Properties

Label 1665.2.c.e.334.13
Level $1665$
Weight $2$
Character 1665.334
Analytic conductor $13.295$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1665,2,Mod(334,1665)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1665.334"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1665, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1665 = 3^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1665.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,-22,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2950919365\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 28x^{16} + 306x^{14} + 1684x^{12} + 5049x^{10} + 8280x^{8} + 7004x^{6} + 2672x^{4} + 368x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 334.13
Root \(0.356037i\) of defining polynomial
Character \(\chi\) \(=\) 1665.334
Dual form 1665.2.c.e.334.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.35604i q^{2} +0.161165 q^{4} +(0.722164 - 2.11624i) q^{5} -0.748140i q^{7} +2.93062i q^{8} +(2.86970 + 0.979281i) q^{10} -5.40521 q^{11} +5.16556i q^{13} +1.01451 q^{14} -3.65170 q^{16} +3.44151i q^{17} -5.38802 q^{19} +(0.116388 - 0.341064i) q^{20} -7.32966i q^{22} +3.48474i q^{23} +(-3.95696 - 3.05655i) q^{25} -7.00469 q^{26} -0.120574i q^{28} +6.47076 q^{29} -2.23046 q^{31} +0.909404i q^{32} -4.66682 q^{34} +(-1.58325 - 0.540280i) q^{35} +1.00000i q^{37} -7.30635i q^{38} +(6.20190 + 2.11639i) q^{40} +6.44821 q^{41} +2.71018i q^{43} -0.871130 q^{44} -4.72543 q^{46} +10.3708i q^{47} +6.44029 q^{49} +(4.14479 - 5.36578i) q^{50} +0.832507i q^{52} +4.64473i q^{53} +(-3.90345 + 11.4387i) q^{55} +2.19251 q^{56} +8.77459i q^{58} -12.7207 q^{59} -10.3592 q^{61} -3.02459i q^{62} -8.53658 q^{64} +(10.9316 + 3.73038i) q^{65} +6.09691i q^{67} +0.554651i q^{68} +(0.732640 - 2.14694i) q^{70} +2.80433 q^{71} -1.51542i q^{73} -1.35604 q^{74} -0.868359 q^{76} +4.04385i q^{77} +13.9090 q^{79} +(-2.63712 + 7.72787i) q^{80} +8.74401i q^{82} -1.14982i q^{83} +(7.28307 + 2.48534i) q^{85} -3.67511 q^{86} -15.8406i q^{88} -0.373310 q^{89} +3.86456 q^{91} +0.561617i q^{92} -14.0632 q^{94} +(-3.89103 + 11.4023i) q^{95} -8.96381i q^{97} +8.73326i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 22 q^{4} - 2 q^{5} + 6 q^{10} - 8 q^{14} + 22 q^{16} + 8 q^{19} + 4 q^{20} - 18 q^{25} + 12 q^{26} - 4 q^{29} - 12 q^{31} - 12 q^{34} + 2 q^{35} - 6 q^{40} - 4 q^{41} + 8 q^{44} + 32 q^{46} + 14 q^{49}+ \cdots + 44 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1665\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35604i 0.958863i 0.877579 + 0.479431i \(0.159157\pi\)
−0.877579 + 0.479431i \(0.840843\pi\)
\(3\) 0 0
\(4\) 0.161165 0.0805825
\(5\) 0.722164 2.11624i 0.322962 0.946412i
\(6\) 0 0
\(7\) 0.748140i 0.282770i −0.989955 0.141385i \(-0.954844\pi\)
0.989955 0.141385i \(-0.0451556\pi\)
\(8\) 2.93062i 1.03613i
\(9\) 0 0
\(10\) 2.86970 + 0.979281i 0.907479 + 0.309676i
\(11\) −5.40521 −1.62973 −0.814866 0.579650i \(-0.803189\pi\)
−0.814866 + 0.579650i \(0.803189\pi\)
\(12\) 0 0
\(13\) 5.16556i 1.43267i 0.697757 + 0.716334i \(0.254181\pi\)
−0.697757 + 0.716334i \(0.745819\pi\)
\(14\) 1.01451 0.271138
\(15\) 0 0
\(16\) −3.65170 −0.912924
\(17\) 3.44151i 0.834690i 0.908748 + 0.417345i \(0.137039\pi\)
−0.908748 + 0.417345i \(0.862961\pi\)
\(18\) 0 0
\(19\) −5.38802 −1.23610 −0.618048 0.786140i \(-0.712076\pi\)
−0.618048 + 0.786140i \(0.712076\pi\)
\(20\) 0.116388 0.341064i 0.0260250 0.0762642i
\(21\) 0 0
\(22\) 7.32966i 1.56269i
\(23\) 3.48474i 0.726618i 0.931669 + 0.363309i \(0.118353\pi\)
−0.931669 + 0.363309i \(0.881647\pi\)
\(24\) 0 0
\(25\) −3.95696 3.05655i −0.791392 0.611310i
\(26\) −7.00469 −1.37373
\(27\) 0 0
\(28\) 0.120574i 0.0227863i
\(29\) 6.47076 1.20159 0.600795 0.799403i \(-0.294851\pi\)
0.600795 + 0.799403i \(0.294851\pi\)
\(30\) 0 0
\(31\) −2.23046 −0.400603 −0.200301 0.979734i \(-0.564192\pi\)
−0.200301 + 0.979734i \(0.564192\pi\)
\(32\) 0.909404i 0.160761i
\(33\) 0 0
\(34\) −4.66682 −0.800353
\(35\) −1.58325 0.540280i −0.267617 0.0913240i
\(36\) 0 0
\(37\) 1.00000i 0.164399i
\(38\) 7.30635i 1.18525i
\(39\) 0 0
\(40\) 6.20190 + 2.11639i 0.980606 + 0.334630i
\(41\) 6.44821 1.00704 0.503521 0.863983i \(-0.332038\pi\)
0.503521 + 0.863983i \(0.332038\pi\)
\(42\) 0 0
\(43\) 2.71018i 0.413299i 0.978415 + 0.206649i \(0.0662560\pi\)
−0.978415 + 0.206649i \(0.933744\pi\)
\(44\) −0.871130 −0.131328
\(45\) 0 0
\(46\) −4.72543 −0.696726
\(47\) 10.3708i 1.51274i 0.654144 + 0.756370i \(0.273029\pi\)
−0.654144 + 0.756370i \(0.726971\pi\)
\(48\) 0 0
\(49\) 6.44029 0.920041
\(50\) 4.14479 5.36578i 0.586162 0.758836i
\(51\) 0 0
\(52\) 0.832507i 0.115448i
\(53\) 4.64473i 0.638002i 0.947754 + 0.319001i \(0.103347\pi\)
−0.947754 + 0.319001i \(0.896653\pi\)
\(54\) 0 0
\(55\) −3.90345 + 11.4387i −0.526341 + 1.54240i
\(56\) 2.19251 0.292987
\(57\) 0 0
\(58\) 8.77459i 1.15216i
\(59\) −12.7207 −1.65609 −0.828046 0.560660i \(-0.810548\pi\)
−0.828046 + 0.560660i \(0.810548\pi\)
\(60\) 0 0
\(61\) −10.3592 −1.32635 −0.663177 0.748462i \(-0.730792\pi\)
