Properties

Label 832.2.i.l.705.1
Level $832$
Weight $2$
Character 832.705
Analytic conductor $6.644$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [832,2,Mod(321,832)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("832.321"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(832, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,6,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 705.1
Root \(1.28078 + 2.21837i\) of defining polynomial
Character \(\chi\) \(=\) 832.705
Dual form 832.2.i.l.321.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28078 - 2.21837i) q^{3} +3.56155 q^{5} +(-1.28078 + 2.21837i) q^{7} +(-1.78078 + 3.08440i) q^{9} +(-1.28078 - 2.21837i) q^{11} +(-3.34233 - 1.35234i) q^{13} +(-4.56155 - 7.90084i) q^{15} +(2.50000 - 4.33013i) q^{17} +(1.28078 - 2.21837i) q^{19} +6.56155 q^{21} +(-1.84233 - 3.19101i) q^{23} +7.68466 q^{25} +1.43845 q^{27} +(-2.50000 - 4.33013i) q^{29} +8.00000 q^{31} +(-3.28078 + 5.68247i) q^{33} +(-4.56155 + 7.90084i) q^{35} +(-0.500000 - 0.866025i) q^{37} +(1.28078 + 9.14657i) q^{39} +(-4.62311 - 8.00745i) q^{41} +(3.28078 - 5.68247i) q^{43} +(-6.34233 + 10.9852i) q^{45} -4.00000 q^{47} +(0.219224 + 0.379706i) q^{49} -12.8078 q^{51} -4.43845 q^{53} +(-4.56155 - 7.90084i) q^{55} -6.56155 q^{57} +(1.28078 - 2.21837i) q^{59} +(-3.62311 + 6.27540i) q^{61} +(-4.56155 - 7.90084i) q^{63} +(-11.9039 - 4.81645i) q^{65} +(4.71922 + 8.17394i) q^{67} +(-4.71922 + 8.17394i) q^{69} +(3.84233 - 6.65511i) q^{71} -1.31534 q^{73} +(-9.84233 - 17.0474i) q^{75} +6.56155 q^{77} +4.00000 q^{79} +(3.50000 + 6.06218i) q^{81} +2.24621 q^{83} +(8.90388 - 15.4220i) q^{85} +(-6.40388 + 11.0918i) q^{87} +(4.84233 + 8.38716i) q^{89} +(7.28078 - 5.68247i) q^{91} +(-10.2462 - 17.7470i) q^{93} +(4.56155 - 7.90084i) q^{95} +(-1.40388 + 2.43160i) q^{97} +9.12311 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + 6 q^{5} - q^{7} - 3 q^{9} - q^{11} - q^{13} - 10 q^{15} + 10 q^{17} + q^{19} + 18 q^{21} + 5 q^{23} + 6 q^{25} + 14 q^{27} - 10 q^{29} + 32 q^{31} - 9 q^{33} - 10 q^{35} - 2 q^{37} + q^{39}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.28078 2.21837i −0.739457 1.28078i −0.952740 0.303786i \(-0.901749\pi\)
0.213284 0.976990i \(-0.431584\pi\)
\(4\) 0 0
\(5\) 3.56155 1.59277 0.796387 0.604787i \(-0.206742\pi\)
0.796387 + 0.604787i \(0.206742\pi\)
\(6\) 0 0
\(7\) −1.28078 + 2.21837i −0.484088 + 0.838465i −0.999833 0.0182772i \(-0.994182\pi\)
0.515745 + 0.856742i \(0.327515\pi\)
\(8\) 0 0
\(9\) −1.78078 + 3.08440i −0.593592 + 1.02813i
\(10\) 0 0
\(11\) −1.28078 2.21837i −0.386169 0.668864i 0.605762 0.795646i \(-0.292868\pi\)
−0.991931 + 0.126782i \(0.959535\pi\)
\(12\) 0 0
\(13\) −3.34233 1.35234i −0.926995 0.375073i
\(14\) 0 0
\(15\) −4.56155 7.90084i −1.17779 2.03999i
\(16\) 0 0
\(17\) 2.50000 4.33013i 0.606339 1.05021i −0.385499 0.922708i \(-0.625971\pi\)
0.991838 0.127502i \(-0.0406959\pi\)
\(18\) 0 0
\(19\) 1.28078 2.21837i 0.293830 0.508929i −0.680882 0.732393i \(-0.738403\pi\)
0.974712 + 0.223464i \(0.0717366\pi\)
\(20\) 0 0
\(21\) 6.56155 1.43185
\(22\) 0 0
\(23\) −1.84233 3.19101i −0.384152 0.665371i 0.607499 0.794320i \(-0.292173\pi\)
−0.991651 + 0.128949i \(0.958840\pi\)
\(24\) 0 0
\(25\) 7.68466 1.53693
\(26\) 0 0
\(27\) 1.43845 0.276829
\(28\) 0 0
\(29\) −2.50000 4.33013i −0.464238 0.804084i 0.534928 0.844897i \(-0.320339\pi\)
−0.999167 + 0.0408130i \(0.987005\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) −3.28078 + 5.68247i −0.571110 + 0.989191i
\(34\) 0 0
\(35\) −4.56155 + 7.90084i −0.771043 + 1.33549i
\(36\) 0 0
\(37\) −0.500000 0.866025i −0.0821995 0.142374i 0.821995 0.569495i \(-0.192861\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(38\) 0 0
\(39\) 1.28078 + 9.14657i 0.205088 + 1.46462i
\(40\) 0 0
\(41\) −4.62311 8.00745i −0.722008 1.25055i −0.960194 0.279335i \(-0.909886\pi\)
0.238186 0.971220i \(-0.423447\pi\)
\(42\) 0 0
\(43\) 3.28078 5.68247i 0.500314 0.866569i −0.499686 0.866206i \(-0.666551\pi\)
1.00000 0.000362281i \(-0.000115318\pi\)
\(44\) 0 0
\(45\) −6.34233 + 10.9852i −0.945459 + 1.63758i
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) 0.219224 + 0.379706i 0.0313177 + 0.0542438i
\(50\) 0 0
\(51\) −12.8078 −1.79345
\(52\) 0 0
\(53\) −4.43845 −0.609668 −0.304834 0.952406i \(-0.598601\pi\)
−0.304834 + 0.952406i \(0.598601\pi\)
\(54\) 0 0
\(55\) −4.56155 7.90084i −0.615080 1.06535i
\(56\) 0 0
\(57\) −6.56155 −0.869099
\(58\) 0 0
\(59\) 1.28078 2.21837i 0.166743 0.288807i −0.770530 0.637404i \(-0.780008\pi\)
0.937273 + 0.348597i \(0.113342\pi\)
\(60\) 0 0
\(61\) −3.62311 + 6.27540i −0.463891 + 0.803483i −0.999151 0.0412046i \(-0.986880\pi\)
0.535260 + 0.844688i \(0.320214\pi\)
\(62\) 0 0
\(63\) −4.56155 7.90084i −0.574702 0.995412i
\(64\) 0 0
\(65\) −11.9039 4.81645i −1.47649 0.597407i
\(66\) 0 0
\(67\) 4.71922 + 8.17394i 0.576545 + 0.998605i 0.995872 + 0.0907698i \(0.0289328\pi\)
−0.419327 + 0.907835i \(0.637734\pi\)
\(68\) 0 0
\(69\) −4.71922 + 8.17394i −0.568128 + 0.984026i
\(70\) 0 0
\(71\) 3.84233 6.65511i 0.456001 0.789816i −0.542745 0.839898i \(-0.682615\pi\)
0.998745 + 0.0500816i \(0.0159482\pi\)
\(72\) 0 0
\(73\) −1.31534 −0.153949 −0.0769745 0.997033i \(-0.524526\pi\)
−0.0769745 + 0.997033i \(0.524526\pi\)
\(74\) 0 0
\(75\) −9.84233 17.0474i −1.13649 1.96847i
