753
\(729\) 0 0
\(730\) 0 0
\(731\) −9.32713 −0.344976
\(732\) 0 0
\(733\) 12.8442 0.474411 0.237206 0.971459i \(-0.423769\pi\)
0.237206 + 0.971459i \(0.423769\pi\)
\(734\) 1.30413 0.0481362
\(735\) 0 0
\(736\) −3.16903 −0.116812
\(737\) −32.9551 −1.21392
\(738\) 0 0
\(739\) 13.2976 0.489160 0.244580 0.969629i \(-0.421350\pi\)
0.244580 + 0.969629i \(0.421350\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 4.71210 0.172987
\(743\) 36.2989 1.33168 0.665839 0.746096i \(-0.268074\pi\)
0.665839 + 0.746096i \(0.268074\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −23.0497 −0.843908
\(747\) 0 0
\(748\) 2.99800 0.109618
\(749\) −4.92970 −0.180127
\(750\) 0 0
\(751\) −24.5638 −0.896346 −0.448173 0.893947i \(-0.647925\pi\)
−0.448173 + 0.893947i \(0.647925\pi\)
\(752\) −37.8711 −1.38102
\(753\) 0 0
\(754\) 45.3257 1.65066
\(755\) 0 0
\(756\) 0 0
\(757\) −26.5324 −0.964336 −0.482168 0.876079i \(-0.660150\pi\)
−0.482168 + 0.876079i \(0.660150\pi\)
\(758\) 17.5080 0.635920
\(759\) 0 0
\(760\) 0 0
\(761\) 2.08409 0.0755481 0.0377740 0.999286i \(-0.487973\pi\)
0.0377740 + 0.999286i \(0.487973\pi\)
\(762\) 0 0
\(763\) −13.4349 −0.486376
\(764\) 2.54502 0.0920757
\(765\) 0 0
\(766\) 18.7449 0.677280
\(767\) −65.7095 −2.37263
\(768\) 0 0
\(769\) 37.4780 1.35149 0.675746 0.737135i \(-0.263822\pi\)
0.675746 + 0.737135i \(0.263822\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.77032 −0.0637150
\(773\) −51.5098 −1.85268 −0.926339 0.376692i \(-0.877062\pi\)
−0.926339 + 0.376692i \(0.877062\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 26.2695 0.943021
\(777\) 0 0
\(778\) 13.6157 0.488146
\(779\) 34.7431 1.24480
\(780\) 0 0
\(781\) −15.1580 −0.542396
\(782\) −16.2626 −0.581550
\(783\) 0 0
\(784\) 23.5180 0.839927
\(785\) 0 0
\(786\) 0 0
\(787\) 30.5759 1.08991 0.544957 0.838464i \(-0.316546\pi\)
0.544957 + 0.838464i \(0.316546\pi\)
\(788\) 1.59019 0.0566480
\(789\) 0 0
\(790\) 0 0
\(791\) −14.8109 −0.526617
\(792\) 0 0
\(793\) 53.5109 1.90023
\(794\) −6.61035 −0.234593
\(795\) 0 0
\(796\) −0.900518 −0.0319180
\(797\) 14.8601 0.526373 0.263186 0.964745i \(-0.415227\pi\)
0.263186 + 0.964745i \(0.415227\pi\)
\(798\) 0 0
\(799\) 35.6913 1.26267
\(800\) 0 0
\(801\) 0 0
\(802\) 8.10699 0.286268
\(803\) −8.19116 −0.289060
\(804\) 0 0
\(805\) 0 0
\(806\) 15.6237 0.550321
\(807\) 0 0
\(808\) −40.8046 −1.43550
\(809\) 17.9217 0.630094 0.315047 0.949076i \(-0.397980\pi\)
0.315047 + 0.949076i \(0.397980\pi\)
\(810\) 0 0
\(811\) −25.4430 −0.893425 −0.446712 0.894678i \(-0.647405\pi\)
−0.446712 + 0.894678i \(0.647405\pi\)
\(812\) −0.780205 −0.0273798
\(813\) 0 0
\(814\) −7.32966 −0.256904
\(815\) 0 0
\(816\) 0 0
\(817\) −14.6025 −0.510877
\(818\) −38.4327 −1.34377
\(819\) 0 0
\(820\) 0 0
\(821\) −33.2113 −1.15908 −0.579541 0.814943i \(-0.696768\pi\)
−0.579541 + 0.814943i \(0.696768\pi\)
\(822\) 0 0
\(823\) 50.9984 1.77769 0.888847 0.458205i \(-0.151507\pi\)
0.888847 + 0.458205i \(0.151507\pi\)
\(824\) 8.75375 0.304951
\(825\) 0 0