−0.663177 + 0.748462i \(0.730792\pi\)
\(62\) 3.02459i 0.384123i
\(63\) 0 0
\(64\) −8.53658 −1.06707
\(65\) 10.9316 + 3.73038i 1.35589 + 0.462697i
\(66\) 0 0
\(67\) 6.09691i 0.744857i 0.928061 + 0.372428i \(0.121475\pi\)
−0.928061 + 0.372428i \(0.878525\pi\)
\(68\) 0.554651i 0.0672613i
\(69\) 0 0
\(70\) 0.732640 2.14694i 0.0875672 0.256608i
\(71\) 2.80433 0.332813 0.166407 0.986057i \(-0.446784\pi\)
0.166407 + 0.986057i \(0.446784\pi\)
\(72\) 0 0
\(73\) 1.51542i 0.177367i −0.996060 0.0886833i \(-0.971734\pi\)
0.996060 0.0886833i \(-0.0282659\pi\)
\(74\) −1.35604 −0.157636
\(75\) 0 0
\(76\) −0.868359 −0.0996076
\(77\) 4.04385i 0.460840i
\(78\) 0 0
\(79\) 13.9090 1.56489 0.782444 0.622721i \(-0.213973\pi\)
0.782444 + 0.622721i \(0.213973\pi\)
\(80\) −2.63712 + 7.72787i −0.294839 + 0.864002i
\(81\) 0 0
\(82\) 8.74401i 0.965614i
\(83\) 1.14982i 0.126209i −0.998007 0.0631047i \(-0.979900\pi\)
0.998007 0.0631047i \(-0.0201002\pi\)
\(84\) 0 0
\(85\) 7.28307 + 2.48534i 0.789960 + 0.269573i
\(86\) −3.67511 −0.396297
\(87\) 0 0
\(88\) 15.8406i 1.68861i
\(89\) −0.373310 −0.0395707 −0.0197854 0.999804i \(-0.506298\pi\)
−0.0197854 + 0.999804i \(0.506298\pi\)
\(90\) 0 0
\(91\) 3.86456 0.405116
\(92\) 0.561617i 0.0585526i
\(93\) 0 0
\(94\) −14.0632 −1.45051
\(95\) −3.89103 + 11.4023i −0.399211 + 1.16986i
\(96\) 0 0
\(97\) 8.96381i 0.910137i −0.890456 0.455069i \(-0.849615\pi\)
0.890456 0.455069i \(-0.150385\pi\)
\(98\) 8.73326i 0.882193i
\(99\) 0 0
\(100\) −0.637723 0.492608i −0.0637723 0.0492608i
\(101\) 13.9235 1.38544 0.692722 0.721205i \(-0.256411\pi\)
0.692722 + 0.721205i \(0.256411\pi\)
\(102\) 0 0
\(103\) 2.98700i 0.294318i 0.989113 + 0.147159i \(0.0470128\pi\)
−0.989113 + 0.147159i \(0.952987\pi\)
\(104\) −15.1383 −1.48443
\(105\) 0 0
\(106\) −6.29842 −0.611756
\(107\) 6.58927i 0.637009i 0.947921 + 0.318504i \(0.103181\pi\)
−0.947921 + 0.318504i \(0.896819\pi\)
\(108\) 0 0
\(109\) −17.9577 −1.72004 −0.860019 0.510263i \(-0.829548\pi\)
−0.860019 + 0.510263i \(0.829548\pi\)
\(110\) −15.5113 5.29322i −1.47895 0.504688i
\(111\) 0 0
\(112\) 2.73198i 0.258148i
\(113\) 19.7970i 1.86235i −0.364576 0.931173i \(-0.618786\pi\)
0.364576 0.931173i \(-0.381214\pi\)
\(114\) 0 0
\(115\) 7.37454 + 2.51655i 0.687680 + 0.234670i
\(116\) 1.04286 0.0968271
\(117\) 0 0
\(118\) 17.2497i 1.58797i
\(119\) 2.57473 0.236026
\(120\) 0 0
\(121\) 18.2163 1.65602
\(122\) 14.0474i 1.27179i
\(123\) 0 0
\(124\) −0.359472 −0.0322815
\(125\) −9.32597 + 6.16655i −0.834140 + 0.551553i
\(126\) 0 0
\(127\) 0.141983i 0.0125989i 0.999980 + 0.00629947i \(0.00200520\pi\)
−0.999980 + 0.00629947i \(0.997995\pi\)
\(128\) 9.75710i 0.862414i
\(129\) 0 0
\(130\) −5.05853 + 14.8236i −0.443663 + 1.30012i
\(131\) 0.435890 0.0380839 0.0190420 0.999819i \(-0.493938\pi\)
0.0190420 + 0.999819i \(0.493938\pi\)
\(132\) 0 0
\(133\) 4.03099i 0.349531i
\(134\) −8.26764 −0.714215
\(135\) 0 0
\(136\) −10.0858 −0.864847
\(137\) 3.78307i 0.323209i 0.986856 + 0.161605i \(0.0516669\pi\)
−0.986856 + 0.161605i \(0.948333\pi\)
\(138\) 0 0
\(139\) 12.7579 1.08211 0.541055 0.840987i \(-0.318025\pi\)
0.541055 + 0.840987i \(0.318025\pi\)
\(140\) −0.255164 0.0870742i −0.0215653 0.00735911i
\(141\) 0 0
\(142\) 3.80278i 0.319122i
\(143\) 27.9209i 2.33486i
\(144\) 0 0
\(145\) 4.67295 13.6937i 0.388068 1.13720i
\(146\) 2.05497 0.170070
\(147\) 0 0
\(148\) 0.161165i 0.0132477i
\(149\) −3.72013 −0.304765 −0.152382 0.988322i \(-0.548695\pi\)
−0.152382 + 0.988322i \(0.548695\pi\)
\(150\) 0 0
\(151\) −7.59391 −0.617984 −0.308992 0.951065i \(-0.599992\pi\)
−0.308992 + 0.951065i \(0.599992\pi\)
\(152\) 15.7902i 1.28076i
\(153\) 0 0
\(154\) −5.48361 −0.441882
\(155\) −1.61076 + 4.72019i −0.129379 + 0.379135i
\(156\) 0 0
\(157\) 16.0657i 1.28218i 0.767464 + 0.641092i \(0.221519\pi\)
−0.767464 + 0.641092i \(0.778481\pi\)
\(158\) 18.8611i 1.50051i
\(159\) 0 0
\(160\) 1.92452 + 0.656739i 0.152147 + 0.0519198i
\(161\) 2.60707 0.205466
\(162\) 0 0
\(163\) 6.99182i 0.547641i −0.961781 0.273821i \(-0.911713\pi\)
0.961781 0.273821i \(-0.0882875\pi\)
\(164\) 1.03923 0.0811499
\(165\) 0 0
\(166\) 1.55920 0.121017
\(167\) 16.3483i 1.26507i −0.774532 0.632534i \(-0.782015\pi\)
0.774532 0.632534i \(-0.217985\pi\)
\(168\) 0 0
\(169\) −13.6830 −1.05254
\(170\) −3.37021 + 9.87611i −0.258483 + 0.757463i
\(171\) 0 0
\(172\) 0.436786i 0.0333046i
\(173\) 6.21965i 0.472871i −0.971647 0.236436i \(-0.924021\pi\)
0.971647 0.236436i \(-0.0759793\pi\)
\(174\) 0 0
\(175\) −2.28673 + 2.96036i −0.172860 + 0.223782i
\(176\) 19.7382 1.48782
\(177\) 0 0
\(178\) 0.506222i 0.0379429i
\(179\) −10.9497 −0.818418 −0.409209 0.912441i \(-0.634195\pi\)
−0.409209 + 0.912441i \(0.634195\pi\)
\(180\) 0 0
\(181\) 8.75050 0.650419 0.325210 0.945642i \(-0.394565\pi\)
0.325210 + 0.945642i \(0.394565\pi\)
\(182\) 5.24049i 0.388451i
\(183\) 0 0
\(184\) −10.2124 −0.752870
\(185\) 2.11624 + 0.722164i 0.155589 + 0.0530946i
\(186\) 0 0
\(187\) 18.6021i 1.36032i
\(188\) 1.67141i 0.121900i