\(76\) 0 0
\(77\) 6.56155 0.747758
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 3.50000 + 6.06218i 0.388889 + 0.673575i
\(82\) 0 0
\(83\) 2.24621 0.246554 0.123277 0.992372i \(-0.460660\pi\)
0.123277 + 0.992372i \(0.460660\pi\)
\(84\) 0 0
\(85\) 8.90388 15.4220i 0.965762 1.67275i
\(86\) 0 0
\(87\) −6.40388 + 11.0918i −0.686568 + 1.18917i
\(88\) 0 0
\(89\) 4.84233 + 8.38716i 0.513286 + 0.889037i 0.999881 + 0.0154098i \(0.00490527\pi\)
−0.486595 + 0.873627i \(0.661761\pi\)
\(90\) 0 0
\(91\) 7.28078 5.68247i 0.763233 0.595685i
\(92\) 0 0
\(93\) −10.2462 17.7470i −1.06248 1.84027i
\(94\) 0 0
\(95\) 4.56155 7.90084i 0.468005 0.810609i
\(96\) 0 0
\(97\) −1.40388 + 2.43160i −0.142543 + 0.246891i −0.928453 0.371449i \(-0.878861\pi\)
0.785911 + 0.618340i \(0.212194\pi\)
\(98\) 0 0
\(99\) 9.12311 0.916907
\(100\) 0 0
\(101\) 2.62311 + 4.54335i 0.261009 + 0.452080i 0.966510 0.256628i \(-0.0826115\pi\)
−0.705501 + 0.708708i \(0.749278\pi\)
\(102\) 0 0
\(103\) −14.2462 −1.40372 −0.701860 0.712314i \(-0.747647\pi\)
−0.701860 + 0.712314i \(0.747647\pi\)
\(104\) 0 0
\(105\) 23.3693 2.28061
\(106\) 0 0
\(107\) 1.84233 + 3.19101i 0.178105 + 0.308486i 0.941231 0.337763i \(-0.109670\pi\)
−0.763127 + 0.646249i \(0.776337\pi\)
\(108\) 0 0
\(109\) −8.24621 −0.789844 −0.394922 0.918715i \(-0.629228\pi\)
−0.394922 + 0.918715i \(0.629228\pi\)
\(110\) 0 0
\(111\) −1.28078 + 2.21837i −0.121566 + 0.210558i
\(112\) 0 0
\(113\) −4.62311 + 8.00745i −0.434905 + 0.753278i −0.997288 0.0735992i \(-0.976551\pi\)
0.562383 + 0.826877i \(0.309885\pi\)
\(114\) 0 0
\(115\) −6.56155 11.3649i −0.611868 1.05979i
\(116\) 0 0
\(117\) 10.1231 7.90084i 0.935881 0.730433i
\(118\) 0 0
\(119\) 6.40388 + 11.0918i 0.587043 + 1.01679i
\(120\) 0 0
\(121\) 2.21922 3.84381i 0.201748 0.349437i
\(122\) 0 0
\(123\) −11.8423 + 20.5115i −1.06779 + 1.84946i
\(124\) 0 0
\(125\) 9.56155 0.855211
\(126\) 0 0
\(127\) 6.40388 + 11.0918i 0.568253 + 0.984242i 0.996739 + 0.0806942i \(0.0257137\pi\)
−0.428486 + 0.903548i \(0.640953\pi\)
\(128\) 0 0
\(129\) −16.8078 −1.47984
\(130\) 0 0
\(131\) 18.2462 1.59418 0.797089 0.603861i \(-0.206372\pi\)
0.797089 + 0.603861i \(0.206372\pi\)
\(132\) 0 0
\(133\) 3.28078 + 5.68247i 0.284479 + 0.492733i
\(134\) 0 0
\(135\) 5.12311 0.440927
\(136\) 0 0
\(137\) 10.7462 18.6130i 0.918111 1.59021i 0.115829 0.993269i \(-0.463048\pi\)
0.802282 0.596945i \(-0.203619\pi\)
\(138\) 0 0
\(139\) −9.84233 + 17.0474i −0.834815 + 1.44594i 0.0593651 + 0.998236i \(0.481092\pi\)
−0.894181 + 0.447706i \(0.852241\pi\)
\(140\) 0 0
\(141\) 5.12311 + 8.87348i 0.431443 + 0.747282i
\(142\) 0 0
\(143\) 1.28078 + 9.14657i 0.107104 + 0.764875i
\(144\) 0 0
\(145\) −8.90388 15.4220i −0.739427 1.28073i
\(146\) 0 0
\(147\) 0.561553 0.972638i 0.0463161 0.0802218i
\(148\) 0 0
\(149\) 6.62311 11.4716i 0.542586 0.939786i −0.456169 0.889893i \(-0.650779\pi\)
0.998755 0.0498931i \(-0.0158881\pi\)
\(150\) 0 0
\(151\) 12.4924 1.01662 0.508309 0.861174i \(-0.330271\pi\)
0.508309 + 0.861174i \(0.330271\pi\)
\(152\) 0 0
\(153\) 8.90388 + 15.4220i 0.719836 + 1.24679i
\(154\) 0 0
\(155\) 28.4924 2.28857
\(156\) 0 0
\(157\) 17.8078 1.42121 0.710607 0.703589i \(-0.248420\pi\)
0.710607 + 0.703589i \(0.248420\pi\)
\(158\) 0 0
\(159\) 5.68466 + 9.84612i 0.450823 + 0.780848i
\(160\) 0 0
\(161\) 9.43845 0.743854
\(162\) 0 0
\(163\) −2.96543 + 5.13628i −0.232271 + 0.402305i −0.958476 0.285173i \(-0.907949\pi\)
0.726205 + 0.687478i \(0.241282\pi\)
\(164\) 0 0
\(165\) −11.6847 + 20.2384i −0.909649 + 1.57556i
\(166\) 0 0
\(167\) −2.71922 4.70983i −0.210420 0.364458i 0.741426 0.671034i \(-0.234150\pi\)
−0.951846 + 0.306577i \(0.900816\pi\)
\(168\) 0 0
\(169\) 9.34233 + 9.03996i 0.718641 + 0.695382i
\(170\) 0 0
\(171\) 4.56155 + 7.90084i 0.348831 + 0.604192i
\(172\) 0 0
\(173\) −7.96543 + 13.7965i −0.605601 + 1.04893i 0.386355 + 0.922350i \(0.373734\pi\)
−0.991956 + 0.126581i \(0.959600\pi\)
\(174\) 0 0
\(175\) −9.84233 + 17.0474i −0.744010 + 1.28866i
\(176\) 0 0
\(177\) −6.56155 −0.493197
\(178\) 0 0
\(179\) −2.15767 3.73720i −0.161272 0.279331i 0.774053 0.633121i \(-0.218226\pi\)
−0.935325 + 0.353789i \(0.884893\pi\)
\(180\) 0 0
\(181\) 9.80776 0.729005 0.364503 0.931202i \(-0.381239\pi\)
0.364503 + 0.931202i \(0.381239\pi\)
\(182\) 0 0
\(183\) 18.5616 1.37211
\(184\) 0 0
\(185\) −1.78078 3.08440i −0.130925 0.226769i
\(186\) 0 0
\(187\) −12.8078 −0.936596
\(188\) 0 0
\(189\) −1.84233 + 3.19101i −0.134010 + 0.232112i
\(190\) 0 0
\(191\) −2.15767 + 3.73720i −0.156124 + 0.270414i −0.933468 0.358662i \(-0.883233\pi\)
0.777344 + 0.629076i \(0.216566\pi\)
\(192\) 0 0
\(193\) −1.50000 2.59808i −0.107972 0.187014i 0.806976 0.590584i \(-0.201102\pi\)
−0.914949 + 0.403570i \(0.867769\pi\)
\(194\) 0 0
\(195\) 4.56155 + 32.5760i 0.326660 + 2.33282i
\(196\) 0 0
\(197\) 1.15767 + 2.00514i 0.0824806 + 0.142861i 0.904315 0.426866i \(-0.140382\pi\)
−0.821834 + 0.569727i \(0.807049\pi\)
\(198\) 0 0
\(199\) 4.71922 8.17394i 0.334537 0.579435i −0.648859 0.760909i \(-0.724753\pi\)
0.983396 + 0.181474i \(0.0580868\pi\)
\(200\) 0 0
\(201\) 12.0885 20.9380i 0.852660 1.47685i
\(202\) 0 0
\(203\) 12.8078 0.898929
\(204\) 0 0
\(205\) −16.4654 28.5190i −1.15000 1.99185i
\(206\) 0 0
\(207\) 13.1231 0.912119
\(208\) 0 0