\(826\) −12.9052 −0.449030
\(827\) 41.5779 1.44580 0.722902 0.690951i \(-0.242808\pi\)
0.722902 + 0.690951i \(0.242808\pi\)
\(828\) 0 0
\(829\) −17.8704 −0.620665 −0.310332 0.950628i \(-0.600440\pi\)
−0.310332 + 0.950628i \(0.600440\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −44.0962 −1.52876
\(833\) −22.1643 −0.767948
\(834\) 0 0
\(835\) 0 0
\(836\) 4.69366 0.162334
\(837\) 0 0
\(838\) −13.0415 −0.450512
\(839\) −26.2881 −0.907565 −0.453783 0.891112i \(-0.649926\pi\)
−0.453783 + 0.891112i \(0.649926\pi\)
\(840\) 0 0
\(841\) 12.8708 0.443820
\(842\) −11.7384 −0.404531
\(843\) 0 0
\(844\) 0.315529 0.0108610
\(845\) 0 0
\(846\) 0 0
\(847\) −13.6283 −0.468275
\(848\) 16.9611 0.582448
\(849\) 0 0
\(850\) 0 0
\(851\) −3.48474 −0.119455
\(852\) 0 0
\(853\) 32.1407 1.10047 0.550237 0.835008i \(-0.314537\pi\)
0.550237 + 0.835008i \(0.314537\pi\)
\(854\) 10.5094 0.359625
\(855\) 0 0
\(856\) −19.3106 −0.660024
\(857\) −47.5492 −1.62425 −0.812125 0.583483i \(-0.801690\pi\)
−0.812125 + 0.583483i \(0.801690\pi\)
\(858\) 0 0
\(859\) 13.3037 0.453917 0.226959 0.973904i \(-0.427122\pi\)
0.226959 + 0.973904i \(0.427122\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −47.1248 −1.60508
\(863\) −4.07561 −0.138735 −0.0693676 0.997591i \(-0.522098\pi\)
−0.0693676 + 0.997591i \(0.522098\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −37.8767 −1.28710
\(867\) 0 0
\(868\) −0.268935 −0.00912826
\(869\) 75.1812 2.55035
\(870\) 0 0
\(871\) −31.4940 −1.06713
\(872\) −52.6272 −1.78218
\(873\) 0 0
\(874\) −25.4607 −0.861221
\(875\) 0 0
\(876\) 0 0
\(877\) 26.7909 0.904665 0.452333 0.891849i \(-0.350592\pi\)
0.452333 + 0.891849i \(0.350592\pi\)
\(878\) −31.2302 −1.05397
\(879\) 0 0
\(880\) 0 0
\(881\) −10.8047 −0.364018 −0.182009 0.983297i \(-0.558260\pi\)
−0.182009 + 0.983297i \(0.558260\pi\)
\(882\) 0 0
\(883\) −47.6789 −1.60452 −0.802261 0.596974i \(-0.796370\pi\)
−0.802261 + 0.596974i \(0.796370\pi\)
\(884\) 2.86508 0.0963632
\(885\) 0 0
\(886\) 37.5984 1.26314
\(887\) 44.6016 1.49757 0.748787 0.662811i \(-0.230637\pi\)
0.748787 + 0.662811i \(0.230637\pi\)
\(888\) 0 0
\(889\) −0.106223 −0.00356261
\(890\) 0 0
\(891\) 0 0
\(892\) 1.44609 0.0484185
\(893\) 55.8782 1.86989
\(894\) 0 0
\(895\) 0 0
\(896\) −7.29968 −0.243865
\(897\) 0 0
\(898\) −35.8487 −1.19629
\(899\) 14.4328 0.481360
\(900\) 0 0
\(901\) −15.9849 −0.532534
\(902\) −47.2632 −1.57369
\(903\) 0 0
\(904\) −58.0175 −1.92963
\(905\) 0 0
\(906\) 0 0
\(907\) −0.577224 −0.0191664 −0.00958321 0.999954i \(-0.503050\pi\)
−0.00958321 + 0.999954i \(0.503050\pi\)
\(908\) −1.25493 −0.0416461
\(909\) 0 0
\(910\) 0 0
\(911\) −14.8648 −0.492492 −0.246246 0.969207i \(-0.579197\pi\)
−0.246246 + 0.969207i \(0.579197\pi\)
\(912\) 0 0
\(913\) −6.21503 −0.205687
\(914\) −35.7816 −1.18355
\(915\) 0 0
\(916\) 1.56300 0.0516430
\(917\) −0.326107 −0.0107690
\(918\) 0 0
\(919\) −5.47645 −0.180651 −0.0903257 0.995912i \(-0.528791\pi\)