\(189\) 0 0
\(190\) −15.4620 5.27638i −1.12173 0.382789i
\(191\) −15.7914 −1.14263 −0.571314 0.820732i \(-0.693566\pi\)
−0.571314 + 0.820732i \(0.693566\pi\)
\(192\) 0 0
\(193\) 10.9845i 0.790681i −0.918535 0.395341i \(-0.870627\pi\)
0.918535 0.395341i \(-0.129373\pi\)
\(194\) 12.1553 0.872697
\(195\) 0 0
\(196\) 1.03795 0.0741391
\(197\) 9.86682i 0.702982i −0.936191 0.351491i \(-0.885675\pi\)
0.936191 0.351491i \(-0.114325\pi\)
\(198\) 0 0
\(199\) −5.58756 −0.396091 −0.198046 0.980193i \(-0.563459\pi\)
−0.198046 + 0.980193i \(0.563459\pi\)
\(200\) 8.95758 11.5963i 0.633396 0.819985i
\(201\) 0 0
\(202\) 18.8808i 1.32845i
\(203\) 4.84104i 0.339774i
\(204\) 0 0
\(205\) 4.65667 13.6460i 0.325236 0.953076i
\(206\) −4.05048 −0.282210
\(207\) 0 0
\(208\) 18.8630i 1.30792i
\(209\) 29.1233 2.01450
\(210\) 0 0
\(211\) −1.95780 −0.134781 −0.0673904 0.997727i \(-0.521467\pi\)
−0.0673904 + 0.997727i \(0.521467\pi\)
\(212\) 0.748567i 0.0514118i
\(213\) 0 0
\(214\) −8.93529 −0.610804
\(215\) 5.73540 + 1.95720i 0.391151 + 0.133480i
\(216\) 0 0
\(217\) 1.66870i 0.113279i
\(218\) 24.3513i 1.64928i
\(219\) 0 0
\(220\) −0.629099 + 1.84352i −0.0424138 + 0.124290i
\(221\) −17.7773 −1.19583
\(222\) 0 0
\(223\) 8.97271i 0.600857i 0.953804 + 0.300429i \(0.0971297\pi\)
−0.953804 + 0.300429i \(0.902870\pi\)
\(224\) 0.680362 0.0454586
\(225\) 0 0
\(226\) 26.8455 1.78573
\(227\) 7.78659i 0.516814i 0.966036 + 0.258407i \(0.0831976\pi\)
−0.966036 + 0.258407i \(0.916802\pi\)
\(228\) 0 0
\(229\) 9.69814 0.640871 0.320435 0.947270i \(-0.396171\pi\)
0.320435 + 0.947270i \(0.396171\pi\)
\(230\) −3.41254 + 10.0001i −0.225016 + 0.659390i
\(231\) 0 0
\(232\) 18.9633i 1.24500i
\(233\) 22.4897i 1.47335i −0.676246 0.736676i \(-0.736394\pi\)
0.676246 0.736676i \(-0.263606\pi\)
\(234\) 0 0
\(235\) 21.9472 + 7.48944i 1.43168 + 0.488557i
\(236\) −2.05013 −0.133452
\(237\) 0 0
\(238\) 3.49143i 0.226316i
\(239\) −22.3620 −1.44648 −0.723238 0.690598i \(-0.757347\pi\)
−0.723238 + 0.690598i \(0.757347\pi\)
\(240\) 0 0
\(241\) −4.78481 −0.308217 −0.154108 0.988054i \(-0.549250\pi\)
−0.154108 + 0.988054i \(0.549250\pi\)
\(242\) 24.7019i 1.58790i
\(243\) 0 0
\(244\) −1.66953 −0.106881
\(245\) 4.65094 13.6292i 0.297138 0.870738i
\(246\) 0 0
\(247\) 27.8321i 1.77092i
\(248\) 6.53663i 0.415076i
\(249\) 0 0
\(250\) −8.36207 12.6464i −0.528864 0.799825i
\(251\) 0.357304 0.0225529 0.0112764 0.999936i \(-0.496411\pi\)
0.0112764 + 0.999936i \(0.496411\pi\)
\(252\) 0 0
\(253\) 18.8357i 1.18419i
\(254\) −0.192534 −0.0120807
\(255\) 0 0
\(256\) −3.84217 −0.240135
\(257\) 7.93068i 0.494702i 0.968926 + 0.247351i \(0.0795601\pi\)
−0.968926 + 0.247351i \(0.920440\pi\)
\(258\) 0 0
\(259\) 0.748140 0.0464872
\(260\) 1.76179 + 0.601206i 0.109261 + 0.0372852i
\(261\) 0 0
\(262\) 0.591083i 0.0365172i
\(263\) 2.56626i 0.158242i 0.996865 + 0.0791211i \(0.0252114\pi\)
−0.996865 + 0.0791211i \(0.974789\pi\)
\(264\) 0 0
\(265\) 9.82936 + 3.35425i 0.603813 + 0.206050i
\(266\) −5.46617 −0.335153
\(267\) 0 0
\(268\) 0.982609i 0.0600224i
\(269\) 0.834873 0.0509031 0.0254516 0.999676i \(-0.491898\pi\)
0.0254516 + 0.999676i \(0.491898\pi\)
\(270\) 0 0
\(271\) 14.5172 0.881855 0.440928 0.897543i \(-0.354650\pi\)
0.440928 + 0.897543i \(0.354650\pi\)
\(272\) 12.5674i 0.762008i
\(273\) 0 0
\(274\) −5.12998 −0.309913
\(275\) 21.3882 + 16.5213i 1.28976 + 0.996270i
\(276\) 0 0
\(277\) 31.2010i 1.87469i 0.348406 + 0.937344i \(0.386723\pi\)
−0.348406 + 0.937344i \(0.613277\pi\)
\(278\) 17.3002i 1.03759i
\(279\) 0 0
\(280\) 1.58335 4.63989i 0.0946236 0.277286i
\(281\) 13.0674 0.779533 0.389767 0.920914i \(-0.372556\pi\)
0.389767 + 0.920914i \(0.372556\pi\)
\(282\) 0 0
\(283\) 3.47900i 0.206805i −0.994640 0.103402i \(-0.967027\pi\)
0.994640 0.103402i \(-0.0329730\pi\)
\(284\) 0.451960 0.0268189
\(285\) 0 0
\(286\) 37.8618 2.23881
\(287\) 4.82417i 0.284762i
\(288\) 0 0
\(289\) 5.15599 0.303293
\(290\) 18.5692 + 6.33669i 1.09042 + 0.372103i
\(291\) 0 0
\(292\) 0.244233i 0.0142926i
\(293\) 30.0461i 1.75531i 0.479293 + 0.877655i \(0.340893\pi\)
−0.479293 + 0.877655i \(0.659107\pi\)
\(294\) 0 0
\(295\) −9.18643 + 26.9201i −0.534854 + 1.56735i
\(296\) −2.93062 −0.170339
\(297\) 0 0
\(298\) 5.04463i 0.292228i
\(299\) −18.0006 −1.04100
\(300\) 0 0
\(301\) 2.02760 0.116869
\(302\) 10.2976i 0.592562i
\(303\) 0 0
\(304\) 19.6754 1.12846
\(305\) −7.48101 + 21.9225i −0.428362 + 1.25528i
\(306\) 0 0
\(307\) 26.3957i 1.50648i −0.657745 0.753241i \(-0.728490\pi\)
0.657745 0.753241i \(-0.271510\pi\)
\(308\) 0.651727i 0.0371356i
\(309\) 0 0
\(310\) −6.40076 2.18425i −0.363538 0.124057i
\(311\) 14.8744 0.843447 0.421724 0.906724i \(-0.361425\pi\)
0.421724 + 0.906724i \(0.361425\pi\)
\(312\) 0 0
\(313\) 0.373591i 0.0211166i 0.999944 + 0.0105583i \(0.00336088\pi\)
−0.999944 + 0.0105583i \(0.996639\pi\)
\(314\) −21.7857 −1.22944
\(315\) 0 0
\(316\) 2.24165 0.126103
\(317\) 5.02971i 0.282497i −0.989974 0.141248i \(-0.954888\pi\)
0.989974 0.141248i \(-0.0451116\pi\)
\(318\) 0 0