\(209\) −6.56155 −0.453872
\(210\) 0 0
\(211\) −6.15767 10.6654i −0.423912 0.734236i 0.572407 0.819970i \(-0.306010\pi\)
−0.996318 + 0.0857336i \(0.972677\pi\)
\(212\) 0 0
\(213\) −19.6847 −1.34877
\(214\) 0 0
\(215\) 11.6847 20.2384i 0.796887 1.38025i
\(216\) 0 0
\(217\) −10.2462 + 17.7470i −0.695558 + 1.20474i
\(218\) 0 0
\(219\) 1.68466 + 2.91791i 0.113839 + 0.197174i
\(220\) 0 0
\(221\) −14.2116 + 11.0918i −0.955979 + 0.746119i
\(222\) 0 0
\(223\) −1.84233 3.19101i −0.123371 0.213686i 0.797724 0.603023i \(-0.206037\pi\)
−0.921095 + 0.389337i \(0.872704\pi\)
\(224\) 0 0
\(225\) −13.6847 + 23.7025i −0.912311 + 1.58017i
\(226\) 0 0
\(227\) 3.52699 6.10892i 0.234094 0.405463i −0.724915 0.688839i \(-0.758121\pi\)
0.959009 + 0.283375i \(0.0914542\pi\)
\(228\) 0 0
\(229\) 4.24621 0.280598 0.140299 0.990109i \(-0.455194\pi\)
0.140299 + 0.990109i \(0.455194\pi\)
\(230\) 0 0
\(231\) −8.40388 14.5560i −0.552935 0.957711i
\(232\) 0 0
\(233\) 4.24621 0.278179 0.139089 0.990280i \(-0.455583\pi\)
0.139089 + 0.990280i \(0.455583\pi\)
\(234\) 0 0
\(235\) −14.2462 −0.929320
\(236\) 0 0
\(237\) −5.12311 8.87348i −0.332781 0.576394i
\(238\) 0 0
\(239\) −1.75379 −0.113443 −0.0567216 0.998390i \(-0.518065\pi\)
−0.0567216 + 0.998390i \(0.518065\pi\)
\(240\) 0 0
\(241\) 12.7462 22.0771i 0.821056 1.42211i −0.0838412 0.996479i \(-0.526719\pi\)
0.904897 0.425631i \(-0.139948\pi\)
\(242\) 0 0
\(243\) 11.1231 19.2658i 0.713548 1.23590i
\(244\) 0 0
\(245\) 0.780776 + 1.35234i 0.0498820 + 0.0863981i
\(246\) 0 0
\(247\) −7.28078 + 5.68247i −0.463265 + 0.361567i
\(248\) 0 0
\(249\) −2.87689 4.98293i −0.182316 0.315780i
\(250\) 0 0
\(251\) −14.9654 + 25.9209i −0.944610 + 1.63611i −0.188079 + 0.982154i \(0.560226\pi\)
−0.756530 + 0.653958i \(0.773107\pi\)
\(252\) 0 0
\(253\) −4.71922 + 8.17394i −0.296695 + 0.513891i
\(254\) 0 0
\(255\) −45.6155 −2.85656
\(256\) 0 0
\(257\) 5.62311 + 9.73950i 0.350760 + 0.607534i 0.986383 0.164466i \(-0.0525901\pi\)
−0.635623 + 0.772000i \(0.719257\pi\)
\(258\) 0 0
\(259\) 2.56155 0.159167
\(260\) 0 0
\(261\) 17.8078 1.10227
\(262\) 0 0
\(263\) 4.40388 + 7.62775i 0.271555 + 0.470347i 0.969260 0.246038i \(-0.0791288\pi\)
−0.697705 + 0.716385i \(0.745795\pi\)
\(264\) 0 0
\(265\) −15.8078 −0.971063
\(266\) 0 0
\(267\) 12.4039 21.4842i 0.759105 1.31481i
\(268\) 0 0
\(269\) 7.40388 12.8239i 0.451423 0.781887i −0.547052 0.837099i \(-0.684250\pi\)
0.998475 + 0.0552116i \(0.0175834\pi\)
\(270\) 0 0
\(271\) −2.71922 4.70983i −0.165181 0.286102i 0.771539 0.636183i \(-0.219488\pi\)
−0.936720 + 0.350081i \(0.886154\pi\)
\(272\) 0 0
\(273\) −21.9309 8.87348i −1.32732 0.537047i
\(274\) 0 0
\(275\) −9.84233 17.0474i −0.593515 1.02800i
\(276\) 0 0
\(277\) 5.50000 9.52628i 0.330463 0.572379i −0.652140 0.758099i \(-0.726128\pi\)
0.982603 + 0.185720i \(0.0594618\pi\)
\(278\) 0 0
\(279\) −14.2462 + 24.6752i −0.852898 + 1.47726i
\(280\) 0 0
\(281\) 14.6847 0.876013 0.438007 0.898972i \(-0.355685\pi\)
0.438007 + 0.898972i \(0.355685\pi\)
\(282\) 0 0
\(283\) 10.7192 + 18.5662i 0.637192 + 1.10365i 0.986046 + 0.166472i \(0.0532374\pi\)
−0.348855 + 0.937177i \(0.613429\pi\)
\(284\) 0 0
\(285\) −23.3693 −1.38428
\(286\) 0 0
\(287\) 23.6847 1.39806
\(288\) 0 0
\(289\) −4.00000 6.92820i −0.235294 0.407541i
\(290\) 0 0
\(291\) 7.19224 0.421616
\(292\) 0 0
\(293\) 5.74621 9.95273i 0.335697 0.581445i −0.647921 0.761707i \(-0.724361\pi\)
0.983619 + 0.180263i \(0.0576948\pi\)
\(294\) 0 0
\(295\) 4.56155 7.90084i 0.265584 0.460005i
\(296\) 0 0
\(297\) −1.84233 3.19101i −0.106903 0.185161i
\(298\) 0 0
\(299\) 1.84233 + 13.1569i 0.106545 + 0.760881i
\(300\) 0 0
\(301\) 8.40388 + 14.5560i 0.484392 + 0.838991i
\(302\) 0 0
\(303\) 6.71922 11.6380i 0.386009 0.668588i
\(304\) 0 0
\(305\) −12.9039 + 22.3502i −0.738874 + 1.27977i
\(306\) 0 0
\(307\) −26.2462 −1.49795 −0.748975 0.662598i \(-0.769454\pi\)
−0.748975 + 0.662598i \(0.769454\pi\)
\(308\) 0 0
\(309\) 18.2462 + 31.6034i 1.03799 + 1.79785i
\(310\) 0 0
\(311\) 14.2462 0.807829 0.403914 0.914797i \(-0.367649\pi\)
0.403914 + 0.914797i \(0.367649\pi\)
\(312\) 0 0
\(313\) −32.2462 −1.82266 −0.911332 0.411673i \(-0.864945\pi\)
−0.911332 + 0.411673i \(0.864945\pi\)
\(314\) 0 0
\(315\) −16.2462 28.1393i −0.915370 1.58547i
\(316\) 0 0
\(317\) −16.4384 −0.923275 −0.461638 0.887069i \(-0.652738\pi\)
−0.461638 + 0.887069i \(0.652738\pi\)
\(318\) 0 0
\(319\) −6.40388 + 11.0918i −0.358549 + 0.621024i
\(320\) 0 0
\(321\) 4.71922 8.17394i 0.263401 0.456225i
\(322\) 0 0
\(323\) −6.40388 11.0918i −0.356322 0.617167i
\(324\) 0 0
\(325\) −25.6847 10.3923i −1.42473 0.576461i
\(326\) 0 0
\(327\) 10.5616 + 18.2931i 0.584055 + 1.01161i
\(328\) 0 0
\(329\) 5.12311 8.87348i 0.282446 0.489211i
\(330\) 0 0
\(331\) −10.9654 + 18.9927i −0.602715 + 1.04393i 0.389693 + 0.920945i \(0.372581\pi\)
−0.992408 + 0.122988i \(0.960752\pi\)
\(332\) 0 0
\(333\) 3.56155 0.195172
\(334\) 0 0
\(335\) 16.8078 + 29.1119i 0.918306 + 1.59055i
\(336\) 0 0
\(337\) 16.4384 0.895459 0.447730 0.894169i \(-0.352233\pi\)
0.447730 + 0.894169i \(0.352233\pi\)
\(338\) 0 0
\(339\) 23.6847 1.28637
\(340\) 0 0
\(341\) −10.2462 17.7470i −0.554863 0.961052i
\(342\) 0 0
\(343\) −19.0540 −1.02882
\(344\) 0 0
\(345\) −16.8078 + 29.1119i −0.904900 + 1.56733i
\(346\) 0 0