−0.0903257 + 0.995912i \(0.528791\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 17.4018 0.573097
\(923\) −14.4860 −0.476811
\(924\) 0 0
\(925\) 0 0
\(926\) −11.6606 −0.383190
\(927\) 0 0
\(928\) −5.88454 −0.193169
\(929\) −8.07412 −0.264903 −0.132452 0.991189i \(-0.542285\pi\)
−0.132452 + 0.991189i \(0.542285\pi\)
\(930\) 0 0
\(931\) −34.7004 −1.13726
\(932\) −3.62456 −0.118726
\(933\) 0 0
\(934\) 39.4836 1.29194
\(935\) 0 0
\(936\) 0 0
\(937\) 4.83794 0.158048 0.0790242 0.996873i \(-0.474820\pi\)
0.0790242 + 0.996873i \(0.474820\pi\)
\(938\) −6.18535 −0.201959
\(939\) 0 0
\(940\) 0 0
\(941\) 9.67126 0.315274 0.157637 0.987497i \(-0.449612\pi\)
0.157637 + 0.987497i \(0.449612\pi\)
\(942\) 0 0
\(943\) −22.4703 −0.731734
\(944\) −46.4521 −1.51189
\(945\) 0 0
\(946\) 19.8647 0.645857
\(947\) 22.6385 0.735653 0.367827 0.929894i \(-0.380102\pi\)
0.367827 + 0.929894i \(0.380102\pi\)
\(948\) 0 0
\(949\) −7.82800 −0.254107
\(950\) 0 0
\(951\) 0 0
\(952\) 7.54557 0.244553
\(953\) 31.8539 1.03185 0.515924 0.856634i \(-0.327449\pi\)
0.515924 + 0.856634i \(0.327449\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −3.60397 −0.116561
\(957\) 0 0
\(958\) −47.9649 −1.54968
\(959\) −2.83027 −0.0913941
\(960\) 0 0
\(961\) −26.0250 −0.839518
\(962\) −7.00469 −0.225840
\(963\) 0 0
\(964\) 0.771143 0.0248368
\(965\) 0 0
\(966\) 0 0
\(967\) −21.4942 −0.691206 −0.345603 0.938381i \(-0.612326\pi\)
−0.345603 + 0.938381i \(0.612326\pi\)
\(968\) −53.3849 −1.71586
\(969\) 0 0
\(970\) 0 0
\(971\) −26.3424 −0.845368 −0.422684 0.906277i \(-0.638912\pi\)
−0.422684 + 0.906277i \(0.638912\pi\)
\(972\) 0 0
\(973\) 9.54469 0.305989
\(974\) 50.3270 1.61258
\(975\) 0 0
\(976\) 37.8285 1.21086
\(977\) −8.62429 −0.275916 −0.137958 0.990438i \(-0.544054\pi\)
−0.137958 + 0.990438i \(0.544054\pi\)
\(978\) 0 0
\(979\) −2.01782 −0.0644897
\(980\) 0 0
\(981\) 0 0
\(982\) 41.5391 1.32557
\(983\) −48.7498 −1.55488 −0.777438 0.628959i \(-0.783481\pi\)
−0.777438 + 0.628959i \(0.783481\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −30.1979 −0.961696
\(987\) 0 0
\(988\) 4.48556 0.142705
\(989\) 9.44427 0.300310
\(990\) 0 0
\(991\) 9.04494 0.287322 0.143661 0.989627i \(-0.454112\pi\)
0.143661 + 0.989627i \(0.454112\pi\)
\(992\) −2.02839 −0.0644014
\(993\) 0 0
\(994\) −2.84501 −0.0902383
\(995\) 0 0
\(996\) 0 0
\(997\) 38.5413 1.22062 0.610308 0.792164i \(-0.291046\pi\)
0.610308 + 0.792164i \(0.291046\pi\)
\(998\) −35.7121 −1.13045
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8325.2.a.cr.1.6 9
3.2 odd 2 925.2.a.l.1.4 9
5.2 odd 4 1665.2.c.e.334.13 18
5.3 odd 4 1665.2.c.e.334.6 18
5.4 even 2 8325.2.a.cq.1.4 9
15.2 even 4 185.2.b.a.149.6 18
15.8 even 4 185.2.b.a.149.13 yes 18
15.14 odd 2 925.2.a.m.1.6 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.b.a.149.6 18 15.2 even 4
185.2.b.a.149.13 yes 18 15.8 even 4
925.2.a.l.1.4 9 3.2 odd 2
925.2.a.m.1.6 9 15.14 odd 2
1665.2.c.e.334.6 18 5.3 odd 4
1665.2.c.e.334.13 18 5.2 odd 4
8325.2.a.cq.1.4 9 5.4 even 2
8325.2.a.cr.1.6 9 1.1 even 1 trivial