\(319\) −34.9758 −1.95827
\(320\) −6.16481 + 18.0655i −0.344623 + 1.00989i
\(321\) 0 0
\(322\) 3.53528i 0.197014i
\(323\) 18.5429i 1.03176i
\(324\) 0 0
\(325\) 15.7888 20.4399i 0.875804 1.13380i
\(326\) 9.48116 0.525113
\(327\) 0 0
\(328\) 18.8972i 1.04343i
\(329\) 7.75883 0.427758
\(330\) 0 0
\(331\) 2.14829 0.118081 0.0590404 0.998256i \(-0.481196\pi\)
0.0590404 + 0.998256i \(0.481196\pi\)
\(332\) 0.185311i 0.0101703i
\(333\) 0 0
\(334\) 22.1689 1.21303
\(335\) 12.9025 + 4.40297i 0.704941 + 0.240560i
\(336\) 0 0
\(337\) 14.2432i 0.775878i 0.921685 + 0.387939i \(0.126813\pi\)
−0.921685 + 0.387939i \(0.873187\pi\)
\(338\) 18.5546i 1.00924i
\(339\) 0 0
\(340\) 1.17378 + 0.400549i 0.0636569 + 0.0217228i
\(341\) 12.0561 0.652875
\(342\) 0 0
\(343\) 10.0552i 0.542931i
\(344\) −7.94251 −0.428231
\(345\) 0 0
\(346\) 8.43408 0.453419
\(347\) 21.3584i 1.14658i 0.819353 + 0.573289i \(0.194333\pi\)
−0.819353 + 0.573289i \(0.805667\pi\)
\(348\) 0 0
\(349\) 8.65232 0.463148 0.231574 0.972817i \(-0.425612\pi\)
0.231574 + 0.972817i \(0.425612\pi\)
\(350\) −4.01436 3.10088i −0.214576 0.165749i
\(351\) 0 0
\(352\) 4.91552i 0.261998i
\(353\) 24.5145i 1.30477i 0.757886 + 0.652387i \(0.226232\pi\)
−0.757886 + 0.652387i \(0.773768\pi\)
\(354\) 0 0
\(355\) 2.02519 5.93465i 0.107486 0.314979i
\(356\) −0.0601644 −0.00318871
\(357\) 0 0
\(358\) 14.8482i 0.784750i
\(359\) 20.8964 1.10287 0.551434 0.834218i \(-0.314081\pi\)
0.551434 + 0.834218i \(0.314081\pi\)
\(360\) 0 0
\(361\) 10.0307 0.527933
\(362\) 11.8660i 0.623663i
\(363\) 0 0
\(364\) 0.622832 0.0326453
\(365\) −3.20700 1.09438i −0.167862 0.0572826i
\(366\) 0 0
\(367\) 0.961719i 0.0502013i 0.999685 + 0.0251007i \(0.00799063\pi\)
−0.999685 + 0.0251007i \(0.992009\pi\)
\(368\) 12.7252i 0.663347i
\(369\) 0 0
\(370\) −0.979281 + 2.86970i −0.0509104 + 0.149189i
\(371\) 3.47491 0.180408
\(372\) 0 0
\(373\) 16.9978i 0.880114i 0.897970 + 0.440057i \(0.145042\pi\)
−0.897970 + 0.440057i \(0.854958\pi\)
\(374\) 25.2251 1.30436
\(375\) 0 0
\(376\) −30.3929 −1.56740
\(377\) 33.4251i 1.72148i
\(378\) 0 0
\(379\) −12.9112 −0.663203 −0.331601 0.943420i \(-0.607589\pi\)
−0.331601 + 0.943420i \(0.607589\pi\)
\(380\) −0.627098 + 1.83766i −0.0321694 + 0.0942699i
\(381\) 0 0
\(382\) 21.4138i 1.09562i
\(383\) 13.8233i 0.706337i −0.935560 0.353168i \(-0.885104\pi\)
0.935560 0.353168i \(-0.114896\pi\)
\(384\) 0 0
\(385\) 8.55777 + 2.92033i 0.436144 + 0.148834i
\(386\) 14.8954 0.758155
\(387\) 0 0
\(388\) 1.44465i 0.0733411i
\(389\) −10.0408 −0.509089 −0.254544 0.967061i \(-0.581926\pi\)
−0.254544 + 0.967061i \(0.581926\pi\)
\(390\) 0 0
\(391\) −11.9928 −0.606500
\(392\) 18.8740i 0.953282i
\(393\) 0 0
\(394\) 13.3798 0.674063
\(395\) 10.0446 29.4349i 0.505399 1.48103i
\(396\) 0 0
\(397\) 4.87476i 0.244657i −0.992490 0.122329i \(-0.960964\pi\)
0.992490 0.122329i \(-0.0390362\pi\)
\(398\) 7.57693i 0.379797i
\(399\) 0 0
\(400\) 14.4496 + 11.1616i 0.722480 + 0.558079i
\(401\) 5.97844 0.298549 0.149275 0.988796i \(-0.452306\pi\)
0.149275 + 0.988796i \(0.452306\pi\)
\(402\) 0 0
\(403\) 11.5216i 0.573930i
\(404\) 2.24398 0.111642
\(405\) 0 0
\(406\) 6.56462 0.325797
\(407\) 5.40521i 0.267926i
\(408\) 0 0
\(409\) 28.3419 1.40142 0.700709 0.713447i \(-0.252867\pi\)
0.700709 + 0.713447i \(0.252867\pi\)
\(410\) 18.5044 + 6.31461i 0.913869 + 0.311856i
\(411\) 0 0
\(412\) 0.481399i 0.0237168i
\(413\) 9.51686i 0.468294i
\(414\) 0 0
\(415\) −2.43330 0.830360i −0.119446 0.0407608i
\(416\) −4.69758 −0.230318
\(417\) 0 0
\(418\) 39.4923i 1.93163i
\(419\) 9.61738 0.469840 0.234920 0.972015i \(-0.424517\pi\)
0.234920 + 0.972015i \(0.424517\pi\)
\(420\) 0 0
\(421\) −8.65638 −0.421886 −0.210943 0.977498i \(-0.567653\pi\)
−0.210943 + 0.977498i \(0.567653\pi\)
\(422\) 2.65485i 0.129236i
\(423\) 0 0
\(424\) −13.6119 −0.661053
\(425\) 10.5191 13.6179i 0.510254 0.660566i
\(426\) 0 0
\(427\) 7.75011i 0.375054i
\(428\) 1.06196i 0.0513317i
\(429\) 0 0
\(430\) −2.65403 + 7.77741i −0.127989 + 0.375060i
\(431\) −34.7519 −1.67394 −0.836969 0.547250i \(-0.815675\pi\)
−0.836969 + 0.547250i \(0.815675\pi\)
\(432\) 0 0
\(433\) 27.9319i 1.34232i 0.741312 + 0.671161i \(0.234204\pi\)
−0.741312 + 0.671161i \(0.765796\pi\)
\(434\) −2.26281 −0.108619
\(435\) 0 0
\(436\) −2.89415 −0.138605
\(437\) 18.7758i 0.898169i
\(438\) 0 0
\(439\) 23.0305 1.09919 0.549593 0.835433i \(-0.314783\pi\)
0.549593 + 0.835433i \(0.314783\pi\)
\(440\) −33.5225 11.4395i −1.59812 0.545357i
\(441\) 0 0
\(442\) 24.1067i 1.14664i
\(443\) 27.7267i 1.31733i −0.752435 0.658667i \(-0.771121\pi\)
0.752435 0.658667i \(-0.228879\pi\)
\(444\) 0 0
\(445\) −0.269591 + 0.790014i −0.0127798 + 0.0374502i
\(446\) −12.1673 −0.576139
\(447\) 0 0
\(448\) 6.38656i 0.301736i
\(449\) 26.4363 1.24761 0.623804 0.781581i \(-0.285586\pi\)
0.623804 + 0.781581i \(0.285586\pi\)
\(450\) 0 0
\(451\) −34.8539 −1.64121
\(452\) 3.19058i 0.150072i
\(453\) 0 0
\(454\) −10.5589 −0.495554
\(455\) 2.79085 8.17835i 0.130837 0.383407i
\(456\) 0 0