\(347\) 17.5270 30.3576i 0.940898 1.62968i 0.177135 0.984187i \(-0.443317\pi\)
0.763763 0.645497i \(-0.223350\pi\)
\(348\) 0 0
\(349\) 10.2808 + 17.8068i 0.550317 + 0.953178i 0.998251 + 0.0591110i \(0.0188266\pi\)
−0.447934 + 0.894067i \(0.647840\pi\)
\(350\) 0 0
\(351\) −4.80776 1.94528i −0.256619 0.103831i
\(352\) 0 0
\(353\) 4.50000 + 7.79423i 0.239511 + 0.414845i 0.960574 0.278024i \(-0.0896796\pi\)
−0.721063 + 0.692869i \(0.756346\pi\)
\(354\) 0 0
\(355\) 13.6847 23.7025i 0.726306 1.25800i
\(356\) 0 0
\(357\) 16.4039 28.4124i 0.868186 1.50374i
\(358\) 0 0
\(359\) 4.49242 0.237101 0.118550 0.992948i \(-0.462175\pi\)
0.118550 + 0.992948i \(0.462175\pi\)
\(360\) 0 0
\(361\) 6.21922 + 10.7720i 0.327328 + 0.566948i
\(362\) 0 0
\(363\) −11.3693 −0.596734
\(364\) 0 0
\(365\) −4.68466 −0.245206
\(366\) 0 0
\(367\) −16.0885 27.8662i −0.839815 1.45460i −0.890049 0.455865i \(-0.849330\pi\)
0.0502341 0.998737i \(-0.484003\pi\)
\(368\) 0 0
\(369\) 32.9309 1.71431
\(370\) 0 0
\(371\) 5.68466 9.84612i 0.295133 0.511185i
\(372\) 0 0
\(373\) −5.62311 + 9.73950i −0.291153 + 0.504292i −0.974083 0.226192i \(-0.927372\pi\)
0.682929 + 0.730484i \(0.260706\pi\)
\(374\) 0 0
\(375\) −12.2462 21.2111i −0.632392 1.09533i
\(376\) 0 0
\(377\) 2.50000 + 17.8536i 0.128757 + 0.919506i
\(378\) 0 0
\(379\) 12.9654 + 22.4568i 0.665990 + 1.15353i 0.979016 + 0.203783i \(0.0653239\pi\)
−0.313026 + 0.949744i \(0.601343\pi\)
\(380\) 0 0
\(381\) 16.4039 28.4124i 0.840396 1.45561i
\(382\) 0 0
\(383\) 8.08854 14.0098i 0.413305 0.715865i −0.581944 0.813229i \(-0.697708\pi\)
0.995249 + 0.0973636i \(0.0310410\pi\)
\(384\) 0 0
\(385\) 23.3693 1.19101
\(386\) 0 0
\(387\) 11.6847 + 20.2384i 0.593965 + 1.02878i
\(388\) 0 0
\(389\) 17.3153 0.877923 0.438961 0.898506i \(-0.355347\pi\)
0.438961 + 0.898506i \(0.355347\pi\)
\(390\) 0 0
\(391\) −18.4233 −0.931706
\(392\) 0 0
\(393\) −23.3693 40.4768i −1.17883 2.04179i
\(394\) 0 0
\(395\) 14.2462 0.716805
\(396\) 0 0
\(397\) −10.8423 + 18.7795i −0.544161 + 0.942514i 0.454498 + 0.890748i \(0.349819\pi\)
−0.998659 + 0.0517667i \(0.983515\pi\)
\(398\) 0 0
\(399\) 8.40388 14.5560i 0.420720 0.728709i
\(400\) 0 0
\(401\) 4.74621 + 8.22068i 0.237014 + 0.410521i 0.959856 0.280492i \(-0.0904978\pi\)
−0.722842 + 0.691014i \(0.757164\pi\)
\(402\) 0 0
\(403\) −26.7386 10.8188i −1.33195 0.538921i
\(404\) 0 0
\(405\) 12.4654 + 21.5908i 0.619412 + 1.07285i
\(406\) 0 0
\(407\) −1.28078 + 2.21837i −0.0634857 + 0.109961i
\(408\) 0 0
\(409\) −0.623106 + 1.07925i −0.0308106 + 0.0533655i −0.881020 0.473080i \(-0.843142\pi\)
0.850209 + 0.526445i \(0.176476\pi\)
\(410\) 0 0
\(411\) −55.0540 −2.71561
\(412\) 0 0
\(413\) 3.28078 + 5.68247i 0.161436 + 0.279616i
\(414\) 0 0
\(415\) 8.00000 0.392705
\(416\) 0 0
\(417\) 50.4233 2.46924
\(418\) 0 0
\(419\) 6.96543 + 12.0645i 0.340284 + 0.589389i 0.984485 0.175467i \(-0.0561435\pi\)
−0.644202 + 0.764856i \(0.722810\pi\)
\(420\) 0 0
\(421\) 21.3153 1.03885 0.519423 0.854517i \(-0.326147\pi\)
0.519423 + 0.854517i \(0.326147\pi\)
\(422\) 0 0
\(423\) 7.12311 12.3376i 0.346337 0.599874i
\(424\) 0 0
\(425\) 19.2116 33.2755i 0.931902 1.61410i
\(426\) 0 0
\(427\) −9.28078 16.0748i −0.449128 0.777913i
\(428\) 0 0
\(429\) 18.6501 14.5560i 0.900435 0.702768i
\(430\) 0 0
\(431\) 1.03457 + 1.79192i 0.0498333 + 0.0863137i 0.889866 0.456222i \(-0.150798\pi\)
−0.840033 + 0.542536i \(0.817464\pi\)
\(432\) 0 0
\(433\) 0.746211 1.29248i 0.0358606 0.0621124i −0.847538 0.530735i \(-0.821916\pi\)
0.883399 + 0.468622i \(0.155249\pi\)
\(434\) 0 0
\(435\) −22.8078 + 39.5042i −1.09355 + 1.89408i
\(436\) 0 0
\(437\) −9.43845 −0.451502
\(438\) 0 0
\(439\) −18.9654 32.8491i −0.905171 1.56780i −0.820688 0.571377i \(-0.806409\pi\)
−0.0844831 0.996425i \(-0.526924\pi\)
\(440\) 0 0
\(441\) −1.56155 −0.0743597
\(442\) 0 0
\(443\) 21.7538 1.03355 0.516777 0.856120i \(-0.327132\pi\)
0.516777 + 0.856120i \(0.327132\pi\)
\(444\) 0 0
\(445\) 17.2462 + 29.8713i 0.817549 + 1.41604i
\(446\) 0 0
\(447\) −33.9309 −1.60488
\(448\) 0 0
\(449\) −6.52699 + 11.3051i −0.308028 + 0.533519i −0.977931 0.208929i \(-0.933002\pi\)
0.669903 + 0.742448i \(0.266336\pi\)
\(450\) 0 0
\(451\) −11.8423 + 20.5115i −0.557634 + 0.965850i
\(452\) 0 0
\(453\) −16.0000 27.7128i −0.751746 1.30206i
\(454\) 0 0
\(455\) 25.9309 20.2384i 1.21566 0.948792i
\(456\) 0 0
\(457\) 4.50000 + 7.79423i 0.210501 + 0.364599i 0.951871 0.306497i \(-0.0991571\pi\)
−0.741370 + 0.671096i \(0.765824\pi\)
\(458\) 0 0
\(459\) 3.59612 6.22866i 0.167852 0.290729i
\(460\) 0 0
\(461\) −4.74621 + 8.22068i −0.221053 + 0.382875i −0.955128 0.296193i \(-0.904283\pi\)
0.734075 + 0.679068i \(0.237616\pi\)
\(462\) 0 0
\(463\) −32.9848 −1.53294 −0.766468 0.642283i \(-0.777988\pi\)
−0.766468 + 0.642283i \(0.777988\pi\)
\(464\) 0 0
\(465\) −36.4924 63.2067i −1.69230 2.93114i
\(466\) 0 0
\(467\) 9.75379 0.451352 0.225676 0.974202i \(-0.427541\pi\)
0.225676 + 0.974202i \(0.427541\pi\)
\(468\) 0 0
\(469\) −24.1771 −1.11639
\(470\) 0 0
\(471\) −22.8078 39.5042i −1.05093 1.82026i
\(472\) 0 0
\(473\) −16.8078 −0.772822
\(474\) 0 0
\(475\) 9.84233 17.0474i 0.451597 0.782189i
\(476\) 0 0
\(477\) 7.90388 13.6899i 0.361894 0.626819i
\(478\) 0 0
\(479\) 16.6501 + 28.8388i 0.760762 + 1.31768i 0.942458 + 0.334324i \(0.108508\pi\)
−0.181696 + 0.983355i \(0.558159\pi\)
\(480\) 0 0
\(481\) 0.500000 + 3.57071i 0.0227980 + 0.162811i
\(482\) 0 0
\(483\) −12.0885 20.9380i −0.550048 0.952710i
\(484\) 0 0
\(485\) −5.00000 + 8.66025i −0.227038 + 0.393242i
\(486\) 0 0
\(487\) −19.2808 + 33.3953i −0.873695 + 1.51328i −0.0155493 + 0.999879i \(0.504950\pi\)
−0.858146 + 0.513406i \(0.828384\pi\)
\(488\) 0 0
\(489\) 15.1922 0.687017
\(490\) 0 0
\(491\) −17.5270 30.3576i −0.790982 1.37002i −0.925360 0.379091i \(-0.876237\pi\)
0.134378 0.990930i \(-0.457096\pi\)
\(492\) 0 0
\(493\) −25.0000 −1.12594
\(494\) 0 0
\(495\) 32.4924 1.46043
\(496\) 0 0
\(497\) 9.84233 + 17.0474i 0.441489 + 0.764681i
\(498\) 0 0
\(499\) 16.4924 0.738302 0.369151 0.929369i \(-0.379648\pi\)
0.369151 + 0.929369i \(0.379648\pi\)
\(500\) 0 0
\(501\) −6.96543 + 12.0645i −0.311193 + 0.539002i
\(502\) 0 0
\(503\) −10.1577 + 17.5936i −0.452908 + 0.784460i −0.998565 0.0535486i \(-0.982947\pi\)
0.545657 + 0.838009i \(0.316280\pi\)
\(504\) 0 0
\(505\) 9.34233 + 16.1814i 0.415728 + 0.720062i
\(506\) 0 0
\(507\) 8.08854 32.3029i 0.359225 1.43462i
\(508\) 0 0
\(509\) −16.5000 28.5788i −0.731350 1.26673i −0.956306 0.292366i \(-0.905557\pi\)
0.224957 0.974369i \(-0.427776\pi\)
\(510\) 0 0
\(511\) 1.68466 2.91791i 0.0745249 0.129081i
\(512\) 0 0
\(513\) 1.84233 3.19101i 0.0813408 0.140886i
\(514\) 0 0
\(515\) −50.7386 −2.23581
\(516\) 0 0
\(517\) 5.12311 + 8.87348i 0.225314 + 0.390255i
\(518\) 0 0
\(519\) 40.8078 1.79126
\(520\) 0 0
\(521\) −28.0540 −1.22907 −0.614533 0.788891i \(-0.710656\pi\)
−0.614533 + 0.788891i \(0.710656\pi\)
\(522\) 0 0
\(523\) −20.6501 35.7670i −0.902966 1.56398i −0.823625 0.567135i \(-0.808052\pi\)
−0.0793404 0.996848i \(-0.525281\pi\)
\(524\) 0 0
\(525\) 50.4233 2.20065
\(526\) 0 0
\(527\) 20.0000 34.6410i 0.871214 1.50899i
\(528\) 0 0
\(529\) 4.71165 8.16081i 0.204854 0.354818i
\(530\) 0 0
\(531\) 4.56155 + 7.90084i 0.197955 + 0.342867i
\(532\) 0 0
\(533\) 4.62311 + 33.0156i 0.200249 + 1.43006i
\(534\) 0 0
\(535\) 6.56155 + 11.3649i 0.283681 + 0.491349i
\(536\) 0 0
\(537\) −5.52699 + 9.57302i −0.238507 + 0.413106i
\(538\) 0 0
\(539\) 0.561553 0.972638i 0.0241878 0.0418945i
\(540\) 0 0
\(541\) −6.68466 −0.287396 −0.143698 0.989622i \(-0.545899\pi\)
−0.143698 + 0.989622i \(0.545899\pi\)
\(542\) 0 0
\(543\) −12.5616 21.7572i −0.539068 0.933693i
\(544\) 0 0
\(545\) −29.3693 −1.25804
\(546\) 0 0
\(547\) −16.4924 −0.705165 −0.352583 0.935781i \(-0.614696\pi\)
−0.352583 + 0.935781i \(0.614696\pi\)
\(548\) 0 0
\(549\) −12.9039 22.3502i −0.550724 0.953882i
\(550\) 0 0
\(551\) −12.8078 −0.545629
\(552\) 0 0
\(553\) −5.12311 + 8.87348i −0.217857 + 0.377339i
\(554\) 0 0
\(555\) −4.56155 + 7.90084i −0.193627 + 0.335372i
\(556\) 0 0
\(557\) −0.746211 1.29248i −0.0316180 0.0547640i 0.849783 0.527132i \(-0.176733\pi\)
−0.881401 + 0.472368i \(0.843399\pi\)
\(558\) 0 0
\(559\) −18.6501 + 14.5560i −0.788815 + 0.615651i
\(560\) 0 0
\(561\) 16.4039 + 28.4124i 0.692572 + 1.19957i
\(562\) 0 0
\(563\) 15.5270 26.8935i 0.654385 1.13343i −0.327663 0.944795i \(-0.606261\pi\)
0.982048 0.188633i \(-0.0604055\pi\)
\(564\) 0 0
\(565\) −16.4654 + 28.5190i −0.692706 + 1.19980i
\(566\) 0 0
\(567\) −17.9309 −0.753026
\(568\) 0 0
\(569\) −3.15767 5.46925i −0.132376 0.229283i 0.792216 0.610241i \(-0.208927\pi\)
−0.924592 + 0.380958i \(0.875594\pi\)
\(570\) 0 0
\(571\) 24.4924 1.02498 0.512488 0.858694i \(-0.328724\pi\)
0.512488 + 0.858694i \(0.328724\pi\)
\(572\) 0 0
\(573\) 11.0540 0.461786
\(574\) 0 0
\(575\) −14.1577 24.5218i −0.590416 1.02263i
\(576\) 0 0
\(577\) −31.5616 −1.31392 −0.656962 0.753923i \(-0.728159\pi\)
−0.656962 + 0.753923i \(0.728159\pi\)
\(578\) 0 0
\(579\) −3.84233 + 6.65511i −0.159682 + 0.276577i
\(580\) 0 0
\(581\) −2.87689 + 4.98293i −0.119354 + 0.206727i
\(582\) 0 0
\(583\) 5.68466 + 9.84612i 0.235434 + 0.407785i
\(584\) 0 0
\(585\) 36.0540 28.1393i 1.49065 1.16342i
\(586\) 0 0
\(587\) 6.96543 + 12.0645i 0.287494 + 0.497955i 0.973211 0.229914i \(-0.0738444\pi\)
−0.685717 + 0.727869i \(0.740511\pi\)
\(588\) 0 0
\(589\) 10.2462 17.7470i 0.422188 0.731251i
\(590\) 0 0
\(591\) 2.96543 5.13628i 0.121982 0.211278i
\(592\) 0 0
\(593\) −23.5616 −0.967557 −0.483779 0.875190i \(-0.660736\pi\)
−0.483779 + 0.875190i \(0.660736\pi\)
\(594\) 0 0
\(595\) 22.8078 + 39.5042i 0.935027 + 1.61951i
\(596\) 0 0
\(597\) −24.1771 −0.989502
\(598\) 0 0
\(599\) 22.7386 0.929075 0.464538 0.885553i \(-0.346221\pi\)
0.464538 + 0.885553i \(0.346221\pi\)
\(600\) 0 0
\(601\) 18.9924 + 32.8958i 0.774717 + 1.34185i 0.934953 + 0.354771i \(0.115441\pi\)
−0.160236 + 0.987079i \(0.551226\pi\)
\(602\) 0 0
\(603\) −33.6155 −1.36893
\(604\) 0 0
\(605\) 7.90388 13.6899i 0.321339 0.556575i
\(606\) 0 0
\(607\) 15.8423 27.4397i 0.643020 1.11374i −0.341735 0.939796i \(-0.611014\pi\)
0.984755 0.173947i \(-0.0556523\pi\)
\(608\) 0 0
\(609\) −16.4039 28.4124i −0.664719 1.15133i
\(610\) 0 0
\(611\) 13.3693 + 5.40938i 0.540865 + 0.218840i
\(612\) 0 0
\(613\) −4.50000 7.79423i −0.181753 0.314806i 0.760724 0.649075i \(-0.224844\pi\)
−0.942478 + 0.334269i \(0.891511\pi\)
\(614\) 0 0
\(615\) −42.1771 + 73.0528i −1.70074 + 2.94578i
\(616\) 0 0
\(617\) −4.37689 + 7.58100i −0.176207 + 0.305200i −0.940578 0.339577i \(-0.889716\pi\)
0.764371 + 0.644776i \(0.223050\pi\)
\(618\) 0 0