\(457\) 26.3869i 1.23433i −0.786835 0.617164i \(-0.788282\pi\)
0.786835 0.617164i \(-0.211718\pi\)
\(458\) 13.1510i 0.614507i
\(459\) 0 0
\(460\) 1.18852 + 0.405580i 0.0554149 + 0.0189103i
\(461\) 12.8328 0.597684 0.298842 0.954303i \(-0.403400\pi\)
0.298842 + 0.954303i \(0.403400\pi\)
\(462\) 0 0
\(463\) 8.59902i 0.399630i 0.979834 + 0.199815i \(0.0640341\pi\)
−0.979834 + 0.199815i \(0.935966\pi\)
\(464\) −23.6293 −1.09696
\(465\) 0 0
\(466\) 30.4969 1.41274
\(467\) 29.1169i 1.34737i 0.739018 + 0.673686i \(0.235290\pi\)
−0.739018 + 0.673686i \(0.764710\pi\)
\(468\) 0 0
\(469\) 4.56135 0.210623
\(470\) −10.1560 + 29.7612i −0.468459 + 1.37278i
\(471\) 0 0
\(472\) 37.2795i 1.71593i
\(473\) 14.6491i 0.673566i
\(474\) 0 0
\(475\) 21.3202 + 16.4687i 0.978236 + 0.755637i
\(476\) 0.414957 0.0190195
\(477\) 0 0
\(478\) 30.3237i 1.38697i
\(479\) 35.3714 1.61616 0.808081 0.589072i \(-0.200507\pi\)
0.808081 + 0.589072i \(0.200507\pi\)
\(480\) 0 0
\(481\) −5.16556 −0.235529
\(482\) 6.48837i 0.295537i
\(483\) 0 0
\(484\) 2.93582 0.133446
\(485\) −18.9696 6.47334i −0.861365 0.293939i
\(486\) 0 0
\(487\) 37.1133i 1.68176i 0.541219 + 0.840882i \(0.317963\pi\)
−0.541219 + 0.840882i \(0.682037\pi\)
\(488\) 30.3587i 1.37428i
\(489\) 0 0
\(490\) 18.4817 + 6.30685i 0.834918 + 0.284914i
\(491\) 30.6327 1.38243 0.691217 0.722647i \(-0.257075\pi\)
0.691217 + 0.722647i \(0.257075\pi\)
\(492\) 0 0
\(493\) 22.2692i 1.00295i
\(494\) 37.7414 1.69806
\(495\) 0 0
\(496\) 8.14496 0.365720
\(497\) 2.09804i 0.0941098i
\(498\) 0 0
\(499\) 26.3356 1.17894 0.589472 0.807789i \(-0.299336\pi\)
0.589472 + 0.807789i \(0.299336\pi\)
\(500\) −1.50302 + 0.993832i −0.0672170 + 0.0444455i
\(501\) 0 0
\(502\) 0.484518i 0.0216251i
\(503\) 20.8358i 0.929023i −0.885567 0.464511i \(-0.846230\pi\)
0.885567 0.464511i \(-0.153770\pi\)
\(504\) 0 0
\(505\) 10.0551 29.4656i 0.447445 1.31120i
\(506\) 25.5419 1.13548
\(507\) 0 0
\(508\) 0.0228827i 0.00101525i
\(509\) 3.57224 0.158337 0.0791685 0.996861i \(-0.474773\pi\)
0.0791685 + 0.996861i \(0.474773\pi\)
\(510\) 0 0
\(511\) −1.13375 −0.0501540
\(512\) 24.7243i 1.09267i
\(513\) 0 0
\(514\) −10.7543 −0.474352
\(515\) 6.32121 + 2.15710i 0.278546 + 0.0950533i
\(516\) 0 0
\(517\) 56.0565i 2.46536i
\(518\) 1.01451i 0.0445748i
\(519\) 0 0
\(520\) −10.9323 + 32.0363i −0.479414 + 1.40488i
\(521\) −36.9568 −1.61911 −0.809554 0.587045i \(-0.800291\pi\)
−0.809554 + 0.587045i \(0.800291\pi\)
\(522\) 0 0
\(523\) 16.0177i 0.700405i −0.936674 0.350203i \(-0.886113\pi\)
0.936674 0.350203i \(-0.113887\pi\)
\(524\) 0.0702502 0.00306890
\(525\) 0 0
\(526\) −3.47994 −0.151733
\(527\) 7.67616i 0.334379i
\(528\) 0 0
\(529\) 10.8566 0.472027
\(530\) −4.54849 + 13.3290i −0.197574 + 0.578974i
\(531\) 0 0
\(532\) 0.649655i 0.0281661i
\(533\) 33.3086i 1.44276i
\(534\) 0 0
\(535\) 13.9445 + 4.75853i 0.602873 + 0.205729i
\(536\) −17.8677 −0.771768
\(537\) 0 0
\(538\) 1.13212i 0.0488091i
\(539\) −34.8111 −1.49942
\(540\) 0 0
\(541\) −9.82948 −0.422602 −0.211301 0.977421i \(-0.567770\pi\)
−0.211301 + 0.977421i \(0.567770\pi\)
\(542\) 19.6858i 0.845578i
\(543\) 0 0
\(544\) −3.12973 −0.134186
\(545\) −12.9684 + 38.0029i −0.555506 + 1.62786i
\(546\) 0 0
\(547\) 16.7689i 0.716987i 0.933532 + 0.358493i \(0.116709\pi\)
−0.933532 + 0.358493i \(0.883291\pi\)
\(548\) 0.609698i 0.0260450i
\(549\) 0 0
\(550\) −22.4035 + 29.0032i −0.955286 + 1.23670i
\(551\) −34.8646 −1.48528
\(552\) 0 0
\(553\) 10.4059i 0.442504i
\(554\) −42.3097 −1.79757
\(555\) 0 0
\(556\) 2.05612 0.0871990
\(557\) 35.3749i 1.49888i 0.662072 + 0.749440i \(0.269677\pi\)
−0.662072 + 0.749440i \(0.730323\pi\)
\(558\) 0 0
\(559\) −13.9996 −0.592120
\(560\) 5.78153 + 1.97294i 0.244314 + 0.0833719i
\(561\) 0 0
\(562\) 17.7198i 0.747465i
\(563\) 16.7458i 0.705751i −0.935670 0.352876i \(-0.885204\pi\)
0.935670 0.352876i \(-0.114796\pi\)
\(564\) 0 0
\(565\) −41.8953 14.2967i −1.76255 0.601467i
\(566\) 4.71765 0.198298
\(567\) 0 0
\(568\) 8.21844i 0.344838i
\(569\) −26.0953 −1.09397 −0.546987 0.837141i \(-0.684225\pi\)
−0.546987 + 0.837141i \(0.684225\pi\)
\(570\) 0 0
\(571\) 24.5326 1.02666 0.513328 0.858193i \(-0.328413\pi\)
0.513328 + 0.858193i \(0.328413\pi\)
\(572\) 4.49987i 0.188149i
\(573\) 0 0
\(574\) 6.54175 0.273047
\(575\) 10.6513 13.7890i 0.444188 0.575039i
\(576\) 0 0
\(577\) 21.9665i 0.914479i 0.889344 + 0.457239i \(0.151162\pi\)
−0.889344 + 0.457239i \(0.848838\pi\)
\(578\) 6.99171i 0.290817i
\(579\) 0 0
\(580\) 0.753116 2.20694i 0.0312714 0.0916383i
\(581\) −0.860228 −0.0356883
\(582\) 0 0
\(583\) 25.1057i 1.03977i
\(584\) 4.44112 0.183775
\(585\) 0 0
\(586\) −40.7436 −1.68310
\(587\) 14.6771i 0.605788i 0.953024 + 0.302894i \(0.0979529\pi\)
−0.953024 + 0.302894i \(0.902047\pi\)
\(588\) 0 0
\(589\) 12.0178 0.495183
\(590\) −36.5046 12.4571i −1.50287 0.512852i
\(591\) 0 0
\(592\) 3.65170i 0.150084i
\(593\) 6.40723i 0.263113i 0.991309 + 0.131557i \(0.0419976\pi\)
−0.991309 + 0.131557i \(0.958002\pi\)
\(594\) 0 0
\(595\) 1.85938 5.44876i 0.0762272 0.223377i
\(596\) −0.599554 −0.0245587
\(597\) 0 0
\(598\) 24.4095i 0.998178i
\(599\) 19.0689 0.779133 0.389566 0.920998i \(-0.372625\pi\)
0.389566 + 0.920998i \(0.372625\pi\)
\(600\) 0 0
\(601\) 22.2923 0.909320 0.454660 0.890665i \(-0.349761\pi\)
0.454660 + 0.890665i \(0.349761\pi\)
\(602\) 2.74949i 0.112061i
\(603\) 0 0
\(604\) −1.22387 −0.0497987
\(605\) 13.1551 38.5500i 0.534832 1.56728i
\(606\) 0 0
\(607\) 16.2888i 0.661143i 0.943781 + 0.330571i \(0.107241\pi\)
−0.943781 + 0.330571i \(0.892759\pi\)
\(608\) 4.89988i 0.198717i
\(609\) 0 0
\(610\) −29.7277 10.1445i −1.20364 0.410740i
\(611\) −53.5711 −2.16726
\(612\) 0 0
\(613\) 1.73076i 0.0699046i −0.999389 0.0349523i \(-0.988872\pi\)
0.999389 0.0349523i \(-0.0111279\pi\)
\(614\) 35.7935 1.44451
\(615\) 0 0
\(616\) −11.8510 −0.477490
\(617\) 18.1783i 0.731830i −0.930648 0.365915i \(-0.880756\pi\)
0.930648 0.365915i \(-0.119244\pi\)
\(618\) 0 0
\(619\) −32.8475 −1.32025 −0.660127 0.751154i \(-0.729497\pi\)
−0.660127 + 0.751154i \(0.729497\pi\)
\(620\) −0.259598 + 0.760730i −0.0104257 + 0.0305516i
\(621\) 0 0
\(622\) 20.1702i 0.808750i
\(623\) 0.279288i 0.0111894i
\(624\) 0 0
\(625\) 6.31503 + 24.1893i 0.252601 + 0.967570i
\(626\) −0.506603 −0.0202479
\(627\) 0 0
\(628\) 2.58923i 0.103322i
\(629\) −3.44151 −0.137222
\(630\) 0 0
\(631\) −24.9007 −0.991280 −0.495640 0.868528i \(-0.665066\pi\)
−0.495640 + 0.868528i \(0.665066\pi\)
\(632\) 40.7621i 1.62143i
\(633\) 0 0
\(634\) 6.82048 0.270876
\(635\) 0.300470 + 0.102535i 0.0119238 + 0.00406898i
\(636\) 0 0
\(637\) 33.2677i 1.31811i
\(638\) 47.4285i 1.87771i
\(639\) 0 0
\(640\) −20.6484 7.04623i −0.816199 0.278527i
\(641\) 31.7199 1.25286 0.626430 0.779477i \(-0.284515\pi\)
0.626430 + 0.779477i \(0.284515\pi\)
\(642\) 0 0
\(643\) 32.4283i 1.27885i −0.768854 0.639424i \(-0.779173\pi\)
0.768854 0.639424i \(-0.220827\pi\)
\(644\) 0.420168 0.0165570
\(645\) 0 0
\(646\) 25.1449 0.989312
\(647\) 45.5239i 1.78973i 0.446339 + 0.894864i \(0.352728\pi\)
−0.446339 + 0.894864i \(0.647272\pi\)
\(648\) 0 0
\(649\) 68.7580 2.69899
\(650\) 27.7172 + 21.4102i 1.08716 + 0.839775i
\(651\) 0 0
\(652\) 1.12684i 0.0441303i
\(653\) 18.4351i 0.721421i −0.932678 0.360710i \(-0.882534\pi\)
0.932678 0.360710i \(-0.117466\pi\)
\(654\) 0 0
\(655\) 0.314784 0.922449i 0.0122996 0.0360431i
\(656\) −23.5469 −0.919352
\(657\) 0 0
\(658\) 10.5213i 0.410161i
\(659\) 44.1954 1.72161 0.860805 0.508935i \(-0.169961\pi\)
0.860805 + 0.508935i \(0.169961\pi\)
\(660\) 0 0
\(661\) 11.9408 0.464443 0.232222 0.972663i \(-0.425401\pi\)
0.232222 + 0.972663i \(0.425401\pi\)
\(662\) 2.91316i 0.113223i
\(663\) 0 0
\(664\) 3.36969 0.130769
\(665\) 8.53055 + 2.91104i 0.330801 + 0.112885i
\(666\) 0 0
\(667\) 22.5489i 0.873097i
\(668\) 2.63477i 0.101942i
\(669\) 0 0
\(670\) −5.97059 + 17.4963i −0.230664 + 0.675942i
\(671\) 55.9934 2.16160
\(672\) 0 0
\(673\) 36.3828i 1.40245i −0.712938 0.701227i \(-0.752636\pi\)
0.712938 0.701227i \(-0.247364\pi\)
\(674\) −19.3143 −0.743960
\(675\) 0 0
\(676\) −2.20522 −0.0848161
\(677\) 6.30279i 0.242236i −0.992638 0.121118i \(-0.961352\pi\)
0.992638 0.121118i \(-0.0386479\pi\)
\(678\) 0 0
\(679\) −6.70619 −0.257360
\(680\) −7.28358 + 21.3439i −0.279312 + 0.818502i
\(681\) 0 0
\(682\) 16.3485i 0.626017i
\(683\) 5.75633i 0.220260i 0.993917 + 0.110130i \(0.0351267\pi\)
−0.993917 + 0.110130i \(0.964873\pi\)
\(684\) 0 0
\(685\) 8.00589 + 2.73200i 0.305889 + 0.104384i
\(686\) 13.6352 0.520596
\(687\) 0 0
\(688\) 9.89676i 0.377310i
\(689\) −23.9926 −0.914045
\(690\) 0 0
\(691\) 46.6320 1.77397 0.886983 0.461802i \(-0.152797\pi\)
0.886983 + 0.461802i \(0.152797\pi\)
\(692\) 1.00239i 0.0381051i
\(693\) 0 0
\(694\) −28.9627 −1.09941
\(695\) 9.21329 26.9988i 0.349480 1.02412i
\(696\) 0 0
\(697\) 22.1916i 0.840567i
\(698\) 11.7329i 0.444095i
\(699\) 0 0
\(700\) −0.368540 + 0.477106i −0.0139295 + 0.0180329i
\(701\) −4.14142 −0.156419 −0.0782096 0.996937i \(-0.524920\pi\)
−0.0782096 + 0.996937i \(0.524920\pi\)
\(702\) 0 0
\(703\) 5.38802i 0.203213i
\(704\) 46.1420 1.73904
\(705\) 0 0
\(706\) −33.2425 −1.25110
\(707\) 10.4168i 0.391762i
\(708\) 0 0
\(709\) 42.7621 1.60596 0.802981 0.596004i \(-0.203246\pi\)
0.802981 + 0.596004i \(0.203246\pi\)
\(710\) 8.04760 + 2.74623i 0.302021 + 0.103064i
\(711\) 0 0
\(712\) 1.09403i 0.0410004i
\(713\) 7.77257i 0.291085i
\(714\) 0 0
\(715\) −59.0874 20.1635i −2.20974 0.754071i
\(716\) −1.76470 −0.0659501
\(717\) 0 0
\(718\) 28.3363i 1.05750i
\(719\) −6.85976 −0.255826 −0.127913 0.991785i \(-0.540828\pi\)
−0.127913 + 0.991785i \(0.540828\pi\)
\(720\) 0 0
\(721\) 2.23469 0.0832243
\(722\) 13.6020i 0.506215i
\(723\) 0 0
\(724\) 1.41027 0.0524124
\(725\) −25.6045 19.7782i −0.950929 0.734544i
\(726\) 0 0
\(727\) 7.85944i 0.291490i −0.989322 0.145745i \(-0.953442\pi\)
0.989322 0.145745i \(-0.0465580\pi\)
\(728\) 11.3256i 0.419753i
\(729\) 0 0
\(730\) 1.48402 4.34881i 0.0549261 0.160957i
\(731\) −9.32713 −0.344976
\(732\) 0 0
\(733\) 12.8442i 0.474411i −0.971459 0.237206i \(-0.923769\pi\)