\(619\) 36.9848 1.48655 0.743273 0.668988i \(-0.233272\pi\)
0.743273 + 0.668988i \(0.233272\pi\)
\(620\) 0 0
\(621\) −2.65009 4.59010i −0.106345 0.184194i
\(622\) 0 0
\(623\) −24.8078 −0.993902
\(624\) 0 0
\(625\) −4.36932 −0.174773
\(626\) 0 0
\(627\) 8.40388 + 14.5560i 0.335619 + 0.581309i
\(628\) 0 0
\(629\) −5.00000 −0.199363
\(630\) 0 0
\(631\) −13.5270 + 23.4294i −0.538501 + 0.932711i 0.460484 + 0.887668i \(0.347676\pi\)
−0.998985 + 0.0450430i \(0.985658\pi\)
\(632\) 0 0
\(633\) −15.7732 + 27.3200i −0.626928 + 1.08587i
\(634\) 0 0
\(635\) 22.8078 + 39.5042i 0.905099 + 1.56768i
\(636\) 0 0
\(637\) −0.219224 1.56557i −0.00868596 0.0620301i
\(638\) 0 0
\(639\) 13.6847 + 23.7025i 0.541357 + 0.937657i
\(640\) 0 0
\(641\) −15.7462 + 27.2732i −0.621938 + 1.07723i 0.367187 + 0.930147i \(0.380321\pi\)
−0.989124 + 0.147081i \(0.953012\pi\)
\(642\) 0 0
\(643\) 16.6501 28.8388i 0.656616 1.13729i −0.324871 0.945758i \(-0.605321\pi\)
0.981486 0.191533i \(-0.0613459\pi\)
\(644\) 0 0
\(645\) −59.8617 −2.35705
\(646\) 0 0
\(647\) −2.96543 5.13628i −0.116583 0.201928i 0.801828 0.597555i \(-0.203861\pi\)
−0.918412 + 0.395626i \(0.870528\pi\)
\(648\) 0 0
\(649\) −6.56155 −0.257563
\(650\) 0 0
\(651\) 52.4924 2.05734
\(652\) 0 0
\(653\) 22.7732 + 39.4443i 0.891184 + 1.54358i 0.838457 + 0.544967i \(0.183458\pi\)
0.0527268 + 0.998609i \(0.483209\pi\)
\(654\) 0 0
\(655\) 64.9848 2.53917
\(656\) 0 0
\(657\) 2.34233 4.05703i 0.0913830 0.158280i
\(658\) 0 0
\(659\) −8.71922 + 15.1021i −0.339653 + 0.588296i −0.984367 0.176128i \(-0.943643\pi\)
0.644715 + 0.764423i \(0.276976\pi\)
\(660\) 0 0
\(661\) −21.8693 37.8788i −0.850618 1.47331i −0.880652 0.473764i \(-0.842895\pi\)
0.0300338 0.999549i \(-0.490439\pi\)
\(662\) 0 0
\(663\) 42.8078 + 17.3205i 1.66252 + 0.672673i
\(664\) 0 0
\(665\) 11.6847 + 20.2384i 0.453112 + 0.784812i
\(666\) 0 0
\(667\) −9.21165 + 15.9550i −0.356676 + 0.617782i
\(668\) 0 0
\(669\) −4.71922 + 8.17394i −0.182456 + 0.316023i
\(670\) 0 0
\(671\) 18.5616 0.716561
\(672\) 0 0
\(673\) −0.376894 0.652800i −0.0145282 0.0251636i 0.858670 0.512529i \(-0.171291\pi\)
−0.873198 + 0.487365i \(0.837958\pi\)
\(674\) 0 0
\(675\) 11.0540 0.425468
\(676\) 0 0
\(677\) −20.7386 −0.797050 −0.398525 0.917157i \(-0.630478\pi\)
−0.398525 + 0.917157i \(0.630478\pi\)
\(678\) 0 0
\(679\) −3.59612 6.22866i −0.138006 0.239034i
\(680\) 0 0
\(681\) −18.0691 −0.692411
\(682\) 0 0
\(683\) −9.84233 + 17.0474i −0.376606 + 0.652301i −0.990566 0.137036i \(-0.956242\pi\)
0.613960 + 0.789337i \(0.289576\pi\)
\(684\) 0 0
\(685\) 38.2732 66.2911i 1.46234 2.53285i
\(686\) 0 0
\(687\) −5.43845 9.41967i −0.207490 0.359383i
\(688\) 0 0
\(689\) 14.8348 + 6.00231i 0.565159 + 0.228670i
\(690\) 0 0
\(691\) 10.7192 + 18.5662i 0.407778 + 0.706293i 0.994640 0.103394i \(-0.0329702\pi\)
−0.586862 + 0.809687i \(0.699637\pi\)
\(692\) 0 0
\(693\) −11.6847 + 20.2384i −0.443863 + 0.768794i
\(694\) 0 0
\(695\) −35.0540 + 60.7153i −1.32967 + 2.30306i
\(696\) 0 0
\(697\) −46.2311 −1.75113
\(698\) 0 0
\(699\) −5.43845 9.41967i −0.205701 0.356285i
\(700\) 0 0
\(701\) 16.7386 0.632209 0.316105 0.948724i \(-0.397625\pi\)
0.316105 + 0.948724i \(0.397625\pi\)
\(702\) 0 0
\(703\) −2.56155 −0.0966108
\(704\) 0 0
\(705\) 18.2462 + 31.6034i 0.687192 + 1.19025i
\(706\) 0 0
\(707\) −13.4384 −0.505405
\(708\) 0 0
\(709\) −7.86932 + 13.6301i −0.295538 + 0.511888i −0.975110 0.221722i \(-0.928832\pi\)
0.679572 + 0.733609i \(0.262166\pi\)
\(710\) 0 0
\(711\) −7.12311 + 12.3376i −0.267137 + 0.462695i
\(712\) 0 0
\(713\) −14.7386 25.5281i −0.551966 0.956033i
\(714\) 0 0
\(715\) 4.56155 + 32.5760i 0.170592 + 1.21827i
\(716\) 0 0
\(717\) 2.24621 + 3.89055i 0.0838863 + 0.145295i
\(718\) 0 0
\(719\) −7.03457 + 12.1842i −0.262345 + 0.454395i −0.966865 0.255290i \(-0.917829\pi\)
0.704520 + 0.709685i \(0.251163\pi\)
\(720\) 0 0
\(721\) 18.2462 31.6034i 0.679524 1.17697i
\(722\) 0 0
\(723\) −65.3002 −2.42854
\(724\) 0 0
\(725\) −19.2116 33.2755i −0.713503 1.23582i
\(726\) 0 0
\(727\) 42.7386 1.58509 0.792544 0.609815i \(-0.208756\pi\)
0.792544 + 0.609815i \(0.208756\pi\)
\(728\) 0 0
\(729\) −35.9848 −1.33277
\(730\) 0 0
\(731\) −16.4039 28.4124i −0.606719 1.05087i
\(732\) 0 0
\(733\) 21.8078 0.805488 0.402744 0.915313i \(-0.368056\pi\)
0.402744 + 0.915313i \(0.368056\pi\)
\(734\) 0 0
\(735\) 2.00000 3.46410i 0.0737711 0.127775i
\(736\) 0 0
\(737\) 12.0885 20.9380i 0.445287 0.771260i
\(738\) 0 0
\(739\) −9.03457 15.6483i −0.332342 0.575633i 0.650629 0.759396i \(-0.274505\pi\)
−0.982971 + 0.183763i \(0.941172\pi\)
\(740\) 0 0
\(741\) 21.9309 + 8.87348i 0.805651 + 0.325975i
\(742\) 0 0
\(743\) −18.9654 32.8491i −0.695774 1.20512i −0.969919 0.243428i \(-0.921728\pi\)
0.274145 0.961688i \(-0.411605\pi\)
\(744\) 0 0
\(745\) 23.5885 40.8566i 0.864217 1.49687i
\(746\) 0 0
\(747\) −4.00000 + 6.92820i −0.146352 + 0.253490i
\(748\) 0 0
\(749\) −9.43845 −0.344873
\(750\) 0 0
\(751\) 2.65009 + 4.59010i 0.0967033 + 0.167495i 0.910318 0.413909i \(-0.135837\pi\)
−0.813615 + 0.581404i \(0.802504\pi\)
\(752\) 0 0
\(753\) 76.6695 2.79399
\(754\) 0 0
\(755\) 44.4924 1.61925
\(756\) 0 0
\(757\) 26.7732 + 46.3725i 0.973088 + 1.68544i 0.686104 + 0.727503i \(0.259319\pi\)
0.286984 + 0.957935i \(0.407347\pi\)
\(758\) 0 0
\(759\) 24.1771 0.877572
\(760\) 0 0
\(761\) 25.9654 44.9735i 0.941246 1.63029i 0.178148 0.984004i \(-0.442989\pi\)
0.763098 0.646283i \(-0.223677\pi\)
\(762\) 0 0
\(763\) 10.5616 18.2931i 0.382354 0.662256i
\(764\) 0 0
\(765\) 31.7116 + 54.9262i 1.14654 + 1.98586i
\(766\) 0 0
\(767\) −7.28078 + 5.68247i −0.262894 + 0.205182i
\(768\) 0 0
\(769\) 13.9654 + 24.1888i 0.503606 + 0.872272i 0.999991 + 0.00416940i \(0.00132717\pi\)
−0.496385 + 0.868103i \(0.665340\pi\)
\(770\) 0 0
\(771\) 14.4039 24.9483i 0.518743 0.898489i
\(772\) 0 0
\(773\) 27.4039 47.4649i 0.985649 1.70719i 0.346633 0.938001i \(-0.387325\pi\)
0.639016 0.769194i \(-0.279342\pi\)
\(774\) 0 0
\(775\) 61.4773 2.20833
\(776\) 0 0
\(777\) −3.28078 5.68247i −0.117697 0.203858i
\(778\) 0 0
\(779\) −23.6847 −0.848591
\(780\) 0 0
\(781\) −19.6847 −0.704372
\(782\) 0 0
\(783\) −3.59612 6.22866i −0.128515 0.222594i
\(784\) 0 0
\(785\) 63.4233 2.26367
\(786\) 0 0
\(787\) −17.2116 + 29.8114i −0.613529 + 1.06266i 0.377112 + 0.926168i \(0.376917\pi\)
−0.990641 + 0.136496i \(0.956416\pi\)
\(788\) 0 0
\(789\) 11.2808 19.5389i 0.401606 0.695602i
\(790\) 0 0
\(791\) −11.8423 20.5115i −0.421065 0.729306i
\(792\) 0 0
\(793\) 20.5961 16.0748i 0.731390 0.570832i
\(794\) 0 0
\(795\) 20.2462 + 35.0675i 0.718059 + 1.24371i
\(796\) 0 0
\(797\) −7.96543 + 13.7965i −0.282150 + 0.488698i −0.971914 0.235336i \(-0.924381\pi\)
0.689764 + 0.724034i \(0.257714\pi\)
\(798\) 0 0
\(799\) −10.0000 + 17.3205i −0.353775 + 0.612756i
\(800\) 0 0
\(801\) −34.4924 −1.21873
\(802\) 0 0
\(803\) 1.68466 + 2.91791i 0.0594503 + 0.102971i
\(804\) 0 0
\(805\) 33.6155 1.18479
\(806\) 0 0
\(807\) −37.9309 −1.33523
\(808\) 0 0
\(809\) 3.37689 + 5.84895i 0.118725 + 0.205638i 0.919263 0.393644i \(-0.128786\pi\)
−0.800537 + 0.599283i \(0.795453\pi\)
\(810\) 0 0
\(811\) 8.00000 0.280918 0.140459 0.990086i \(-0.455142\pi\)
0.140459 + 0.990086i \(0.455142\pi\)
\(812\) 0 0
\(813\) −6.96543 + 12.0645i −0.244288 + 0.423120i
\(814\) 0 0
\(815\) −10.5616 + 18.2931i −0.369955 + 0.640781i
\(816\) 0 0
\(817\) −8.40388 14.5560i −0.294015 0.509248i
\(818\) 0 0
\(819\) 4.56155 + 32.5760i 0.159394 + 1.13830i
\(820\) 0 0
\(821\) 3.40388 + 5.89570i 0.118796 + 0.205761i 0.919291 0.393579i \(-0.128763\pi\)
−0.800495 + 0.599340i \(0.795430\pi\)
\(822\) 0 0
\(823\) 22.0885 38.2585i 0.769958 1.33361i −0.167627 0.985851i \(-0.553610\pi\)
0.937585 0.347756i \(-0.113056\pi\)
\(824\) 0 0
\(825\) −25.2116 + 43.6679i −0.877757 + 1.52032i
\(826\) 0 0
\(827\) 28.9848 1.00790 0.503951 0.863732i \(-0.331879\pi\)
0.503951 + 0.863732i \(0.331879\pi\)
\(828\) 0 0
\(829\) 19.7462 + 34.2014i 0.685814 + 1.18787i 0.973180 + 0.230044i \(0.0738871\pi\)
−0.287366 + 0.957821i \(0.592780\pi\)
\(830\) 0 0
\(831\) −28.1771 −0.977452
\(832\) 0 0
\(833\) 2.19224 0.0759565
\(834\) 0 0
\(835\) −9.68466 16.7743i −0.335151 0.580499i
\(836\) 0 0
\(837\) 11.5076 0.397760
\(838\) 0 0
\(839\) 19.8423 34.3679i 0.685033 1.18651i −0.288393 0.957512i \(-0.593121\pi\)
0.973426 0.229000i \(-0.0735457\pi\)
\(840\) 0 0
\(841\) 2.00000 3.46410i 0.0689655 0.119452i
\(842\) 0 0
\(843\) −18.8078 32.5760i −0.647774 1.12198i
\(844\) 0 0
\(845\) 33.2732 + 32.1963i 1.14463 + 1.10759i
\(846\) 0 0
\(847\) 5.68466 + 9.84612i 0.195327 + 0.338317i
\(848\) 0 0
\(849\) 27.4579 47.5584i 0.942351 1.63220i
\(850\) 0 0
\(851\) −1.84233 + 3.19101i −0.0631542 + 0.109386i
\(852\) 0 0
\(853\) −13.4233 −0.459605 −0.229802 0.973237i \(-0.573808\pi\)
−0.229802 + 0.973237i \(0.573808\pi\)
\(854\) 0 0
\(855\) 16.2462 + 28.1393i 0.555609 + 0.962343i
\(856\) 0 0
\(857\) −52.0540 −1.77813 −0.889065 0.457781i \(-0.848644\pi\)
−0.889065 + 0.457781i \(0.848644\pi\)
\(858\) 0 0
\(859\) −5.75379 −0.196317 −0.0981584 0.995171i \(-0.531295\pi\)
−0.0981584 + 0.995171i \(0.531295\pi\)
\(860\) 0 0
\(861\) −30.3348 52.5413i −1.03381 1.79060i
\(862\) 0 0
\(863\) 38.2462 1.30192 0.650958 0.759114i \(-0.274367\pi\)
0.650958 + 0.759114i \(0.274367\pi\)
\(864\) 0 0
\(865\) −28.3693 + 49.1371i −0.964586 + 1.67071i
\(866\) 0 0
\(867\) −10.2462 + 17.7470i −0.347980 + 0.602718i
\(868\) 0 0
\(869\) −5.12311 8.87348i −0.173789 0.301012i
\(870\) 0 0
\(871\) −4.71922 33.7020i −0.159905 1.14195i
\(872\) 0 0
\(873\) −5.00000 8.66025i −0.169224 0.293105i
\(874\) 0 0
\(875\) −12.2462 + 21.2111i −0.413998 + 0.717065i
\(876\) 0 0
\(877\) 4.86932 8.43390i 0.164425 0.284793i −0.772026 0.635591i \(-0.780756\pi\)
0.936451 + 0.350798i \(0.114090\pi\)
\(878\) 0 0
\(879\) −29.4384 −0.992934
\(880\) 0 0
\(881\) −0.623106 1.07925i −0.0209930 0.0363609i 0.855338 0.518070i \(-0.173349\pi\)
−0.876331 + 0.481709i \(0.840016\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) −23.3693 −0.785551
\(886\) 0 0
\(887\) 4.15767 + 7.20130i 0.139601 + 0.241796i 0.927346 0.374206i \(-0.122085\pi\)
−0.787745 + 0.616002i \(0.788751\pi\)
\(888\) 0 0
\(889\) −32.8078 −1.10034
\(890\) 0 0
\(891\) 8.96543 15.5286i 0.300353 0.520227i
\(892\) 0 0
\(893\) −5.12311 + 8.87348i −0.171438 + 0.296940i
\(894\) 0 0
\(895\) −7.68466 13.3102i −0.256870 0.444912i
\(896\) 0 0
\(897\) 26.8272 20.9380i 0.895733 0.699098i
\(898\) 0 0
\(899\) −20.0000 34.6410i −0.667037 1.15534i
\(900\) 0 0
\(901\) −11.0961 + 19.2190i −0.369665 + 0.640279i
\(902\) 0 0
\(903\) 21.5270 37.2858i 0.716373 1.24079i
\(904\) 0 0
\(905\) 34.9309 1.16114
\(906\) 0 0