0.971459 0.237206i \(-0.0762315\pi\)
\(734\) −1.30413 −0.0481362
\(735\) 0 0
\(736\) −3.16903 −0.116812
\(737\) 32.9551i 1.21392i
\(738\) 0 0
\(739\) −13.2976 −0.489160 −0.244580 0.969629i \(-0.578650\pi\)
−0.244580 + 0.969629i \(0.578650\pi\)
\(740\) 0.341064 + 0.116388i 0.0125378 + 0.00427849i
\(741\) 0 0
\(742\) 4.71210i 0.172987i
\(743\) 36.2989i 1.33168i −0.746096 0.665839i \(-0.768074\pi\)
0.746096 0.665839i \(-0.231926\pi\)
\(744\) 0 0
\(745\) −2.68654 + 7.87269i −0.0984274 + 0.288433i
\(746\) −23.0497 −0.843908
\(747\) 0 0
\(748\) 2.99800i 0.109618i
\(749\) 4.92970 0.180127
\(750\) 0 0
\(751\) −24.5638 −0.896346 −0.448173 0.893947i \(-0.647925\pi\)
−0.448173 + 0.893947i \(0.647925\pi\)
\(752\) 37.8711i 1.38102i
\(753\) 0 0
\(754\) −45.3257 −1.65066
\(755\) −5.48405 + 16.0706i −0.199585 + 0.584867i
\(756\) 0 0
\(757\) 26.5324i 0.964336i −0.876079 0.482168i \(-0.839850\pi\)
0.876079 0.482168i \(-0.160150\pi\)
\(758\) 17.5080i 0.635920i
\(759\) 0 0
\(760\) −33.4159 11.4031i −1.21212 0.413635i
\(761\) 2.08409 0.0755481 0.0377740 0.999286i \(-0.487973\pi\)
0.0377740 + 0.999286i \(0.487973\pi\)
\(762\) 0 0
\(763\) 13.4349i 0.486376i
\(764\) −2.54502 −0.0920757
\(765\) 0 0
\(766\) 18.7449 0.677280
\(767\) 65.7095i 2.37263i
\(768\) 0 0
\(769\) −37.4780 −1.35149 −0.675746 0.737135i \(-0.736178\pi\)
−0.675746 + 0.737135i \(0.736178\pi\)
\(770\) −3.96007 + 11.6047i −0.142711 + 0.418203i
\(771\) 0 0
\(772\) 1.77032i 0.0637150i
\(773\) 51.5098i 1.85268i 0.376692 + 0.926339i \(0.377062\pi\)
−0.376692 + 0.926339i \(0.622938\pi\)
\(774\) 0 0
\(775\) 8.82584 + 6.81751i 0.317033 + 0.244892i
\(776\) 26.2695 0.943021
\(777\) 0 0
\(778\) 13.6157i 0.488146i
\(779\) −34.7431 −1.24480
\(780\) 0 0
\(781\) −15.1580 −0.542396
\(782\) 16.2626i 0.581550i
\(783\) 0 0
\(784\) −23.5180 −0.839927
\(785\) 33.9990 + 11.6021i 1.21348 + 0.414097i
\(786\) 0 0
\(787\) 30.5759i 1.08991i 0.838464 + 0.544957i \(0.183454\pi\)
−0.838464 + 0.544957i \(0.816546\pi\)
\(788\) 1.59019i 0.0566480i
\(789\) 0 0
\(790\) 39.9148 + 13.6208i 1.42010 + 0.484608i
\(791\) −14.8109 −0.526617
\(792\) 0 0
\(793\) 53.5109i 1.90023i
\(794\) 6.61035 0.234593
\(795\) 0 0
\(796\) −0.900518 −0.0319180
\(797\) 14.8601i 0.526373i 0.964745 + 0.263186i \(0.0847735\pi\)
−0.964745 + 0.263186i \(0.915227\pi\)
\(798\) 0 0
\(799\) −35.6913 −1.26267
\(800\) 2.77964 3.59847i 0.0982750 0.127225i
\(801\) 0 0
\(802\) 8.10699i 0.286268i
\(803\) 8.19116i 0.289060i
\(804\) 0 0
\(805\) 1.88273 5.51719i 0.0663576 0.194456i
\(806\) 15.6237 0.550321
\(807\) 0 0
\(808\) 40.8046i 1.43550i
\(809\) −17.9217 −0.630094 −0.315047 0.949076i \(-0.602020\pi\)
−0.315047 + 0.949076i \(0.602020\pi\)
\(810\) 0 0
\(811\) −25.4430 −0.893425 −0.446712 0.894678i \(-0.647405\pi\)
−0.446712 + 0.894678i \(0.647405\pi\)
\(812\) 0.780205i 0.0273798i
\(813\) 0 0
\(814\) 7.32966 0.256904
\(815\) −14.7964 5.04924i −0.518294 0.176867i
\(816\) 0 0
\(817\) 14.6025i 0.510877i
\(818\) 38.4327i 1.34377i
\(819\) 0 0
\(820\) 0.750491 2.19925i 0.0262083 0.0768012i
\(821\) −33.2113 −1.15908 −0.579541 0.814943i \(-0.696768\pi\)
−0.579541 + 0.814943i \(0.696768\pi\)
\(822\) 0 0
\(823\) 50.9984i 1.77769i −0.458205 0.888847i \(-0.651507\pi\)
0.458205 0.888847i \(-0.348493\pi\)
\(824\) −8.75375 −0.304951
\(825\) 0 0
\(826\) −12.9052 −0.449030
\(827\) 41.5779i 1.44580i 0.690951 + 0.722902i \(0.257192\pi\)
−0.690951 + 0.722902i \(0.742808\pi\)
\(828\) 0 0
\(829\) 17.8704 0.620665 0.310332 0.950628i \(-0.399560\pi\)
0.310332 + 0.950628i \(0.399560\pi\)
\(830\) 1.12600 3.29965i 0.0390840 0.114532i
\(831\) 0 0
\(832\) 44.0962i 1.52876i
\(833\) 22.1643i 0.767948i
\(834\) 0 0
\(835\) −34.5969 11.8061i −1.19728 0.408569i
\(836\) 4.69366 0.162334
\(837\) 0 0
\(838\) 13.0415i 0.450512i
\(839\) 26.2881 0.907565 0.453783 0.891112i \(-0.350074\pi\)
0.453783 + 0.891112i \(0.350074\pi\)
\(840\) 0 0
\(841\) 12.8708 0.443820
\(842\) 11.7384i 0.404531i
\(843\) 0 0
\(844\) −0.315529 −0.0108610
\(845\) −9.88137 + 28.9565i −0.339929 + 0.996135i
\(846\) 0 0
\(847\) 13.6283i 0.468275i
\(848\) 16.9611i 0.582448i
\(849\) 0 0
\(850\) 18.4664 + 14.2643i 0.633392 + 0.489263i
\(851\) −3.48474 −0.119455
\(852\) 0 0
\(853\) 32.1407i 1.10047i −0.835008 0.550237i \(-0.814537\pi\)
0.835008 0.550237i \(-0.185463\pi\)
\(854\) −10.5094 −0.359625
\(855\) 0 0
\(856\) −19.3106 −0.660024
\(857\) 47.5492i 1.62425i −0.583483 0.812125i \(-0.698310\pi\)
0.583483 0.812125i \(-0.301690\pi\)
\(858\) 0 0
\(859\) −13.3037 −0.453917 −0.226959 0.973904i \(-0.572878\pi\)
−0.226959 + 0.973904i \(0.572878\pi\)
\(860\) 0.924345 + 0.315431i 0.0315199 + 0.0107561i
\(861\) 0 0
\(862\) 47.1248i 1.60508i
\(863\) 4.07561i 0.138735i 0.997591 + 0.0693676i \(0.0220981\pi\)
−0.997591 + 0.0693676i \(0.977902\pi\)
\(864\) 0 0
\(865\) −13.1623 4.49161i −0.447531 0.152719i
\(866\) −37.8767 −1.28710
\(867\) 0 0
\(868\) 0.268935i 0.00912826i
\(869\) −75.1812 −2.55035
\(870\) 0 0
\(871\) −31.4940 −1.06713
\(872\) 52.6272i 1.78218i
\(873\) 0 0
\(874\) 25.4607 0.861221