\(907\) −6.65009 11.5183i −0.220813 0.382459i 0.734242 0.678888i \(-0.237538\pi\)
−0.955055 + 0.296429i \(0.904204\pi\)
\(908\) 0 0
\(909\) −18.6847 −0.619731
\(910\) 0 0
\(911\) −18.7386 −0.620839 −0.310419 0.950600i \(-0.600469\pi\)
−0.310419 + 0.950600i \(0.600469\pi\)
\(912\) 0 0
\(913\) −2.87689 4.98293i −0.0952113 0.164911i
\(914\) 0 0
\(915\) 66.1080 2.18546
\(916\) 0 0
\(917\) −23.3693 + 40.4768i −0.771723 + 1.33666i
\(918\) 0 0
\(919\) −5.77320 + 9.99947i −0.190440 + 0.329852i −0.945396 0.325923i \(-0.894325\pi\)
0.754956 + 0.655775i \(0.227658\pi\)
\(920\) 0 0
\(921\) 33.6155 + 58.2238i 1.10767 + 1.91854i
\(922\) 0 0
\(923\) −21.8423 + 17.0474i −0.718949 + 0.561122i
\(924\) 0 0
\(925\) −3.84233 6.65511i −0.126335 0.218819i
\(926\) 0 0
\(927\) 25.3693 43.9409i 0.833238 1.44321i
\(928\) 0 0
\(929\) −13.9924 + 24.2356i −0.459076 + 0.795144i −0.998912 0.0466265i \(-0.985153\pi\)
0.539836 + 0.841770i \(0.318486\pi\)
\(930\) 0 0
\(931\) 1.12311 0.0368083
\(932\) 0 0
\(933\) −18.2462 31.6034i −0.597354 1.03465i
\(934\) 0 0
\(935\) −45.6155 −1.49179
\(936\) 0 0
\(937\) −1.31534 −0.0429703 −0.0214852 0.999769i \(-0.506839\pi\)
−0.0214852 + 0.999769i \(0.506839\pi\)
\(938\) 0 0
\(939\) 41.3002 + 71.5340i 1.34778 + 2.33442i
\(940\) 0 0
\(941\) −14.0000 −0.456387 −0.228193 0.973616i \(-0.573282\pi\)
−0.228193 + 0.973616i \(0.573282\pi\)
\(942\) 0 0
\(943\) −17.0346 + 29.5047i −0.554722 + 0.960806i
\(944\) 0 0
\(945\) −6.56155 + 11.3649i −0.213447 + 0.369702i
\(946\) 0 0
\(947\) 23.2116 + 40.2038i 0.754277 + 1.30645i 0.945733 + 0.324945i \(0.105346\pi\)
−0.191456 + 0.981501i \(0.561321\pi\)
\(948\) 0 0
\(949\) 4.39630 + 1.77879i 0.142710 + 0.0577421i
\(950\) 0 0
\(951\) 21.0540 + 36.4666i 0.682722 + 1.18251i
\(952\) 0 0
\(953\) 2.59612 4.49661i 0.0840965 0.145659i −0.820909 0.571059i \(-0.806533\pi\)
0.905006 + 0.425399i \(0.139866\pi\)
\(954\) 0 0
\(955\) −7.68466 + 13.3102i −0.248670 + 0.430709i
\(956\) 0 0
\(957\) 32.8078 1.06052
\(958\) 0 0
\(959\) 27.5270 + 47.6781i 0.888893 + 1.53961i
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −13.1231 −0.422886
\(964\) 0 0
\(965\) −5.34233 9.25319i −0.171976 0.297871i
\(966\) 0 0
\(967\) −22.2462 −0.715390 −0.357695 0.933838i \(-0.616437\pi\)
−0.357695 + 0.933838i \(0.616437\pi\)
\(968\) 0 0
\(969\) −16.4039 + 28.4124i −0.526969 + 0.912736i
\(970\) 0 0
\(971\) −15.8423 + 27.4397i −0.508405 + 0.880582i 0.491548 + 0.870850i \(0.336431\pi\)
−0.999953 + 0.00973207i \(0.996902\pi\)
\(972\) 0 0
\(973\) −25.2116 43.6679i −0.808248 1.39993i
\(974\) 0 0
\(975\) 9.84233 + 70.2883i 0.315207 + 2.25103i
\(976\) 0 0
\(977\) 7.62311 + 13.2036i 0.243885 + 0.422421i 0.961817 0.273692i \(-0.0882448\pi\)
−0.717933 + 0.696113i \(0.754911\pi\)
\(978\) 0 0
\(979\) 12.4039 21.4842i 0.396430 0.686637i
\(980\) 0 0
\(981\) 14.6847 25.4346i 0.468845 0.812063i
\(982\) 0 0
\(983\) −40.9848 −1.30721 −0.653607 0.756834i \(-0.726745\pi\)
−0.653607 + 0.756834i \(0.726745\pi\)
\(984\) 0 0
\(985\) 4.12311 + 7.14143i 0.131373 + 0.227545i
\(986\) 0 0
\(987\) −26.2462 −0.835426
\(988\) 0 0
\(989\) −24.1771 −0.768786
\(990\) 0 0
\(991\) 28.6501 + 49.6234i 0.910100 + 1.57634i 0.813921 + 0.580976i \(0.197329\pi\)
0.0961794 + 0.995364i \(0.469338\pi\)
\(992\) 0 0
\(993\) 56.1771 1.78273
\(994\) 0 0
\(995\) 16.8078 29.1119i 0.532842 0.922909i
\(996\) 0 0
\(997\) −13.3769 + 23.1695i −0.423650 + 0.733784i −0.996293 0.0860208i \(-0.972585\pi\)
0.572643 + 0.819805i \(0.305918\pi\)
\(998\) 0 0
\(999\) −0.719224 1.24573i −0.0227552 0.0394132i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.i.l.705.1 4
4.3 odd 2 832.2.i.o.705.2 4
8.3 odd 2 104.2.i.b.81.1 yes 4
8.5 even 2 208.2.i.e.81.2 4
13.9 even 3 inner 832.2.i.l.321.1 4
24.5 odd 2 1872.2.t.s.289.2 4
24.11 even 2 936.2.t.f.289.2 4
52.35 odd 6 832.2.i.o.321.2 4
104.3 odd 6 1352.2.a.f.1.2 2
104.11 even 12 1352.2.f.d.337.3 4
104.19 even 12 1352.2.o.c.1161.2 8
104.29 even 6 2704.2.a.q.1.1 2
104.35 odd 6 104.2.i.b.9.1 4
104.37 odd 12 2704.2.f.l.337.1 4
104.43 odd 6 1352.2.i.e.529.1 4
104.51 odd 2 1352.2.i.e.1329.1 4
104.59 even 12 1352.2.o.c.1161.1 8
104.61 even 6 208.2.i.e.113.2 4
104.67 even 12 1352.2.f.d.337.4 4
104.75 odd 6 1352.2.a.h.1.2 2
104.83 even 4 1352.2.o.c.361.2 8
104.93 odd 12 2704.2.f.l.337.2 4
104.99 even 4 1352.2.o.c.361.1 8
104.101 even 6 2704.2.a.r.1.1 2
312.35 even 6 936.2.t.f.217.2 4
312.269 odd 6 1872.2.t.s.1153.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.i.b.9.1 4 104.35 odd 6
104.2.i.b.81.1 yes 4 8.3 odd 2
208.2.i.e.81.2 4 8.5 even 2
208.2.i.e.113.2 4 104.61 even 6
832.2.i.l.321.1 4 13.9 even 3 inner
832.2.i.l.705.1 4 1.1 even 1 trivial
832.2.i.o.321.2 4 52.35 odd 6
832.2.i.o.705.2 4 4.3 odd 2
936.2.t.f.217.2 4 312.35 even 6
936.2.t.f.289.2 4 24.11 even 2
1352.2.a.f.1.2 2 104.3 odd 6
1352.2.a.h.1.2 2 104.75 odd 6
1352.2.f.d.337.3 4 104.11 even 12
1352.2.f.d.337.4 4 104.67 even 12
1352.2.i.e.529.1 4 104.43 odd 6
1352.2.i.e.1329.1 4 104.51 odd 2
1352.2.o.c.361.1 8 104.99 even 4
1352.2.o.c.361.2 8 104.83 even 4
1352.2.o.c.1161.1 8 104.59 even 12
1352.2.o.c.1161.2 8 104.19 even 12
1872.2.t.s.289.2 4 24.5 odd 2
1872.2.t.s.1153.2 4 312.269 odd 6
2704.2.a.q.1.1 2 104.29 even 6
2704.2.a.r.1.1 2 104.101 even 6
2704.2.f.l.337.1 4 104.37 odd 12
2704.2.f.l.337.2 4 104.93 odd 12