\(875\) 4.61345 + 6.97713i 0.155963 + 0.235870i
\(876\) 0 0
\(877\) 26.7909i 0.904665i 0.891849 + 0.452333i \(0.149408\pi\)
−0.891849 + 0.452333i \(0.850592\pi\)
\(878\) 31.2302i 1.05397i
\(879\) 0 0
\(880\) 14.2542 41.7707i 0.480509 1.40809i
\(881\) −10.8047 −0.364018 −0.182009 0.983297i \(-0.558260\pi\)
−0.182009 + 0.983297i \(0.558260\pi\)
\(882\) 0 0
\(883\) 47.6789i 1.60452i 0.596974 + 0.802261i \(0.296370\pi\)
−0.596974 + 0.802261i \(0.703630\pi\)
\(884\) −2.86508 −0.0963632
\(885\) 0 0
\(886\) 37.5984 1.26314
\(887\) 44.6016i 1.49757i 0.662811 + 0.748787i \(0.269363\pi\)
−0.662811 + 0.748787i \(0.730637\pi\)
\(888\) 0 0
\(889\) 0.106223 0.00356261
\(890\) −1.07129 0.365575i −0.0359096 0.0122541i
\(891\) 0 0
\(892\) 1.44609i 0.0484185i
\(893\) 55.8782i 1.86989i
\(894\) 0 0
\(895\) −7.90747 + 23.1722i −0.264318 + 0.774560i
\(896\) −7.29968 −0.243865
\(897\) 0 0
\(898\) 35.8487i 1.19629i
\(899\) −14.4328 −0.481360
\(900\) 0 0
\(901\) −15.9849 −0.532534
\(902\) 47.2632i 1.57369i
\(903\) 0 0
\(904\) 58.0175 1.92963
\(905\) 6.31930 18.5182i 0.210060 0.615565i
\(906\) 0 0
\(907\) 0.577224i 0.0191664i −0.999954 0.00958321i \(-0.996950\pi\)
0.999954 0.00958321i \(-0.00305048\pi\)
\(908\) 1.25493i 0.0416461i
\(909\) 0 0
\(910\) 11.0901 + 3.78449i 0.367635 + 0.125455i
\(911\) −14.8648 −0.492492 −0.246246 0.969207i \(-0.579197\pi\)
−0.246246 + 0.969207i \(0.579197\pi\)
\(912\) 0 0
\(913\) 6.21503i 0.205687i
\(914\) 35.7816 1.18355
\(915\) 0 0
\(916\) 1.56300 0.0516430
\(917\) 0.326107i 0.0107690i
\(918\) 0 0
\(919\) 5.47645 0.180651 0.0903257 0.995912i \(-0.471209\pi\)
0.0903257 + 0.995912i \(0.471209\pi\)
\(920\) −7.37505 + 21.6120i −0.243148 + 0.712526i
\(921\) 0 0
\(922\) 17.4018i 0.573097i
\(923\) 14.4860i 0.476811i
\(924\) 0 0
\(925\) 3.05655 3.95696i 0.100499 0.130104i
\(926\) −11.6606 −0.383190
\(927\) 0 0
\(928\) 5.88454i 0.193169i
\(929\) 8.07412 0.264903 0.132452 0.991189i \(-0.457715\pi\)
0.132452 + 0.991189i \(0.457715\pi\)
\(930\) 0 0
\(931\) −34.7004 −1.13726
\(932\) 3.62456i 0.118726i
\(933\) 0 0
\(934\) −39.4836 −1.29194
\(935\) −39.3665 13.4338i −1.28742 0.439331i
\(936\) 0 0
\(937\) 4.83794i 0.158048i 0.996873 + 0.0790242i \(0.0251805\pi\)
−0.996873 + 0.0790242i \(0.974820\pi\)
\(938\) 6.18535i 0.201959i
\(939\) 0 0
\(940\) 3.53711 + 1.20703i 0.115368 + 0.0393691i
\(941\) 9.67126 0.315274 0.157637 0.987497i \(-0.449612\pi\)
0.157637 + 0.987497i \(0.449612\pi\)
\(942\) 0 0
\(943\) 22.4703i 0.731734i
\(944\) 46.4521 1.51189
\(945\) 0 0
\(946\) 19.8647 0.645857
\(947\) 22.6385i 0.735653i 0.929894 + 0.367827i \(0.119898\pi\)
−0.929894 + 0.367827i \(0.880102\pi\)
\(948\) 0 0
\(949\) 7.82800 0.254107
\(950\) −22.3322 + 28.9109i −0.724552 + 0.937994i
\(951\) 0 0
\(952\) 7.54557i 0.244553i
\(953\) 31.8539i 1.03185i −0.856634 0.515924i \(-0.827449\pi\)
0.856634 0.515924i \(-0.172551\pi\)
\(954\) 0 0
\(955\) −11.4040 + 33.4185i −0.369025 + 1.08140i
\(956\) −3.60397 −0.116561
\(957\) 0 0
\(958\) 47.9649i 1.54968i
\(959\) 2.83027 0.0913941
\(960\) 0 0
\(961\) −26.0250 −0.839518
\(962\) 7.00469i 0.225840i
\(963\) 0 0
\(964\) −0.771143 −0.0248368
\(965\) −23.2459 7.93261i −0.748310 0.255360i
\(966\) 0 0
\(967\) 21.4942i 0.691206i −0.938381 0.345603i \(-0.887674\pi\)
0.938381 0.345603i \(-0.112326\pi\)
\(968\) 53.3849i 1.71586i
\(969\) 0 0
\(970\) 8.77809 25.7235i 0.281847 0.825931i
\(971\) −26.3424 −0.845368 −0.422684 0.906277i \(-0.638912\pi\)
−0.422684 + 0.906277i \(0.638912\pi\)
\(972\) 0 0
\(973\) 9.54469i 0.305989i
\(974\) −50.3270 −1.61258
\(975\) 0 0
\(976\) 37.8285 1.21086
\(977\) 8.62429i 0.275916i −0.990438 0.137958i \(-0.955946\pi\)
0.990438 0.137958i \(-0.0440538\pi\)
\(978\) 0 0
\(979\) 2.01782 0.0644897
\(980\) 0.749569 2.19655i 0.0239441 0.0701662i
\(981\) 0 0
\(982\) 41.5391i 1.32557i
\(983\) 48.7498i 1.55488i 0.628959 + 0.777438i \(0.283481\pi\)
−0.628959 + 0.777438i \(0.716519\pi\)
\(984\) 0 0
\(985\) −20.8806 7.12547i −0.665311 0.227036i
\(986\) −30.1979 −0.961696
\(987\) 0 0
\(988\) 4.48556i 0.142705i
\(989\) −9.44427 −0.300310
\(990\) 0 0
\(991\) 9.04494 0.287322 0.143661 0.989627i \(-0.454112\pi\)
0.143661 + 0.989627i \(0.454112\pi\)
\(992\) 2.02839i 0.0644014i
\(993\) 0 0
\(994\) 2.84501 0.0902383
\(995\) −4.03513 + 11.8246i −0.127922 + 0.374866i
\(996\) 0 0
\(997\) 38.5413i 1.22062i 0.792164 + 0.610308i \(0.208954\pi\)
−0.792164 + 0.610308i \(0.791046\pi\)
\(998\) 35.7121i 1.13045i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1665.2.c.e.334.13 18
3.2 odd 2 185.2.b.a.149.6 18
5.2 odd 4 8325.2.a.cq.1.4 9
5.3 odd 4 8325.2.a.cr.1.6 9
5.4 even 2 inner 1665.2.c.e.334.6 18
15.2 even 4 925.2.a.m.1.6 9
15.8 even 4 925.2.a.l.1.4 9
15.14 odd 2 185.2.b.a.149.13 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.b.a.149.6 18 3.2 odd 2
185.2.b.a.149.13 yes 18 15.14 odd 2
925.2.a.l.1.4 9 15.8 even 4
925.2.a.m.1.6 9 15.2 even 4
1665.2.c.e.334.6 18 5.4 even 2 inner
1665.2.c.e.334.13 18 1.1 even 1 trivial
8325.2.a.cq.1.4 9 5.2 odd 4
8325.2.a.cr.1.6 9 5.3 odd 4